Supporting Information

Mining the UniProtKB/Swiss-Prot database for antimicrobial peptides

Chenkai Li^{1, 2}, Darcy Sutherland^{1, 3, 4}, Ali Salehi^{1, 3}, Amelia Richter^{1, 3}, Diana Lin¹, Sambina Islam Aninta¹, Hossein Ebrahimikondori^{1, 2}, Anat Yanai^{1, 3}, Lauren Coombe¹, René L. Warren¹, Monica Kotkoff¹, Linda M.N. Hoang^{3, 4}, Caren C. Helbing⁵, and Inanc Birol^{1, 3, 4, 6}*

- 1. Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
- 2. Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- 3. Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC, V5Z 4R4, Canada
- 4. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- 5. Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
- 6. Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada

^{*} Correspondence: Inanc Birol (ibirol@bcgsc.ca)

Supplementary Figures

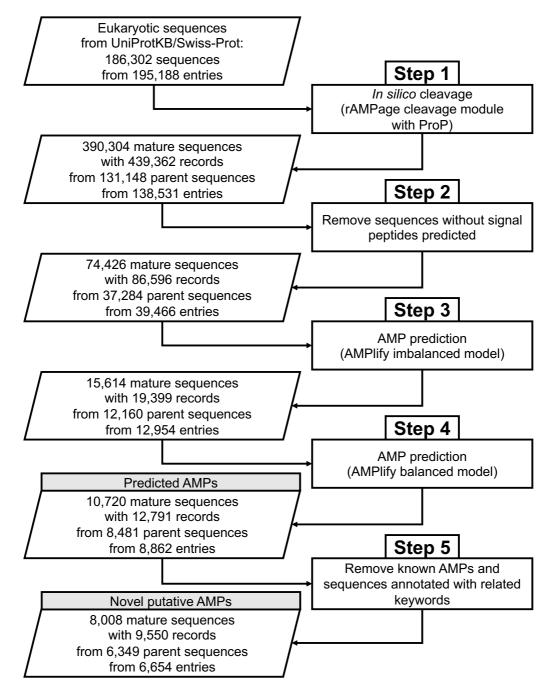


Figure S1: AMP mining workflow. The AMP mining workflow utilizes the rAMPage (Lin et al. 2022) cleavage module with ProP (Duckert et al. 2004) to cleave putative precursor sequences, and AMPlify (Li et al. 2022; Li et al. 2023) to predict AMP sequences. The numbers of candidate mature peptide sequences, candidate mature peptide sequence records, parent sequences, and UniProt entries, that remained at each step are reported. We note that two candidate mature peptide sequence records are considered distinct from each other if any of these three attributes are different: UniProt entry ID, position in the parent sequence, and candidate mature peptide sequence. All numbers presented in the workflow are non-redundant.

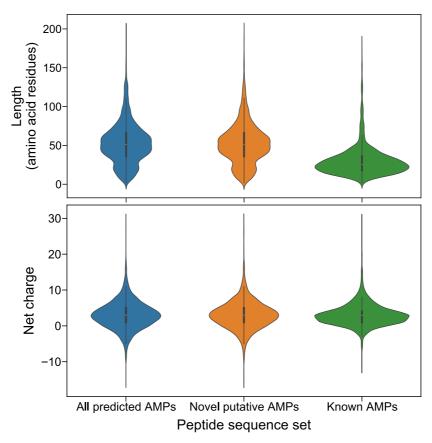


Figure S2: Length and net charge distributions of the AMPs predicted by AMPlify from the UniProtKB/Swiss-Prot database. Length and net charge distributions were calculated for all 10,720 predicted AMPs as well as the 8,008 novel putative AMPs among them. The distributions of the 4,538 known AMP sequences from Antimicrobial Peptide Database (APD3) (Wang et al. 2016) and Database of Anuran Defense Peptides (DADP) (Novković et al. 2012) were plotted alongside for comparison. Mean (μ) and standard deviation (σ) values of each distribution are as follows: all predicted AMPs (length: μ = 52.83 aa, σ = 26.59 aa; net charge: μ = 3.04, σ = 3.88), and known AMPs (length: μ = 30.21 aa, σ = 20.28 aa; net charge: μ = 3.05, σ = 3.10).

