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Abstract: T-cell intracellular antigen 1 (TIA1) is a multifunctional RNA-binding protein involved
in regulating gene expression and splicing during development and in response to environmental
stress, to maintain cell homeostasis and promote survival. Herein, we used TIA1-deficient murine
embryonic fibroblasts (MEFs) to study their role in mitochondria homeostasis. We found that the
loss of TIA1 was associated with changes in mitochondrial morphology, promoting the appearance
of elongated mitochondria with heterogeneous cristae density and size. The proteomic patterns of
TIA1-deficient MEFs were consistent with expression changes in molecular components related to
mitochondrial dynamics/organization and respiration. Bioenergetics analysis illustrated that TIA1
deficiency enhances mitochondrial respiration. Overall, our findings shed light on the role of TIA1
in mitochondrial dynamics and highlight a point of crosstalk between potential pro-survival and
pro-senescence pathways.

Keywords: TIA1; mitochondria; mitochondrial dynamics; mitochondrial respiration; murine embry-
onic fibroblast

1. Introduction

The RNA-binding protein (RBP) T-cell intracellular antigen 1 (TIA1) is involved in
many aspects of RNA metabolism and governs the flow of gene expression [1,2]. The
TIA1 gene encodes two major mRNA/protein isoforms (known as TIA1a and TIA1b),
which are generated by alternative splicing (inclusion and skipping, respectively) of exon 5,
which is highly conserved between mice and humans [3], and both isoforms are expressed
in a cell- and tissue-specific manner [4,5]. The protein structure of TIA1 contains three
RNA recognition motifs (RRMs) that bind to mRNA and a glutamine- and asparagine-rich
C-terminal domain with intrinsically disordered regions [1–4].

TIA1 is a master regulator of the crosstalk between nuclear and cytoplasmic compart-
ments in eukaryotic cells [1,2]. For example, it modulates both constitutive and alternative
splicing [6–8], aids in the transport and subcellular localization of mRNAs [9–11] and is
responsible for the stability and translation of mRNAs [12–16] by direct interaction or com-
petition with other proteins and RNAs [16–20]. TIA1 recognizes U-, UC-, and/or AU-rich
sequences located on the non-consensus 5′ and/or 3′ splice sites of introns on pre-mRNAs,
on the 5′ and 3′ untranslated regions (UTRs) of mRNAs and along with the sequences of
non-coding RNAs [16–20]. It is thought that TIA1 interacts potentially with 5–10% of the coding
and non-coding genes of proteins that are synthesized from the human genome [18–20].

Changes in the expression and/or subcellular localization of TIA1 have been asso-
ciated with important pathophysiological consequences in human biology and disease,
including embryogenesis [14,21,22], inflammation [14,23,24], tumorigenesis [25–27], neu-
ronal homeostasis [28,29], tauopathies [30], myopathies [31–35], cell stress [10–12] and viral
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infections [2,36]. The participation of TIA1 in these complex programs points to its direct
involvement in the regulation of myriad cellular pathways among other apoptosis [1,25],
autophagy/mitophagy [21,26,37], immune system [13,24,38], membrane dynamics [39], ax-
onal regeneration [40], activity and localization of cellular translational machinery [17,41],
cell cycle [2,19,24,29], proteostasis [42,43], dynamics of stress granules during environmental
challenges (oxidative, heat, osmotic, etc.) [9–11,43,44] and mitochondrial dynamics [21,45,46].

Targeted ablation of TIA1 in mice leads to high embryonic lethality [14], but the
penetrance varies from zero in TIA1-knockout mice on the C57Bl/c background [47] to
~50% on the BALB/c background [14]. Adult TIA1-KO mice show a mild-arthritis pheno-
type [14] and recapitulate several key features of chronic post-traumatic stress disorder
in humans. This phenotype is observed predominantly in female mice [29], and TIA1
haploinsufficiency exacerbates neuroinflammation in tauopathy [31,48].

