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Despite recent advances in cancer immunotherapy, the process of immunoediting early in

tumorigenesis remains obscure. Here, we employ a mathematical model that utilizes the

Cancer Genome Atlas (TCGA) data to elucidate the contribution of individual mutations

and HLA alleles to the immunoediting process. We find that common cancer mutations

including BRAF-V600E and KRAS-G12D are predicted to bind none of the common HLA

alleles, and are thus “immunogenically silent” in the human population.We identify regions

of proteins that are not presented by HLA at a population scale, coinciding with frequently

mutated hotspots in cancer, and other protein regions broadly presented across the

population in which few mutations occur. We also find that 9/29 common HLA alleles

contribute disproportionately to the immunoediting of early oncogenic mutations. These

data provide insights into immune evasion of common driver mutations and a molecular

basis for the association of particular HLA genotypes with cancer susceptibility.
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INTRODUCTION

The immune system is thought to play a dual role in carcinogenesis (1–3). First, when a proper
immune response is mounted, the immune system is capable of eliminating neoplastic cells
arising from early tumor-initiating events (immunoediting). In contrast, the immune system can
initiate signaling of wound healing pathways that can help foster an environment conducive to
tumorigenesis. The human leukocyte antigen (HLA) proteins present a snapshot of all nucleated
cell’s proteomes on the cell surface for surveillance by T cells. While an individual harbors six
distinct HLA Class I alleles (A, B, and C), a total of 13,145 unique Class I alleles have been
characterized to date at these highly polymorphic loci (4). Presentation of processed pathogen-
derived peptide by at least one of these HLA alleles is a prerequisite for the initiation of an adaptive
immune response. Each HLA allele possesses the ability to present a distinct set of peptides to
the immune system, based on the biophysical properties within the peptide binding groove which
restrict specificity to a limited set of available peptides. Peptide binding is largely dictated by two
HLA-facing anchor residues, which are restricted to a few amino acids at these positions (5).
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Recently, algorithms such as NetMHC have allowed the
prediction of binding affinity of peptide sequences to specific
HLA alleles, resulting in the correct prediction of >75% of
binders, with positive predictive values in the range of 90–
95% (6–10).

Presented neoantigens can be divided into two distinct
classes: group 1 resulting from mutations in the TCR-
facing residues and correspondingly less likely to change the
binding affinity of the peptide/HLA complex, and group 2
resulting from the anchor residues of the peptide, and thus
presenting a longer sequence of novel polypeptides to the
immune system, as compared to single-residue alterations
in group one antigens (5). A properly mediated interaction
between the HLA protein, presented peptide, and T cells
serves to maintain the genomic integrity of the organism
by eliminating cells harboring foreign genetic material both
from external pathogens and those arising from somatic
mutations. The tumor immunoediting theory predicts that
early pathogenic events giving rise to precancerous cell
growths can be eliminated by the adaptive immune system
unless cancer cells evolve the ability to escape this selective
pressure (11).

While it has become increasingly appreciated that the adaptive
immune system has the potential to play a significant role in
the elimination of existing tumors, its role in the clearance
of cancer cells during early initiating events has remained
difficult to study. Though it has been well demonstrated
that immunosuppression in humans is linked to an increased
incidence of cancer (12–15), it has remained difficult to quantify
early immunoediting events, and to attribute the clearance
of precancerous lesions in immunocompetent individuals to
clearance of tumor-derived neoantigens, as opposed to other
mechanisms such as the elimination of cells harboring cancer-
inducing viruses.

Here, using the large cohort of patients characterized by
the TCGA, we created an immunogenicity map of neoantigens
resulting from 125 consensus cancer-related genes then employ
a mathematical model to estimate early immunoediting events
by quantifying the underrepresentation of specific neoantigens
and their potential HLA pairs as a metric for prior clearance
of these neoantigens by the immune system. We also employ
an HLA presentation score to characterize population-scale
HLA presentation along the span of individual proteins
to uncover both “protected” (peptides derived from protein
regions highly represented across the population by HLA) and
“unprotected” regions (those not presented by common HLAs)
within proteins commonly mutated in cancer. Further, we
introduce an HLA-centric metric of immunoediting, allowing
the modeling of the degree of immunoediting in early
tumor initiating events that generate strongly immunogenic
antigens presented by MHC Class I at a population scale
occurring across various point mutations, histotypes, patients,
and HLA alleles. We have released a companion web application
that can be used to explore immunogenicity of tumor
neoantigens across the population and HLA presentation
along the span of individual proteins for the identification
of shared tumor neoantigens and tumor vaccine design
(http://reslnmaris01.research.chop.edu:3838/shinyNAP/).