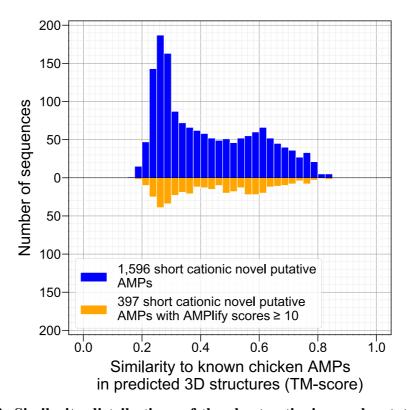


Figure S3: Similarity distributions of the short cationic novel putative AMPs mined from the UniProtKB/Swiss-Prot database to known chicken AMPs in predicted three-dimensional structures. The similarity distribution of 1,596 short cationic novel putative AMPs to known chicken AMPs in predicted three-dimensional (3D) structures holds a mean of 0.4266 and a standard deviation of 0.1690. Among all short cationic novel putative AMPs, 397 of them are with AMPlify scores ≥ 10 (i.e., AMPlify probability scores ≥ 0.9). The similarity distribution of these 397 putative AMPs to known chicken AMPs in predicted 3D structures holds a mean of 0.4434 and a standard deviation of 0.1611. The similarity of each putative AMP to known chicken AMPs in predicted 3D structures (TM-score) was considered as the similarity of the putative AMP to the most similar known chicken AMP in predicted 3D structures (i.e., reference chicken AMP) from Antimicrobial Peptide Database (APD3) (Wang et al. 2016), based on which the distributions were plotted.

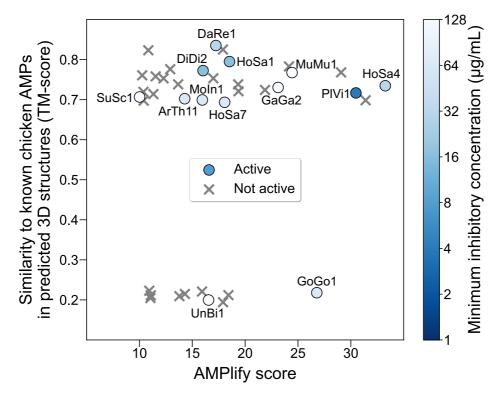


Figure S4: Visualization of antimicrobial activity of the 38 tested putative AMPs with respect to AMPlify scores and associated similarities to known chicken AMPs in predicted three-dimensional structures. Peptides without any observable antimicrobial activity are presented as grey crosses, and the active peptides are presented in blue dots with their names annotated. Dots with darker colors indicate stronger antimicrobial activity against *Escherichia coli* ATCC 25922, determined by the lowest minimum inhibitory concentration (MIC) value of each peptide against the strain. AMPlify scores from the balanced model were used for visualization. The similarity of each tested peptide to known chicken AMPs in predicted three-dimensional (3D) structures (TM-score) was considered as the similarity of that peptide to the most similar known chicken AMP in predicted 3D structures (i.e., reference chicken AMP) from Antimicrobial Peptide Database (APD3) (Wang et al. 2016).

Supplementary Tables

Table S1: Performance comparison among different tools on the balanced test set. Values of accuracy (acc), sensitivity (sens), specificity (spec), F1 score (F1) and area under the receiver operating characteristic curve (AUROC) are presented in percentages.

Tool	Model	Acc	Sens	Spec	F1	AUROC
iAMPpred (Meher et al. 2017)	originala	74.01	87.90	60.12	77.18	80.70
iAMP-2L (Xiao et al. 2013)	originala	77.96	88.26	67.66	80.02	*
AMP Scanner Vr.2 (Veltri et al. 2018)	originala	78.50	90.66	66.35	80.83	88.33
	balanced	93.71	92.93	94.49	93.66	98.37
AMPlify (Li et al. 2022; Li et al. 2023)	imbalanced	89.22	94.37	84.07	89.75	96.88
	balanced + imbalanced ^b	93.59	91.50	95.69	93.46	*

^a Models presented in the referenced papers, which are available through online servers.

^b Only sequences predicted as AMPs by both models are determined to be AMPs.

^{*}AUROC values were not calculated for models which only output predicted labels instead of probabilities.