The role of TIA1 in key cellular events, such as inflammation and the stress response
is well recognized, but less is known about its involvement in early development-related
cellular programs. In this work, we approach the characterization of the mitochondrial
respiratory phenotype associated with the TIA1 knocked-out murine embryonic fibroblasts
(MEFs). Here, we show that TIA1 expression facilitates mitochondrial dynamics and
respiration in MEFs.

2. Results

Comparative analysis of the mitochondrial phenotype in wild-type (WT) and TIA1-KO
MEFs revealed apparent morphological changes in the organized mitochondrial network,
as determined by immunostaining against the mitochondrial components cytochrome c
(CYCS) and translocase of the outer mitochondrial membrane 20 (TOMM20) (Figure 1,
upper panel). Immunostaining of lysosomal-associated membrane protein 1 (LAMP-1,
middle panel), a glycoprotein used as a lysosomal marker, showed an increase in the num-
ber of lysosomes in TIA1-KO MEFs (Figure 1, middle panel), which agrees with previous
findings [21]. By contrast, the relative expression of calnexin (CANX), a calcium-binding,
endoplasmic reticulum-associated protein, that interacts transiently with newly synthe-
sized N-linked glycoproteins, (facilitating protein folding and assembly) was unaffected by
the deficiency in TIA1 (Figure 1, lower panel).

Figure 1. Mitochondrial morphology in wild-type and TIA1-knock out mouse embryonic fibroblasts.
Mitochondrial spatial morphology in wild-type (WT) and TIA1 knock out (TIA1-KO) mouse em-
bryonic fibroblasts (MEFs) by confocal fluorescence microscopy. Immunofluorescence images from
WT and TIA1-KO MEFs. The antibodies used were against cytochrome c (CYCS, green), translocase
of outer mitochondrial membrane 20 (TOMM20, green), lysosomal associated membrane protein 1
(LAMP1, red), and calnexin (CANX, green) proteins. In panels indicated as CYCS and TOMM20,
the nuclei were stained with DAPI. Bars represent 10 µm (CYCS and TOMM20 images), and 20 µm
(LAMP1 and CANX images).
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An analysis of mitochondria using transmission electron microscopy (TEM) revealed
an altered mitochondrial architecture in TIA1-KO cells, including heterogeneous mito-
chondrial populations with some elongated mitochondria and abnormal cristae densities
and sizes (Figure 2). These results suggest that TIA1 could shape mitochondrial spatial
dynamics and are compatible with enhanced mitochondrial fusion and cristae remodeling.

Figure 2. Mitochondrial architecture in wild-type and TIA1-knock out mouse embryonic fibroblasts. Details of mitochondrial
morphology and cristae architecture in in wild-type (WT) and TIA1-knock out (TIA1-KO) mouse embryonic fibroblasts
(MEFs) were visualized by transmission electron microscopy. White bars represent 500 nm.