RESULTS

HLA Immunogenicity Map Shows That
Common Mutations Generate Peptides
That Are Immunogenically Silent
To generate a map of immunogenicity across all frequently
observed single nucleotide mutations in cancer driver genes,
we filtered DNA sequencing data from the TCGA (7,300
subjects representing 33 cancer histologies) for all observed
mutations harbored in 125 consensus oncogenes and tumor
suppressor genes [(16), Table S1], resulting in 26,361 unique
variants (Figure S1). For each variant we then generated 17
mer amino acid sequences to cover all possible 9 mer peptides
resulting from amino acid sequences flanking the mutated site
(9 potential variants per mutation), and calculated binding
affinity using NetMHC-4.0 across 84 common HLA Class I
alleles (8), with the alleles studied estimated to represent at least
one allele in 99.4% of the US population (calculated based on
the ethnicity-adjusted allele frequency from the Bone Marrow
Registry) (17). This analysis generated ∼237,000 potential
neoantigens, each with a predicted MHC binding affinity across
all available HLA alleles, resulting in ∼20e6 binding affinities.
From these data we aggregated all neoantigens arising from each
individual mutation and filtered for neoantigens classified as
strong binders (≤0.5% rank binding for its HLA alleles), thereby
identifying those neoantigens most likely to induce an immune
response resulting in their immunoediting and elimination
during early tumorigenesis (Figure 1, Table S2; STAR methods
in Supplementary Material). We find that 211,852 of 2,214,324
(9.6%) aggregated mutant/HLA pairs derived from cancer driver
proteins are predicted to be strong binders.

Upon analyzing HLA binding by neoantigens derived from
each mutant variant, we observed that while the majority
of mutants produced binders across multiple HLA alleles, a
subset of mutations was predicted to not produce any strong
binders across all of the 84 HLA alleles studied, here defined
as immunogenically silent mutations. A total of 1,806 putative
neoepitopes (6.85% of characterized variants) were predicted not
to bind any of the 84 HLA alleles with high affinity (Figure 2A,
Table S2), including the common mutations BRAF V600E and
KRAS G12D, extending the observations of Marty et al. (18). For
each variant, we calculated the probability of a TCGA patient
carrying at least one allele capable of binding that variant (median
neoantigen presented across 26.5% of the population), and found
that the most common variants in the TCGA were enriched in
those mutations predicted to bind HLA less frequently across the
population (Figure 2A, Table S2, p = 0.00035), suggesting that
mutations generating neoantigens capable of being presented
with high affinity bymultiple, or more commonHLA alleles, have
a higher likelihood of being eliminated through immunoediting,
and thus are underrepresented in the TCGA. The highest ranking
of these, MAP3K1 D3727Y, is predicted to bind MHC with high
affinity in 94.5% of the population, producing various epitopes
with strong binding affinity to 50 of 84 HLA alleles tested, and
this mutation is only observed once in the entire TCGA dataset.
Analysis across all variants deriving the most commonly mutated
gene, TP53, reveals that common variants are highly enriched in
loci that are not capable of generating neoantigens (Figure 2B,
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FIGURE 1 | Pipeline for generating immunogenicity map. TCGA mutations imputed by MuSE and Somatic Sniper were filtered for those arising from 125

characterized driver mutations (16). 17 mer peptides sequences were generated for all possible 26,361 variants arising from (covering nine potential epitopes for each

variant) each variant/WT pair (∼237,000 pairs) and analyzed for MHC binding affinity using NetMHC 4.0 across 84 HLA alleles resulting in 20e6 binding affinities.

Peptide affinities were aggregated for all peptides arising from each variant and filtered for those that are strong binders (<0.5% rank), revealing 24,555 strong binders

and 1,806 immunogenically silent mutations.

p = 0.008). Furthermore, our analysis reveals a wide range in
the breadth of tumor neoantigens restricted to specific HLA
alleles, ranging from 3.5% of neoantigens arising from driver
genes bound by HLA-B∗37:01 to 18.6% of neoantigens bound by
HLA-B∗83:01 (Figure 2C).