Table S2: Performance comparison among different tools on the imbalanced test set. Values of accuracy (acc), sensitivity (sens), specificity (spec), F1 score (F1) and area under the receiver operating characteristic curve (AUROC) are presented in percentages. We note that the online server of iAMP-2L (Xiao et al. 2013) was down at the time this analysis was done (November 11, 2022), so its results were not compared here.

Tool	Model	Acc	Sens	Spec	F1	AUROC
iAMPpred (Meher et al. 2017)	original ^a	14.29	87.90	11.90	6.07	55.54
AMP Scanner Vr.2 (Veltri et al. 2018)	original ^a	71.26	90.66	70.63	16.57	91.44
	balanced	95.97	92.93	96.06	59.19	98.06
AMPlify (Li et al. 2022; Li et al. 2023)	imbalanced	98.94	94.37	99.09	84.87	99.54
	balanced + imbalanced ^b	99.31	91.50	99.56	89.25	*

^a Models presented in the referenced papers, which are available through online servers.

^b Only sequences predicted as AMPs by both models are determined to be AMPs.

^{*} AUROC values were not calculated for models which only output predicted labels instead of probabilities.

Table S3: Characteristics of the 40 putative AMP sequences mined from the UniProtKB/Swiss-Prot database that have been prioritized for synthesis. A total number of 397 short cationic novel putative AMPs with AMPlify scores ≥ 10 (i.e., AMPlify probability scores ≥ 0.9) were compared with known chicken AMPs for their similarities in predicted three-dimensional (3D) structures. The top section shows the 30 most similar putative AMPs to the known chicken AMPs in predicted 3D structures as measured by TM-scores, while the bottom section shows the 10 least similar ones to the known chicken AMPs in predicted 3D structures.

Peptide name	Sequence	# aa	Net charge ^a	Molecular weight (Da)	AMPlify score ^b	Sequence similarity to known AMPs ^c (%)	Similarity to known chicken AMPs in predicted 3D structures ^d (TM-score)	Reference chicken AMP ^e
DaRe1	WLLVLQRGHRLASIKHVCQ LSERKR	25	5	3027.63	17.23	40.00	0.8352	Chicken CATH-2
ScPo1	AWDWAKNWVFWTCSYLL NFLYHHHCSRDLIRR	32	2	4138.74	17.90	37.50	0.8252	Chicken CATH-2
ArTh10	DLWFGLKTEGELAFVKRTI FDVIYKSAKRKR	31	4	3716.39	10.84	35.48	0.8233	Chicken CATH-2
HoSa1	GLQKLINKIKSQMSRFSTKT NKICGP	26	6	2921.51	18.52	38.46	0.7951	Chicken CATH-2
HoSa2	TRWEAMKAKATELRVCCA RRKR	22	6	2664.21	24.15	33.33	0.7829	Chicken CATH-3
DiVi1	VWEFFEAGAGLRASNASK KIYGVAKRFRR	29	5	3315.83	12.91	36.36	0.7761	Chicken CATH-3
DiDi2	FWNLNKKKKFFYKTVKNSI GQVILRDMSNN	30	6	3662.31	16.02	33.33	0.7725	Chicken CATH-2
DiDi3*	GVLKIPLAFVQMIAISIALIC	25	1	2650.45	30.78	44.00	0.7724	Chicken