To better understand the role of TIA1 in the genetic control of mitochondrial fusion
and/or fission, we assessed the relative abundance of several proteins involved in this
dynamic process using cell extracts of WT and TIA1-KO MEFs. Comparative western
blotting analysis revealed changing patterns of mitochondrial components involved in
fusion dynamics, such as the ratio of the (long) L and (short) S variants of optic atro-
phy protein 1 (OPA1), and the differential electrophoretic mobility of mitofusin 1 (MFN1)
(Figure 3) [49–51]. Likewise, we observed differential patterns of dynamin 1 like (DNM1L)
protein (upper and lower bands) and a lower expression of mitochondrial fission fac-
tor (MFF) and mitochondrial fission 1 (FIS1) proteins in TIA1-KO MEFs; both are well-
characterized molecular events associated with the suppression of mitochondrial fission
processes [50,51]. In addition, the expression of the metallopeptidases ATP-dependent zinc
metalloprotease (YME1L1) and OMA1 zinc metallopeptidase (OMA1) was moderately
higher in TIA1-KO MEFs than in WT counterparts (Figure 3). As expected, TIA1 expression
was absent in the KO-MEFs, and the expression of TIA1-related protein (TIAL1/TIAR) and
Hu antigen R (ELAVL1/HuR) was unchanged.
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Figure 3. Proteomic analysis of mitochondrial proteins associated with mitochondrial morphology and dynamics in wild-
type and TIA1-knock out mouse embryonic fibroblasts. Protein extracts from wild-type (WT) and TIA1-knock out (TIA1-KO)
mouse embryonic fibroblasts (MEFs) were analyzed by western blotting using specific antibodies against the indicated
proteins. Molecular weight markers for proteins (kDa) and the identities of proteins are indicated: T-cell intracellular
antigen 1 (TIA1), TIA1-related protein (TIAL1), ELAV-like RNA binding protein 1 (ELAVL1), alpha subunit of tubulin
(TUBA), optic atrophy protein 1 (OPA1), mitofusin 1 (MFN1), mitofusin 2 (MFN2), dynamin 1 like (DNM1L), mitochondrial
fission factor (MFF), mitochondrial fission 1 protein (FIS1), YME1 like 1 ATPase (YME1L1) and OMA1 zinc metallopeptidase
(OMA1). The bar chart represents the relative abundance (arbitrary units) of the analyzed proteins in homogenates from
WT (blue bars) and TIA1-KO (1KO, red bars) MEFs. A.U. means arbitrary units. Values are mean + SEM (n = 4; * p < 0.05;
** p < 0.01; *** p < 0.001).

The interactions of TIA1 on the transcripts of the aforementioned fusion/fission-
related genes were investigated using individual-nucleotide resolution UV cross-linking
and immunoprecipitation (iCLIP), which revealed specific sites of in vivo TIA1 binding
along their pre-mRNAs (Figure 4).
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Figure 4. In Vivo cross-linking sites of TIA1-iCLIP at specific nuclear-encoded mitochondrial pre-mRNAs associated with
mitochondrial organization/dynamics. The RNA map, corresponding to TIA1 binding on indicated human genes, was
adapted using TIA1-iCLIP analysis [18]. The localization of target genes on human chromosomes and the exon and intron
positions of the human pre-mRNAs are shown. The bar graph in each panel indicates the number of cDNAs identified in
each TIA1 crosslinking site. The following human genes are shown: optic atrophy protein 1 (OPA1), mitofusin 1 (MFN1),
mitofusin 2 (MFN2), dynamin 1 like (DNM1L), mitochondrial fission factor (MFF), mitochondrial fission 1 protein (FIS1),
YME1 like 1 ATPase (YME1L1) and OMA1 zinc metallopeptidase (OMA1).

These findings likely explain the observations on mitochondrial dynamics/
morphology and architecture associated with TIA1 deficiency and confirm and extend
previous data [21,45,46]. As TIA1 deficiency has functional consequences on mitochon-
drial morphology, we expanded our study to investigate whether other potential nuclear-
encoded mitochondrial genes were targeted by TIA1. To this end and given the experi-
mental gap in the mouse database on the specific transcriptome of murine TIA1-binding
sites, we performed a comparative study using the latest version of MitoCarta [49] con-
taining all human mitochondrial genes and in vivo binding sites for TIA1 substantiated
from experimental TIA1-iCLIP [18] (Figure 5A) and photoactivatable ribonucleoside-
enhanced crosslinking and immunoprecipitation (PARCLIP) [19] biochemical analysis
(Figure 5B). The results indicated that of 1136 human nuclear-encoded mitochondrial genes
(Figure 5A,B) versus the selective transcriptome of 2856 and 5505 human pre-mRNAs with
TIA1 binding sites by iCLIP and PAR-CLIP analysis, respectively, 205 and 347 pre-mRNAs
(18–30.5% of human nuclear-encoded mitochondrial genes) were potential targets of TIA1
(Figures 5A,B, S1 and S2). In total, 111 genes were shared between the iCLIP and PARCLIP
analysis (Figures 5C and S2).
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Figure 5. Gene Ontology analysis of nuclear-encoded mitochondrial genes associated with human TIA1-iCLIP and PARCLIP
database. (A) Venn diagrams displaying number of nuclear-encoded mitochondrial genes (Homo sapiens) MitoCarta 3.0) [48]
and HeLa TIA1 iCLIP analysis [18]. (B) Venn diagrams displaying number of nuclear-encoded mitochondrial genes
(Homo sapiens) MitoCarta 3.0) [49] and HEK293 TIA1 PARCLIP analysis [19]. The shared mitochondrial genes/pre-mRNAs
between both TIA1 iCLIP (A) and PARCLIP (B) analysis were identified and classified using the PANTHER database.
(C) Venn diagrams showing shared nuclear-encoded mitochondrial genes between both TIA1-iCLIP and TIA1-PARCLIP
analysis and GO categories using PANTHER tool.