Having identified immunogenically silent neoepitopes, we
hypothesized that HLA alleles evolved to preferentially present
particular protein motifs, which may leave other regions of
cancer proteins unprotected. We applied the algorithm used to
generate the immunogenicity map, calculating the presentation
scores of 9 mers starting at each amino acid along the span
of the entire protein across 84 HLA alleles and calculating
the percentage of the population predicted to present a given
peptide. We then determined the combined population-wide
presentation scores of the neighboring eight amino acids in either
direction to calculate the regional immunity of the protein to
represent all 9 mers centered at each amino acid position. We
generated immune presentation maps of TP53, PI3KCA, and
BRAF, and mapped this onto the frequency of point mutations
at each amino acid (Figures 3A–C). We find that common
hot-spot mutations frequently occur in protein domains that
score low in population-scale HLA presentation, while domains
that are widely protected rarely harbor recurring mutations,
suggesting that mutations in unprotected regions are enriched
in cancer due in part to consequent immune evasion. We also
mapped the presentation score of neoantigens in TP53 onto the
regional HLA presentation score (Figure 3D), observing a strong
overlap between presentation scores for individual neoantigens
and the corresponding wild-type protein scores, suggesting that
regional scores are a good predictor of the immunogenicity of
neoantigens, particularly group 1 neoantigens that do not alter
the HLA restriction of the peptide.

In addition to understanding the immune evasion of proteins
arising from unprotected domains of proteins, we sought to

apply regional HLA presentation to identifying shared tumor
epitopes derived from clinically-relevant oncogenes that can be
broadly therapeutically applicable across the widest population of
patients. We performed mass spectrometry on 16 neruoblastoma
tumors to characterize the ligandome and test the predictive
ability of the HLA regional scoring across the span of a
protein. We mapped the regional presentation score of the most
highly represented protein in the neuroblastoma ligandome,
NPY (29 MHC Class I peptides detected in 16 neuroblastomas),
finding a highly significant concordance between the empirically
detected peptides and those regions of the protein expected
to be highly presented (Figure 3E; p = 0.000011), and find
no peptides in the ligandome derived from the signal peptide
region (aa 1–28) which is cleaved from the full-length pro-
NPY protein. Based on the high degree of presentation across
the NPY protein across 68/84 HLA alleles, its high level of
differential expression (Figure S6), and its role in promoting
tumor growth (19), we prostulate that NPY is a promising
candidate for vaccination strategies. Surprisingly, we find that
despite the elevated population presentation score in the highly
presented regions, none of the peptides presented in these
regions are predicted to bind to HLA-A∗02:01, highlighting the
utility of a population-scale analysis of HLA presentation in
identifying broadly presented epitopes that may be overlooked
due to lack of presentation by the most common HLA alleles. We
next searched the neuroblastoma immunopeptidomics dataset
we created for peptides derived from the MYCN oncogene, a
major cancer driver in neuroblastoma, finding only a single
peptide (KATEYVHSL) presented on the relatively rare HLA-
C∗16:01 allele representing <5% of the population (Figure 3F).
Applying the HLA protein scoring map, we find that this peptide
is predicted to bind strongly to 10/84 HLA alleles, representing
31.9% of the population (ranking 15th of 456 peptides in
population binding score), and suggesting that this peptide can
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FIGURE 2 | Mutation frequency in TCGA inversely correlates with population-scale HLA binding. (A) Mutation frequency for 26,361 TCGA variants compared to the

proportion of the population predicted to bind a given neoantigens derived from that mutation reveals immunogenically silent mutations in 1,806 variants (6.85% of

mutation in the TCGA, including BRAF V600E and KRAS G12D highlighted) and enrichment of common driver mutations in those which are predicted to not bind any

HLA alleles (p = 0.0004). (B) TP53 mutations are enriched in those that are immunogenically silent or bind HLA alleles in a small portion of the population, and

mutations with high probability of binding at least one allele in a given patient are significantly underrepresented in the TCGA (p = 0.008). (C) Proportion of

characterized neoantigens bound by individual HLA alleles reveals broad range in diversity of binding from 3.5% of neoantigens arising from driver genes bound by

HLA-B*37:01 to 18.6% bound by HLA-B*83:01.

have significantly broader application as a therapeutic target
in this pediatric cancer population. This peptide overlaps with
the previously reported immunogenic HLA-A∗02:01 peptide
VILKKATEYV (20), suggesting that immunization using this
region of MYCN may have wider implications beyond HLA-
A∗02:01 patients. Using our analysis, we find that the highest
scoring MYCN peptide (TVRPKNAAL) has predicted binding
to 9 HLA alleles, representing 58.1% of the population, and we
expect analysis of more neuroblastoma tumor specimens will
validate this prediction. We further analyzed regional scores
across 17 and 33 mers, we find that these regions are predicted
to generate peptides binding to 73.1 and 85.4% of the population,
respectively (Figure 3F). We suggest that these tools can be used
to design and prioritize more broadly applicable therapeutic
targets and vaccines for cancer, particularly when paired with

ligandomics data (21). Analyses of population-scale presentation
along the span of individual proteins and of specific neoantigens
is available through the Shiny-NAP web application (http://
reslnmaris01.research.chop.edu:3838/shinyNAP/).