	LLIP							CATH-3
LySt2	FMRFGKRFMRFGRFGKSA	31	5	3652.26	29.08	35.48	0.7681	Chicken
Lysiz	EVENNIQIAAKQS	31	3	3032.20	29.08	33.40	0.7081	CATH-3
MuMu1	RWSQWAYAGRAQFCAVRR	35	8	4135.81	24.44	34.29	0.7676	Chicken
IVIUIVIUI	SVFGFSVRSGMVCRPRR	33	0	7133.81	27.77	37.27	0.7070	CATH-2
CaGl1	SYWWWGFHKNVIDRREAF	30	1	3759.20	10.26	33.33	0.7608	Chicken
CaOII	YADLAEKKKAEN	30	1	3739.20	10.20	33.33	0.7008	CATH-3
HoSa3 AKETLEKKKLLKELWESSK	22	3	2653.16	11.53	40.91	0.7582	Chicken	
1103a3	KVH	22	3	2033.10	11.55	40.71	0.7382	CATH-3
BoMo2	AWSSLHSGWAKRAWQDM	24	3	2790.11	16.99	33.33	0.7533	Chicken
DOMOZ	SSAWGKR	24	3	2/90.11	10.99	33.33	0.7333	CATH-2
ScPo2	FMIHNTLGLFYRSVVRNEI	22	4	2722.25	12.28	36.36	0.7531	Chicken
501 02	KKR	2.2	 	2122.23		30.30		CATH-3
DiDi1	FTLFFPIFMIVVCVISFFNLH	23	2	2819.51	19.34	34.78	0.7383	Chicken
DIDII	KR	23		2019.31	19.54			CATH-3
RaNo1	YFAFYNLFHCLKKDSNNVE	34	5	4203.07	13.66	35.29	0.7383	Chicken
Karvor	MYLKLLKCRLIRSKC	37	3	4203.07	13.00	33.27	0.7363	CATH-3
HoSa4	WIIQCWWRQVLEKLLAKR	20	5	2682.28	33.26	35.00	0.7347	Chicken
11054	RR	20	3	2002.20	33.20	33.00	0.7547	CATH-3
GaGa2	GLIKRIIRQKR	11	5	1380.75	23.12	45.45	0.7305	Ovipin
MuMu2*	ILTPVSTVLALLLIAALILLK	22	2	2345.04	10.44	40.91	0.7250	Chicken
WIUWIUZ	R	22	<u></u>	2343.04	10.44	40.91	0.7230	CATH-3
RaNo2	ASWEYLVHHVMAMGAFFS	24	1	2871.37	21.88	29.17	0.7242	Chicken
Nainuz	GIFWKR	∠+	1	20/1.3/	21.00	29.1/		CATH-2
HoSa5	HTSRLKARKHSKRRVRYIC	25	7	3111.67	19.37	32.00	0.7210	Chicken

	EFTIPQ							CATH-3
EiHe1	ALWKLGEPSDHLLQWLVL HLASLHLRLLFKR	31	2	3704.47	10.38	38.71	0.7195	Chicken CATH-3
PlVi1	ILDKVRLWLARIRLNLLKR	19	5	2390.01	30.48	40.00	0.7168	Chicken CATH-3
MuMu3	YFAFHNLFHCLKKDSSHVE MYLKLLKCRLIQSNC	34	3	4130.92	11.32	32.35	0.7139	Chicken CATH-2
SuSc1	ARLDVAAEFRKKWNKWAL SRGKR	23	6	2787.27	10.01	34.78	0.7067	Chicken CATH-3
ArTh11	RSIIRNGIRTLTWRKETKRK KK	22	9	2769.34	14.28	36.36	0.7023	Chicken CATH-3
MoIn1	VLKKSEIRIDFISRTILHI	19	2	2281.77	15.95	31.58	0.6993	Chicken CATH-2
HoSa6	GVLKKVIRHKR	11	5	1333.69	31.40	42.11	0.6985	Ovipin
CaGl2	QFFLPMILRLYVSRLFISKL	20	3	2485.11	10.40	50.00	0.6976	Chicken CATH-3
HoSa7	LYVFCCRTRAKTPSVIYTIN LVVTDLLVGLSLPTR	35	3	3926.73	18.06	28.57	0.6934	Chicken CATH-3
GaGa4	ARSKKSPWPGWAPLAAPH SH	20	3	2181.49	10.93	35.00	0.2230	OvoDBβ
OrSa6	VMRSAGSRSSKR	12	4	1321.52	15.92	37.50	0.2209	OvoDBβ
GoGo1	GRGRPKGRGRGRPRGRPR GSKR	22	11	2457.84	26.78	44.12	0.2179	CHB1
HoSa8	QVWKRR	6	3	872.04	14.30	42.86	0.2148	Ovipin
HoSa9	FQWHGRKPGPETGVPQSRP	23	3	2624.99	18.42	34.78	0.2119	CHB2

	PIPR							
								Chicken
DrMe6	RIRGHTIKG	9	3	1037.23	11.07	37.50	0.2113	Heterophil
								Peptide 2
MuMu4	FLEKPPGPLGARPLGGK	17	2	1734.07	13.78	47.06	0.2094	OvoDBβ
HoSa10	TPKFVGK	7	2	775.95	11.04	41.67	0.2047	OvoDBβ
UnBi1	VRCRFACC	8	2	957.19	16.54	41.67	0.1997	Ovipin
ScPo3	SPLHKR	6	2	736.87	17.91	42.86	0.1942	Ovipin

^a Net charge at pH = 7.