To examine the shared human nuclear-encoded mitochondrial genes and identify
relevant associated biological processes, selected genes were analyzed by PANTHER
classification (http://pantherdb.org, accessed on 1 November 2021). Pathways enriched
among the gene ontology (GO) categories identified from the shared human and mouse
mitochondrial genes included biological processes (cellular respiration, mitochondrial
organization and cellular metabolic processes), cellular components (mitochondrial enve-
lope and membrane), molecular functions (oxidoreductase, catalytic and electron transfer
activities), PANTHER-specific and reactome pathways (pyruvate metabolism, tricarboxylic
cycle and respiratory electron transport) as well as involved protein classes (metabolite
interconversion enzymes, oxidoreductases and mitochondrial translation-related proteins)
(Figure 5A,B). Furthermore, when the 111 shared nuclear-encoded mitochondrial genes
between the TIA1-iCLIP and PARCLIP methods (Figure 5A,B) were clustered using GO
analysis, the results indicated that the biological processes and categories are matched
those above filters (Figures 5A–C, S1 and S2).

To gain more evidence on the role of TIA1 in the genetic control of mitochondrial
components associated with mitochondrial respiration and function, we quantified the
relative abundance of several core proteins in cell extracts of WT and TIA1-KO MEFs. The
results revealed significant differences in the abundance of many core proteins, including
TOMM20, translocase of inner mitochondrial membrane 23 (TIMM23), cytochrome c
(CYCS), mitochondrially encoded cytochrome c oxidase II (MT-CO2) and mitochondrial
transcription factor A (TFAM), which were all higher in TIA1-KO MEFs than in WT-MEFs
(Figure 6).

http://pantherdb.org
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Figure 6. Proteomic analysis of nuclear-encoded mitochondrial proteins associated with mitochondrial envelope, membrane
and respiration in wild-type and TIA1-knock out mouse embryonic fibroblasts. Protein extracts from wild-type (WT)
and TIA1-knock out (TIA1-KO) mouse embryonic fibroblasts (MEFs) were analyzed by western blotting using specific
antibodies against the indicated proteins: translocase of outer mitochondrial membrane 20 (TOMM20), translocase of inner
mitochondrial membrane 23 (TIMM23), voltage dependent anion channel 1 (VDAC1), succinate dehydrogenase complex
flavoprotein subunit A (SDHA), ubiquinol-cytochrome c reductase complex III subunit VII (UQCRQ), somatic cytochrome
c (CYCS), mitochondrially encoded cytochrome c oxidase I (MT-CO1), mitochondrially encoded cytochrome c oxidase II
(MT-CO2), ATP synthase F1 subunit alpha (ATP5F1A), mitochondrial transcription factor A (TFAM), apoptosis regulator
BCL2 associated X (BAX), and BCL2 apoptosis regulator. Molecular weight markers for proteins (kDa) and the identities of
proteins, are indicated. The bar chart represents the relative abundance of the analyzed proteins in cytosol from WT (blue
bars) and TIA1-KO (1KO, red bars) MEFs. A.U. means arbitrary units. Values are mean + SEM (n = 4; * p < 0.05; ** p < 0.01).