HLA Allelic Immunogenicity and Cancer
Susceptibility
We hypothesized that specific HLA alleles capable of generating
strongly bound neoantigens would be underrepresented in the
population of TCGA patients harboring those variants due to
early immune based elimination of neoplastic cells. To validate
this prediction, we inferred HLA haplotypes from individual
patient sequencing data using the PHLAT HLA typing algorithm
(22), resulting in 563 unique HLA alleles characterized across the
TCGA. To assure predication accuracy, we directly genotyped 15
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unique HLA allele calls with the lowest confidence predictions
using DNA from cancer cell lines and showed 100% concordance
(Table S3). We then used the immunogenicity map to determine
neoantigen binding across all TCGA driver mutations as defined
above (Table S4). To estimate the degree of immunoediting
across each HLA allele, we used the immunogenicity map to
generate a list of all predicted strong binders at each HLA
allele having greater than 5% population frequency in the TCGA
(29/84 alleles), subset the unique set of patients harboring
these mutations, and compared the frequency of their HLA
alleles to predicted in the TCGA population from the Bone
Marrow Registry data derived largely from younger adults
(Figure S2). Performing this analysis across 29 HLA alleles, we
calculated the magnitude of immunoediting for each allele by
the underrepresentation of that allele in the subset of patients
harboring strong neoantigens for that allele, as compared with
the predicted TCGA population frequency calculated from
the bone marrow registry data (Figure 4A). As a metric of
immunoediting by each allele, we calculated the proportion of
observed HLA frequencies in the neoantigen-harboring cases

compared to the population frequency, in which a proportion of
0 would represent perfect immunoediting of all early neoantigens
and 1 would represent no immunoediting (Figure 4B; STAR
methods in Supplementary Material).

We observe a wide range of immunoediting across the 29
HLA alleles, the highest of which was HLA-A∗68:01 with a
44% underrepresentation in the subset of patients harboring
predicted binders. We also found that many common HLA
alleles appear to not contribute significantly to immunoediting
in cancer. Nine of 29 HLA alleles were significantly associated
with a protective effect against early neoantigens (Figure 4,
Table S2; p= 7.7e−6-0.05, FDR= 0.0001–15.9%). Our modeling
suggests that individual HLA alleles have differential ability
to initiate an immune response capable of clearing early
oncogenes, and across differential breadths of variants. We
generated an immunoediting score to determine the degree
to which each HLA allele was protective, factoring both
breadth and magnitude (% neoantigens bound ∗ % allele
underrepresentation), and determined HLA-A∗68:01 to score
the highest in protectivity against mutations in cancer driver

FIGURE 3 | Continued
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Figure 3 | HLA presentation score by protein region reveals unprotected domains and protein regions broadly applicable as cancer vaccine candidates.

(A–C) Regional HLA presentation scores determined by calculating the fraction of the population capable of presenting a 9 mer epitope centered at each amino acid

location in p53, PI3K, and BRAF (gray bars). Each protein contains domains that are presented on HLA in the majority of the population and other domains that are

unprotected. Mutation frequency at each location overlaid (green lollipop plot) reveals that many common mutations are found in unprotected regions of the protein.

(D) Overlay of mutated neoantigen presentation score with regional presentation score for p53 shows strong correlation between regional protection of WT protein

(gray bars) with protection against mutated neoantigens (black lollipop plot). (E) Twenty nine peptides detected by ligandomics in 16 neuroblastoma tumors were

mapped onto the HLA population presentation scores. Empirically detected peptides were highly enriched in high-scoring regions of the protein (p = 0.000011).

(F) Analysis of MYCN HLA presentation across the span of the protein. Analysis of individual peptides (top) reveals the most highly presented peptide derived from

MYCN, TVRPKNAAL, to be presented on 9 HLA alleles, representing 58.1% of the population. KATEYVHSL peptide, detected by ligandomics is predicted to be

presented on 10 total HLA alleles (31.9% of the population). Analysis of 17 mer regions (middle) reveals a peptide LERQRRNDLRSSFLTLR generating peptides

predicted to bind 19 HLA alleles (73.1% of the population). Analysis of 33 mer regions reveals the highest scoring peptide

TVRPKNAALGPGRAQSSELILKRCLPIHQQHNY presented on 18 HLA alleles in 85.4% of the population, suggesting these as promising regions of the MYCN protein

for broadly applicable vaccination.
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Figure 4 | Immunoediting across HLA alleles. (A) Expected TCGA frequency for each allele as calculated from the Bone Marrow Registry and adjusted for ethnicity