^b AMPlify scores from the balanced model. AMPlify scores range from 0 to 80; sequences with AMPlify scores > 3.01 (i.e., AMPlify probability scores > 0.5) are predicted as AMPs.

^c Sequence similarity to the most similar known AMP sequence from Antimicrobial Peptide Database (APD3, downloaded on July 11, 2022) (Wang et al. 2016) and Database of Anuran Defense Peptides (DADP, downloaded on December 6, 2018) (Novković et al. 2012).

^d Similarity to the most similar known chicken AMP in predicted 3D structures (i.e., reference chicken AMP) from APD3 (downloaded on October 14, 2022) (Wang et al. 2016). 3D structures of the peptides were predicted by ColabFold (Jumper et al. 2021; Mirdita et al. 2022), and the similarity between two peptides in predicted 3D structures were evaluated by TM-score (Zhang and Skolnick 2004) normalized by the average peptide sequence length using TM-align (Zhang and Skolnick 2005).

^e The most similar known chicken AMP in predicted 3D structures.

^{*} DiDi3 and MuMu2 were not successfully synthesized and were excluded for further tests.

Table S4: Overview of the 40 putative AMP sequences mined from the UniProtKB/Swiss-Prot database that have been prioritized for synthesis regarding their corresponding parent sequence information in the database. This table supplements Table S3 with information about the 40 putative AMP sequences regarding their corresponding parent sequences. The top section shows the 30 most similar putative AMPs to the known chicken AMPs in predicted three-dimensional (3D) structures as measured by TM-scores, while the bottom section shows the 10 least similar ones to the known chicken AMPs in predicted 3D structures.

Putative AMP name	Position in parent sequence ^a	UniProt entry ID	Source organism	Source organism category ^b
DaRe1	17 – 41	B0S8I0	Danio rerio	Others
ScPo1	20 – 51	Q9Y7K8	Schizosaccharomyces pombe	Others
ArTh10	[29-45]+[356-369]	Q7Y223	Arabidopsis thaliana	Plant
HoSa1	299 – 324	Q8NH93	Homo sapiens	Mammal
HoSa2	34 – 55	Q8IYJ2	Homo sapiens	Mammal
DiVi1	983 – 1011	Q24702	Dictyocaulus viviparus	Others
DiDi2	38 – 67	Q54GV3	Dictyostelium discoideum	Others
DiDi3*	145 – 169	Q54UP0	Dictyostelium discoideum	Others
LySt2	[187 – 199] + [223 – 225] + [292 – 306]	P19802	Lymnaea stagnalis	Others
MuMu1	16 – 50	P09925	Mus musculus	Mammal
CaGl1	31 – 60	Q6FWE8	Candida glabrata	Others
HoSa3	145 – 166	Q9H3J6	Homo sapiens	Mammal
BoMo2	44 – 67	P82003	Bombyx mori	Insect
ScPo2	36 – 57	O74430	Schizosaccharomyces pombe	Others
DiDi1	539 – 561	Q54TM2	Dictyostelium discoideum	Others
RaNo1	194 – 227	P09320	Rattus norvegicus	Mammal

HoSa4	39 – 58	A8MTL0	Homo sapiens	Mammal	
GaGa2	23 – 33	P10039	Gallus gallus	Others	
MuMu2*	456 – 477	Q2TB54	Mus musculus	Mammal	
RaNo2	110 – 133	Q5U2T1	Rattus norvegicus	Mammal	
HoSa5	[23 – 38] + [189 – 197]	O75596	Homo sapiens	Mammal	
EiHe1	32 – 62	A0A291NUI5	Eidolon helvum	Mammal	
PlVi1	99 – 117	P0CV63	Plasmopara viticola	Others	
MuMu3	194 – 227	O35256	Mus musculus	Mammal	
CarCa 1	22 44	P53366,	Sus scrofa,	Managal	
SuSc1	22 – 44	O62827	Bos taurus	Mammal	
ArTh11	28 – 49	Q6NKN8	Arabidopsis thaliana	Plant	
MoIn1	1861 – 1879	Q09WW0	Morus indica	Plant	
HoSa6	23 – 33	P24821,	Homo sapiens,	Mammal	
позао	23 – 33	Q29116	Sus scrofa	Iviaiiiiiai	
CaGl2	29 – 48	P05040	Candida glabrata	Others	
HoSa7	75 – 109	Q99678	Homo sapiens	Mammal	
GaGa4	[25 – 29] + [286 – 300]	Q92080	Gallus gallus	Others	
OrSa6	25 – 36	Q5VRI5	Oryza sativa subsp. japonica	Plant	
		A1YF22,	Gorilla gorilla gorilla,		
		A1YG99,	Pan paniscus,		
GoGo1	744 – 765	A2T7S4,	Pongo pygmaeus,	Mammal	
		A2T771,	Pan troglodytes,		
		Q9UKY1	Homo sapiens		
HoSa8	200 – 205	Q9BXP8	Homo sapiens	Mammal	
HoSa9	562 – 584	Q68DV7	Homo sapiens	Mammal	