The opposite was observed for the apoptosis regulators B-cell lymphoma 2 (BCL2) and
BCL2 associated X (BAX), which were significantly lower (Figure 6). These observations
are in accord with the proteomic analysis (Figures 3 and 5) [46,47] and indicate that several
mitochondrial functions are associated with metabolic flux, gene expression, respiratory
electron transport, import, sorting and dynamics/organization, are modulated by TIA1.
The data strongly suggest that other nuclear-encoded mitochondrial genes identified by in
silico analysis may be also targeted by TIA1 (Figure S3).

We hypothesized that the evident differences in the expression of nuclear-encoded
mitochondrial components between WT and TIA1-KO MEFs would impact the respiratory
phenotype. Specifically, we expected that the observed morphological and gene/protein
expression changes in TIA1-KO MEFs would support a more efficient mitochondrial
respiration. To test this, we measured the oxygen consumption rate (OCR) in MEFs using
the Seahorse Bioscience XF analyzer. The mitochondrial respiratory response was measured
before and after stress tests by the sequential addition of oligomycin, 2,4-dinitrophenol,
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rotenone and antimycin A, to determine ATP-linked, maximal and non-mitochondrial
respiration, respectively (Figure 7A,B).

Figure 7. TIA1 deficiency in mouse embryonic fibroblasts enhances mitochondrial respiration. (A,B) Real-time changes
in oxygen consumption rate (OCR) using cells under basal condition (glucose 10 mM) and after sequential injection of
oligomycin, 2, 4-dinitrophenol (DNP) and rotenone plus antimycin A. Values were normalized to cell number (A) and mg
protein (B). (C) Mitochondrial parameters of non-mitochondrial, basal and maximal respiration, proton (H+) leak, ATP
production and spare respiratory capacity. Values are mean + SEM (n = 3–5; * p < 0.05). (D) Real-time changes in the
extracellular acidification rate (ECAR), an indicator of lactic acid production or glycolysis. (E) Determination of the aerobic
and glycolytic components of cellular bioenergetics. (F) Hallmarks of categories and activities/functions associated with
nuclear-encoded mitochondrial proteins potentially targeted by TIA1. The main PANTHER GO categories identified in
silico (numbers 1–5) as well as some examples of clustered nuclear-encoded mitochondrial genes and functional categories
are included on a schematized mitochondrion. The legends identified as OM, IMS, IM, and M, are for outer membrane,
inner mitochondrial space, inner membrane and matrix, respectively. The following acronyms are indicated: AFG3L2
(AFG3 like matrix AAA peptidase subunit 2), CLPX (caseinolytic mitochondrial matrix peptidase chaperone subunit X),
DNM1L (dynamin 1 like), FIS1 (mitochondrial fission 1 protein), MFF (mitochondrial fission factor), MFN1 (mitofusin 1),
MFN2 (mitofusin 2), OMA1 (zinc metallopeptidase OMA1), OPA1 (optic atrophy protein 1), PINK1 (PTEN induced kinase
1) SLC25A (solute carrier family 25 member), TFAM (mitochondrial transcription factor A), TIMM and TOMM (translocase
of inner and outer mitochondrial membrane systems, respectively), VDAC (voltage dependent anion channel), and YME1L1
(YME1 like 1 ATPase).

Basal mitochondrial respiration was significantly higher in TIA1-KO MEFs than in
WT MEFs (Figure 7C). Likewise, maximal mitochondrial respiration, ATP production and
spare mitochondrial respiration capacity were also significantly higher in TIA1-KO MEFs
than in WT MEFs (Figure 7C). By contrast, the extracellular acidification rate (ECAR), an
index of glycolysis, was higher in WT MEFs than in TIA1-KO MEFs (Figure 7D), indicating
that anaerobic glucose oxidation is lower in TIA1-KO MEFs (Figure 7E). These findings
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suggest that deficiency of TIA1 in MEFs has a positive effect on mitochondrial electron
transport chain function and respiration.