(red) compared to observed HLA allele frequency in subset of the TCGA population harboring strong neoantigen/HLA binding pairs (blue). To calculate observed HLA

frequencies, predicted mutant binders are used to filter TCGA data and HLA frequencies are deduced from the subset of unique individuals. Decreased frequency in

TCGA binders compared to expected frequency is a surrogate metric for early immunoediting events that are responsible for having cleared early tumors and are thus

underrepresented in TCGA data. (B) Ratio of observed:predicted binders. Area below dotted line represents immunoediting frequency for each allele. Zero represents

complete immunoediting while 1 represents no contribution of immunoediting by a particular HLA allele. (C) Binding affinity between HLA alleles found to participate in

immunoediting of cancer neoantigens is stronger than non-contributing alleles (p = 0.015).

genes (Figure S3A, Table S2). We postulated that the binding
affinity between those HLA alleles and tumor neoantigens may
contribute to immunoediting. By comparing the nine HLA
alleles that contribute to immunoediting to the 21 alleles that

were found to not contribute significantly to immunoediting,
we find that the mean binding among neoantigens in the
alleles contributing to immunoediting is 982.8 nM, significantly
stronger than 1,612.6 nM in non-contributing alleles (Figure 4C,
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p = 0.015), suggesting that differential affinity for peptides
among HLA may contribute to their ability to initiate an anti-
tumor response against neoantigens. Furthermore, we scored the
contribution of these alleles at a population level as a metric for
how many neoantigens these alleles are editing at a population
scale by calculating the product of the immunoediting score
with the frequency of the HLA allele in the US population
(Figure S3B, Table S2), with HLA-A∗02:01 emerging as the most
significant contributor to population-scale immunoediting.

Immunoediting in TCGA Across Patients,
Tumors, and Point Mutations
We next focused on immunogenically silent mutations defined
above and showed that these are enriched in the TCGA dataset,
comprising 9.1% of observed mutations, while only representing
6.85% of all characterized variants (p = 2e−16). Indeed, we
find that 1,974 of 7,300 patients (27%) in the TCGA harbor
at least one immunogenically silent mutation. In addition
to immunoediting contributions of HLA alleles and evasion
through immunogenically silent mutations, we explored editing
events across individual patients, tumor types, and specific point
mutations. To model the degree of immunoediting across these
variables, we calculated the expected frequency with which
a given patient, tumor, or point mutation, should harbor at
least one HLA allele capable of binding the subset of strongly
binding neoantigens in that group, calculated the collective
probabilities of the subpopulation generating neoantigens, and
compared the observed frequencies to the predicted frequency
of binding to at least one HLA allele. To simplify the modeling
of predicted allele frequencies, we treated HLA allele frequencies
as independent events and disregarded linkage between HLA
alleles, thus slightly underestimating the expected frequencies
and biasing our prediction of immunoediting toward a more
conservative estimate. These analyses lend insight into tumor cell
extrinsic mechanisms for recurrent hot spot mutations in cancer
(Table S5). For example, while KRAS G12D is immunogenically
silent and is predicted to bind no common HLA allele with high
enough affinity to allow for recognition by T cells, the KRAS
G12A mutation is predicted to generate strong neoantigens
with four HLA alleles (HLA-A∗02:05, HLA-A∗02:06, HLA-
A∗69:01, and HLA-C∗03:03). KRAS G12A scored as the 2nd
most significantly underrepresented driver SNV of the 26,361
mutations analyzed in the TCGA and was not observed in
any patient tumor sample with any of the four predicted HLA
binders in its 35 occurrences (4.3 predicted neoantigen/HLA
pairs, Table S5, p= 0.01).

We also examined immunoediting contributions of group
1 and group 2 neoantigens (as defined above) in HLA-
A∗02:01 by comparing neoantigens arising from mutations
in the anchor positions at residues two and nine to those
mutations outside of these residues. We found no significant
difference in underrepresentation between group 1 and
2 neoantigens (Figure S4), suggesting that both types of
neoantigens participate in immunoediting in the context of
HLA-A∗02:01. Analyzing immunoediting across individual
patients, we found a subset of patients with disproportionate