DrMe6	17 – 25	O46201	Drosophila melanogaster	Insect
MuMu4	469 – 485	Q9Z0L3	Mus musculus	Mammal
HoSa10	286 - 292	Q86YB7	Homo sapiens	Mammal
UnBi1	10 – 17	C0HKK6	Unedogemmula bisaya	Others
ScPo3	24 – 29	O42663	Schizosaccharomyces pombe	Others

^a Position of the putative mature AMP sequence in the corresponding parent sequence. For a putative AMP sequence that is the recombination of multiple cleaved peptide sequences, the positions of those cleaved peptide sequences are presented in brackets with plus signs connecting them to each other.

^b Source organisms are classified into five categories: amphibian, plant, insect, mammal, and others.

^{*} DiDi3 and MuMu2 were not successfully synthesized and were excluded for further tests.

Table S5: Seven reference chicken AMP sequences for the 40 putative AMPs mined from the UniProtKB/Swiss-Prot database and prioritized for synthesis. The AMP sequences listed in this table are the seven reference chicken AMPs for the 40 putative AMPs listed in Table S3. Only the three reference chicken AMPs for the top 30 putative AMPs which share highest similarities to known chicken AMPs in predicted three-dimensional (3D) structures were prioritized for synthesis and further tests (i.e., Chicken CATH-2, Chicken CATH-3, and Ovipin).

APD3 ID	Peptide name	Sequence	# aa	Net charge ^a	Molecular weight (Da)
AP00548	Chicken CATH-2 (van Dijk et al. 2005)	RFGRFLRKIRRFRPKVTITIQGS ARFG	27	9	3264.92
AP00613	Chicken CATH-3 (Xiao et al. 2006)	RVKRFWPLVPVAINTVAAGINL YKAIRRK	29	7	3351.09
AP03457	Ovipin (dos Santos et al. 2022)	YVSPVAIVKGLNIPL	15	1	1582.95
AP03014	OvoDBβ (Yu et al. 2018)	QSKKCCGRCSSRMCTKREKEE HTEDCRGSFCCLTHRKKK	39	7	4609.37
AP02878	CHB1 (Vasilchenko et al. 2016)	VLSAADKNNVKGIFTKIAGHA EEYGAETLERMFTTYPPTKTY	42	0	4664.27
AP02879	CHB2 (Vasilchenko et al. 2016)	LTAEDKKLIQQAWEKAASHQE EFGAEALTRMFTTYPQTKTY	41	-1	4762.33
AP00265	Chicken Heterophil Peptide 2 (Evans et al. 1994)	GRKSDCFRKNGFCAFLKCPYL TLISGLCSFHLC	33	4	3729.47

^a Net charge at pH = 7.

Table S6: Antimicrobial susceptibility testing and hemolysis experiment results of the 38 successfully synthesized putative AMPs mined from the UniProtKB/Swiss-Prot database and tested *in vitro*. Peptides were tested for their antimicrobial activity against *Escherichia coli* ATCC 25922 and *Staphylococcus aureus* ATCC 29213 for their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. Porcine red blood cells (RBCs) were used to test the hemolytic activity of the selected peptides for their hemolytic concentration (HC₅₀) values. Data is presented as the lowest effective peptide concentration range (μg/mL) observed in three independent experiments performed in duplicate, with one maximum data point and one minimum data point dropped for each measurement. The top section shows results of the 28 successfully synthesized peptides among the top 30 peptides in similarities to known chicken AMPs in predicted three-dimensional (3D) structures as measured by TM-scores, while the second section shows results of the 10 least similar ones to known chicken AMPs in predicted 3D structures. Results of the three reference chicken AMPs (Chicken CATH-2 (van Dijk et al. 2005), Chicken CATH-3 (Xiao et al. 2006), and Ovipin (dos Santos et al. 2022)) for the top 30 peptides are listed in the third section for comparison. The control peptides in the bottom section includes: a positive control peptide Ranatuerin-4 (Goraya et al. 1998) and a negative control peptide OT15.

-4 (Goraya et al. 1998) and a negative control peptide OT15.									
	Ant	timicrobial sus	sceptibility tes	ting	Hemolysis testing ^a				
Peptide	E. 0	coli	S. at	Porcine					
name	ATCC 25922		ATCC	29213	RBCs				
	MIC	MBC	MIC	MBC	HC ₅₀				
	(μg/mL)	(μg/mL)	(μg/mL)	(μg/mL)	(μg/mL)				
DaRe1	32 - 64	32 - 64	>128	>128	>128				
ScPo1	>128	>128	>128	>128	_				
ArTh10	>128	>128	>128	>128	_				
HoSa1	16	16 - 32	128	*	>128				
HoSa2	>128	>128	>128	>128	_				
DiVi1	>128	>128	>128	>128					
DiDi2	16	16	>128	>128	>128				
LySt2	>128	>128	>128	>128					
MuMu1	≥128	*	>128	>128					
CaGl1	>128	>128	>128	>128					

HoSa3	>128	>128	>128	>128	
BoMo2	>128	>128	>128	>128	
ScPo2	>128	>128	>128	>128	
DiDi1	>128	>128	>128	>128	
RaNo1	>128	>128	>128	>128	
HoSa4	32	32	64 - 128	*	>128
GaGa2	128	*	>128	>128	>128
RaNo2	>128	>128	>128	>128	
HoSa5	>128	>128	>128	>128	
EiHe1	>128	>128	>128	>128	
PlVi1	4 - 8	8	32	32	>128
MuMu3	>128	>128	>128	>128	
SuSc1	128	*	>128	>128	>128
ArTh11	64 – 128	*	>128	>128	>128
MoIn1	64 -> 128	*	>128	>128	
HoSa6	>128	>128	>128	>128	
CaGl2	>128	>128	>128	>128	
HoSa7	64 -> 128	*	>128	>128	
GaGa4	>128	>128	>128	>128	
OrSa6	>128	>128	>128	>128	
GoGo1	64	*	>128	>128	>128
HoSa8	>128	>128	>128	>128	
HoSa9	>128	>128	>128	>128	
DrMe6	>128	>128	>128	>128	
MuMu4	>128	>128	>128	>128	

HoSa10	>128	>128	>128	>128	
UnBi1	128	*	>128	>128	>128
ScPo3	>128	>128	>128	>128	>128
Chicken CATH-2	8 – 16	8 – 16	32	32	>128
Chicken CATH-3	2 – 4	2 – 4	2	2 – 4	>128
Ovipin	>128	>128	>128	>128	>128
Ranatuerin-4	4	4	1 – 2	2	16
OT15 ^b	>128	>128	>128	>128	>128

^a Hemolysis experiments were not performed for putative AMPs that did not show any antimicrobial activity (MIC > 128 μ g/mL) in at least two repeats for each bacterial strain tested.

^b OT15 (TKPKGTKPKG) is a truncated form of a negative control peptide OT20 (Horváti et al. 2017) used in previous studies.

^{*} MBC values were not tested for experiments revealing antimicrobial activity but with high MIC values of \geq 64 µg/mL.

^{&#}x27;—' = not tested.