degrees of immunoediting. The most significant of these,
uterine cancer patient TCGA-E6-A1LX, harbored 3.4-fold
fewer immunogenic neoantigens than predicted (p = 3.1e−10).
Interestingly, this patient also harbored 12 immunogenically
silent mutations (ranking 3rd highest in immunogenically silent
mutations out of 7300 TCGA patients, Table S6), suggesting
that this patient’s tumor had been subjected to significant
immunoediting of secondary mutations, yet was being driven
largely by immunogenically silent mutations. Although the
combined cases of uterine cancer taken together are the least
significantly immunoedited histology, a particular subset of
these patients are highly enriched among individuals with
the highest degree of immunoediting (five out of the top 10
immunoedited individuals in the TCGA), highlighting these
as interesting case studies for the mechanisms underlying
enhanced early immunoediting and eventual immune escape.
In our analysis across histologies, we find that glioblastoma is
the most significantly immunoedited in early tumor formation
(Figure S5; p = 0.008), in line with recent evidence that these
tumors do not arise in immune privileged sites (23, 24). Overall,
these data illustrate differential degrees of immunoediting
and immune evasion across TCGA patients, histologies, and
variants, suggesting that an enrichment in immunogenically
silent mutations may be driving the evolution of tumors in
otherwise immunocompetent individuals.

DISCUSSION

Here we describe a model for quantifying immunoediting during
early tumorigenesis that provides insight into immunologic
contributions to recurrent somatic mutation hotspots observed
in human cancer, as well as immunologic contributions to
cancer susceptibility. The model described herein employs
orthogonal methods to recent studies in demonstrating evidence
of immunoediting in the TCGA cohort (18, 25). Using an HLA-
based hypothesis, we converge on the conclusion that common
driver mutations evade the immune system and provide a
population-scale HLA-centric basis for their overrepresentation
in human cancer. In each of these studies, the immunoediting
process is demonstrated to be imperfect, which can in part be
explained by the false-positive predicted peptides included in
the analysis which dilute the contribution of peptides actually
presented, but also raises questions about disparities in immune
responses. Here we provide methods that can be employed to
elucidate immunoediting across HLA alleles, patients, individual
variants, and other genomic or clinical features. We think that
our HLA-centric population-scale model provides a baseline
of comparison against which we can estimate the degree of
immunoediting, with several examples of disparities across these
features highlighted in this manuscript.

This is the first report that we are aware of to map known
driver neoantigens across common HLA alleles, and quite
strikingly the most recurrent hotspot mutations in human cancer
are predicted to bind no common HLA allele with high enough
affinity to engage the adaptive immune system, highlighting an
immunologic mechanism underlying the evolutionary advantage
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of common mutations in addition to their oncogenic potency.
This is also the first report of which we are aware of to
quantify the contributions of individual HLA alleles to the
immunoediting process in cancer, revealing a high disparity
in immune protection against cancer across the HLA alleles.
Our data suggest that the ability of individual HLA alleles
to bind cancer neoantigens with high affinity is strongly
associated with its ability to contribute to cancer immunoediting.
Though our data support the cancer immunoediting theory,
we and others show that the immunoediting process leads to
incomplete elimination of neoantigens arising from early driver
mutations. Our findings suggest that a significant difference
in p/MHC binding affinities contributes to the disparity
in immunoediting among HLA alleles, but further studies
will be necessary to corroborate these findings and uncover
additional mechanisms contributing to these disparities. While
we demonstrate that a significant degree of immune evasion
may be attributed to immunogenically silent mutations, the
absence of complete immunoediting in patients not harboring
immunogenically silent mutations may be attributed to factors
including tumor intrinsic immune evasion, downregulation
of MHC, lack of T cell response of the proper magnitude
and quality, poor TCR repertoire, exclusion of T cells from
tissue, or peripheral tolerance. We believe that our model
can be coupled with genomic surrogates of these features
to interrogate these variables in future studies using tumor
genomic data.

Here we show that not all HLA alleles are found to be
significantly protective against the neoantigens that they present.
We postulate that alleles not found to significantly participate in
immunoediting may induce sublethal T cell responses or possess
biophysical and/or geometric properties that confer suboptimal
interactions with germline-encoded binding regions of the TCR.
Our findings that specific regions of cancer driver proteins are
unprotected by HLA presentation combined with the disparity
in binding across HLA alleles raises the question of whether
HLA alleles have evolved to confer protectivity against particular
viral domains that coincide with motifs found in cancer proteins,
and whether the unpresented areas remain unprotected due to
lack of evolutionary pressure on these motifs. These results also
raise the question of whether HLA presentation of group 2
neoantigens is associated with mutational signatures arising from
particular groups of DNA damage that generate variants with
more favorable binding properties in the anchor residues (26).
We have made available the tools for other investigators to test
these and other hypotheses (http://reslnmaris01.research.chop.
edu:3838/shinyNAP/).

We also present a tool for mapping the presentation scores
across the span of any given protein in the population. We find a
highly significant concordance between the peptides empirically
detected in the combined ligandome of 16 neuroblastoma tumors
carrying various HLA alleles, and the regions of the NPY
protein predicted to be most highly presented by HLA across
the population. Based on these results paired with the high
level of differential expression, and its role in promoting tumor
growth, we suggest that NPY is a promising candidate for vaccine
development for neuroblastoma patients. Using this tool, we also

suggest that current vaccination strategies used against MYCN
may have broader application across the population. As efforts
are being made to develop HLA-agnostic CAR T cells, specific to
only the peptide and not the MHC, we believe these tools will be
useful in identifying broader segments of the cancer population
likely to benefit from these immunotherapies.

As access to genomic data from cancer patients continues
to expand, and the peptide/MHC binding and T cell epitope
prediction tools improve, this model will benefit from additional
statistical power in stratifying subsets of the patient population
based onmolecular features occurring in smaller subpopulations.
Despite the fact that our model predicted no HLA alleles binding
to neoantigens derived from the KRAS G12D mutation, it was
recently reported by Tran et al. (27) that KRAS G12D neoantigen
GADGVGKSA is able to mediate a T cell response in the context
of HLA-C∗08:02. This antigen is predicted to be a weak HLA
binder (15,390 nM), highlighting the fact that T cell epitopes
are not always predicted using this algorithm, particularly on
rare alleles for which there are limited training data, and that
new methods will help identify neoantigens with non-canonical
motifs (28). Here, we restricted our analysis of immunoediting
by CD8T cells through MHC class I presentation of 9 mer
antigens only, and did not account for immunoediting that may
be triggered by other Class I antigens derived from additional
structural variants or non-canonical antigens, peptides of varying
lengths, Class II antigens, or the activities of the innate immune
system from NK cells or macrophages, as we were focused on
maintaining statistical power by using common HLA alleles and
the most common Class I peptides for which we were most
confident in being contributors to early tumorigenesis.

We find that the highest statistically significant
immunoediting takes place in glioblastoma, whereas, taken
together, sarcomas, pancreatic tumors, ovarian, adrenocortical
tumors and lymphomas show no significant evidence of
immunoediting. Given that the immunogenically silent KRAS
G12D mutation is pathognomonic of pancreatic cancer, our
findings may help explain the lack of efficacy of treatments such
as checkpoint inhibitors in pancreatic cancer (29) and the lack
of immunoediting observed in our analysis, as these tumors
are driven largely by an immunogenically silent mutation. We
suggest that our methods could ultimately be used to inform
the stratification of groups of patients most likely to respond
to immunotherapies such as checkpoint inhibitors based on
patient HLA and antigen immunogenicity, and to prioritize
shared antigens for vaccine development or HLA-agnostic
CAR strategies. This model can also be used to predict how an
individual’s HLA profile can determine the types of mutations
most likely to develop or be protected against.

Using the model of immunogenicity described herein, it
may be possible to infer physical properties of neoantigens that
elicit high immunoediting as compared to other neoantigens
that are presented but not eliminated by the immune system,
study the contributions of various molecular pathways across
tumor types and across individual patients that contribute
to variable degrees of immunoediting, and as a basis for
exploring the mechanisms by which specific HLA alleles may
contribute to cancer protection and predisposition. With alleles
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such as HLA-A∗68:01 emerging as disproportionately high
in their immunoediting score, we will be interested to see
whether contributions of HLA alleles to early immunoediting
will translate to improved abilities to induce T cell responses
against tumor neoantigens in patients, and whether such
alleles are associated with improved outcomes in patients
treated with modern immunotherapies. We suggest that the
immunogenicity map, HLA typing data, and immunoediting
model contained herein will facilitate investigation into
neoantigen immunogenicity at the level of HLA alleles,
mutations, patients, histologies, and aid in prioritization of
shared tumor epitopes for therapeutic development, and
further our mechanistic understanding of immune evasion in
tumor evolution.
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Table S1 | Driver oncogenes and tumor suppressor genes. List of 125 cancer

driver genes implicated in carcinogenesis, including oncogenes and tumor

suppressor genes that regulate cell fate, cell survival, and genome

maintenance (16).

Table S2 | Immunogenicity map of TCGA. Map of all characterized variants

derived from 125 cancer driver genes (Table S1) and their binding score across

each of 84 characterized HLA alleles. Binding score reported as the strongest

rank score from the aggregated pool of all peptides resulting from each variant to

particular HLA allele, with lower scores representing higher binding affinity relative

to binders of each HLA allele.