References

- van Dijk A, Veldhuizen EJA, van Asten AJAM, Haagsman HP. 2005. CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Vet Immunol Immunopathol. 106(3–4):321–327. doi:10.1016/j.vetimm.2005.03.003.
- Duckert P, Brunak S, Blom N. 2004. Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel. 17(1):107–112. doi:10.1093/protein/gzh013.
- Evans EW, Beach GG, Wunderlich J, Harmon BG. 1994. Isolation of antimicrobial peptides from avian heterophils. J Leukoc Biol. 56(5):661–665. doi:10.1002/jlb.56.5.661.
- Goraya J, Knoop FC, Conlon JM. 1998. Ranatuerins: Antimicrobial Peptides Isolated from the Skin of the American Bullfrog, Rana catesbeiana. Biochem Biophys Res Commun. 250(3):589–592. doi:10.1006/bbrc.1998.9362.
- Horváti K, Bacsa B, Mlinkó T, Szabó N, Hudecz F, Zsila F, Bősze S. 2017. Comparative analysis of internalisation, haemolytic, cytotoxic and antibacterial effect of membrane-active cationic peptides: aspects of experimental setup. Amino Acids. 49(6):1053–1067. doi:10.1007/s00726-017-2402-9.
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596(7873):583–589. doi:10.1038/s41586-021-03819-2.
- Li C, Sutherland D, Hammond SA, Yang C, Taho F, Bergman L, Houston S, Warren RL, Wong T, Hoang LMN, et al. 2022. AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC Genomics. 23:77. doi:10.1186/s12864-022-08310-4.
- Li C, Warren RL, Birol I. 2023. Models and data of AMPlify: a deep learning tool for antimicrobial peptide prediction. BMC Res Notes. 16:11. doi:10.1186/s13104-023-06279-1.
- Lin D, Sutherland D, Aninta SI, Louie N, Nip KM, Li C, Yanai A, Coombe L, Warren RL, Helbing CC, et al. 2022. Mining Amphibian and Insect Transcriptomes for Antimicrobial Peptide Sequences with rAMPage. Antibiotics. 11(7):952. doi:10.3390/antibiotics11070952.
- Meher PK, Sahu TK, Saini V, Rao AR. 2017. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC. Sci Rep. 7:42362. doi:10.1038/srep42362.
- Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold: making protein folding accessible to all. Nat Methods. 19(6):679–682. doi:10.1038/s41592-022-01488-1.
- Novković M, Simunić J, Bojović V, Tossi A, Juretić D. 2012. DADP: the database of anuran defense peptides. Bioinformatics. 28(10):1406–1407. doi:10.1093/bioinformatics/bts141.
- dos Santos SR, Miranda A, da Silva Junior PI. 2022. Ovipin: a new antimicrobial peptide from chicken eggs Gallus gallus. bioRxiv.

- doi:10.1101/2021.09.28.462162. https://www.biorxiv.org/content/10.1101/2021.09.28.462162v2.
- Vasilchenko AS, Rogozhin EA, Vasilchenko AV, Kartashova OL, Sycheva MV. 2016. Novel haemoglobin-derived antimicrobial peptides from chicken (Gallus gallus) blood: purification, structural aspects and biological activity. J Appl Microbiol. 121(6):1546–1557. doi:10.1111/jam.13286.
- Veltri D, Kamath U, Shehu A. 2018. Deep learning improves antimicrobial peptide recognition. Bioinformatics. 34(16):2740–2747. doi:10.1093/bioinformatics/bty179.
- Wang G, Li X, Wang Z. 2016. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44(D1):D1087–D1093. doi:10.1093/nar/gkv1278.
- Xiao X, Wang P, Lin W-Z, Jia J-H, Chou K-C. 2013. iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem. 436(2):168–177. doi:10.1016/j.ab.2013.01.019.
- Xiao Y, Cai Y, Bommineni YR, Fernando SC, Prakash O, Gilliland SE, Zhang G. 2006. Identification and Functional Characterization of Three Chicken Cathelicidins with Potent Antimicrobial Activity. J Biol Chem. 281(5):2858–2867. doi:10.1074/jbc.M507180200.
- Yu L-T, Xiao Y-P, Li J-J, Ran J-S, Yin L-Q, Liu Y-P, Zhang L. 2018. Molecular characterization of a novel ovodefensin gene in chickens. Gene. 678:233–240. doi:10.1016/j.gene.2018.08.029.
- Zhang Y, Skolnick J. 2004. Scoring function for automated assessment of protein structure template quality. Proteins. 57(4):702–710. doi:10.1002/prot.20264.
- Zhang Y, Skolnick J. 2005. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33(7):2302–2309. doi:10.1093/nar/gki524.