Table S3 | Validation of HLA genotyping. Comparison of HLA predictions across

15 HLA alleles as inferred from PHLAT algorithm from exome sequencing data of

three neuroblastoma cell lines compared to clinical genotyping performed using

next generation sequencing of amplified HLA loci.

Table S4 | TCGA mutations and patient HLA types. List of variants used to

analyze immunoediting across patients, variants, and histologies. Table populated

with all mutations in driver genes from the TCGA with matched HLA typing inferred

from PHLAT.

Table S5 | Immunoedited variants from TCGA. List of variants most

underrepresented when measured with population of patients harboring HLA

alleles predicted to bind neoantigens derived from variant (p ≤ 0.05). Frequency of

mutation is number of occurrences of mutation in Table S4. Percent of population

with binders is the probability of a TCGA subject harboring an HLA allele capable

of binding a neoepitope derived from the particular variant. Observed mutation is

frequency calculated from the number of patients with at least one HLA allele from

the set of those capable of binding the variant.

Table S6 | Immunoedited subjects from TCGA. List of subjects with highest

degrees of immunoediting in the TCGA (p ≤ 0.05). Expected binders calculated by

summing the probability of all individual variants in each patient being bound to an

HLA allele in the TCGA. Observed binders is the summed number of variant/HLA

pairs that generate at least one epitope across each variant. Observed/expected

represents the degree of underrepresentation of presented neoantigens in each

patient (0 being perfect immunoediting). Despite being ranked the lowest in

significance for immunoediting, uterine cancer represents 5 of the top 10 patients

with the most significant degrees of immunoediting. The most significantly

immunoedited subject also ranks 3 of 7,300 in number of immunogenically

silent mutations.

Figure S1 | Pipeline for inferring HLA type from TCGA and comparing to predicted

frequencies. BAM files for individual patients were converted to FASTQ and

processed using PHLAT to determine HLA type. HLA frequencies in TCGA were

determined using ethnicity-specific allele populations from Bone Marrow Registry

and compared to observed frequencies in TCGA. Patient HLA and mutation data

were combined to determine number of neoantigens in each individual, allowing

the comparison of predicted HLA frequencies to ethnicity-adjusted HLA

frequencies in the TCGA across individuals, mutations, and tumor histologies.

Figure S2 | Workflow for modeling immunoediting for individual HLA alleles

(example show for HLA-A∗02:01). All strong neoantigens predicted to bind given

HLA are aggregated and used to filter the TCGA dataset. Resulting mutations are

filtered for unique patients to remove patients harboring multiple binders to a single

allele. Frequency of unique patients harboring at least one strong neoantigen

binding to predicted HLA allele compared to ethnicity-adjusted predicted value for

TCGA frequency to determine level of immunoediting by specific HLA allele.

Figure S3 | HLA allele immunoediting scores and population editing scores.

Immunoediting scores represent overall ability of HLA alleles to edit mutations,

accounting for the repertoire of antigens they are able to bind and the level of

editing that they exhibit for that subset of antigens (calculated by % neoantigens

bound by allele ∗ % underrepresentation of HLA allele), with HLA-A∗68:01 scoring

highest in immunoediting of neoantigens arising from mutations in early driver

genes. Immunoediting population score is used to estimate the total

immunoediting contribution of HLA alleles across the US population (calculated by

the product of the immunoediting score with the US HLA allele frequency).

(A) Immunoediting scores in HLA alleles shown to be statistically significant.

(B) Population immunoediting scores in HLA alleles shown to be

statistically significant.

Figure S4 | Immunoediting of group 1 and group 2 neoantigens. Neoantigens

resulting from group 1 neoantigens (those with neoantigens occurring from
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mutation at positions outside of anchor residues) were compared with group 2

neoantigens (mutations occurring at anchor residues 2 and 9) in HLA-A∗02:01. No

significant difference in underrepresentation was found between groups 1 and 2 in

HLA-A∗02:01.

Figure S5 | Immunoediting by cancer histology. Combined observed binding

neoantigens compared to expected. Zero represents complete immunoediting

while one represents no contribution of immunoediting by a particular HLA allele.

Glioblastoma is the only significantly immunoedited histology in this analysis (p =

0.008). Uterine cancer is the least significantly immunoedited tumor, though is

highly enriched in individuals exhibiting high degrees of immunoediting (4/8 of the

most significantly edited patients in the TCGA, Table S6).

Figure S6 | NPY is highly differentially expressed in neuroblastoma and is a

promising target for vaccination. RNA-sequencing data from 153 neuroblastoma

tumors in TARGET (first column) compared to 1,643 normal tissues from GTEx

compiled by organ (subsequent columns) reveals high expression of NPY in

neuroblastoma as compared to normal tissues.
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