In summary, our functional analysis together with previous observations indicates that
TIA1 binding sites are associated with the following mitochondrial hallmarks:
(1) mitochondrial envelope and membrane processes (i.e., protein sorting and import),
(2) protein/organelle quality control and mitochondrial organization, (3) mitochondrial
DNA expression and replication, (4) respiratory electron transport and mitochondrial
metabolism, and (5) transport of metabolites (i.e., inorganic ions, protons, amino acids,
nucleotides, coenzymes, cofactors, etc.) (Figure 7F).

3. Discussion

Our previous results in MEFs deficient for TIA1 revealed compromised cell prolifera-
tion concomitant with a delay in cell cycle progression (G2/M phase) and resolution of
cell division [21]. We also found that TIA1-KO MEFs had an increase in the number of
mitochondrial DNA copies measured as the ratio of mitochondrial/nuclear DNA, which
may be the result of a decrease in mitochondrial fission and/or an increase in mitochondrial
fusion [21]. Our present study extends this analysis by revealing changes in the proteomic
patterns of specific molecular components related to mitochondrial fission and fusion, as
well as to the intra-mitochondrial architecture itself. This is illustrated by the expression
changes of essential factors involved in mitochondrial fission, such as DNM1L, MFF, and
FIS1, as well as in fusion-associated components, such as OPA1 (OPA1S versus OPA1L)
and MFN1. The expression patterns are consistent with decreased mitochondrial fission
or division, favoring mitochondrial fusion. The mitochondrial morphological changes are
also consistent with the increase in mitochondrial respiratory and regulatory components,
which fits well with the increase in mitochondrial respiratory capacity and accords with
the increase in mitochondrial reactive oxygen species (ROS) and in oxidative damage of
mitochondrial DNA we previously observed in TIA1-KO MEFs [21]. These events linked
to mitochondrial dynamics and functionality might be an adaptive survival response in the
form of adaptive autophagy to alleviate cell damage and prevent the development of dele-
terious phenotypes, ensuring cell viability according to previous findings [16,21,26,45,46].

An interesting question emerges based on our observations: could the cellular ex-
pression and/or location of TIA1 regulate many nuclear-encoded mitochondrial genes?
A simple answer to this might be that these mRNAs or their precursors (pre-mRNAs)
could be targeted by TIA1 through one or multiple layers to exert control of their gene
expression; thus, this multifunctional regulator can act as an RBP in several subcellular
scenarios [9–20]. For example, as shown in the present study, the pre-mRNAs analyzed
have multiple sequence sites spanning their full length, both exons and introns, and for
which we have detected both high and moderate densities of TIA1 binding sites. This
suggests a potential post-transcriptional regulation given the density of binding sites on
around 197 nuclear-encoded mitochondrial pre-mRNAs derived from TIA1-iCLIP analysis
and located with some frequency on the introns and last exons of the pre-mRNAs, and
particularly on the sequences located at the 5′/3′ splice sites of introns and 3′ untrans-
lated regions of the pre-mRNAs. In this regard, it is reasonable to imagine the existence
of a feedback loop that activates and/or represses the expression of many genes, which
could be activated and/or repressed in the absence or presence of TIA1, for example, at
the post-transcriptional level of mRNA stability/turnover and/or translational activa-
tion/repression, to dampen their expression in order to promote or counteract the cellular
and/or mitochondrial phenotypes associated and/or modulated to the expression, subcel-
lular location, and/or functional post-translational modifications of TIA1 and its isoforms
during homeostasis and stress conditions.

Mitochondria morphology is dynamic and is controlled by highly ordered events,
which have functional consequences [50,51]. Several genetic and environmental condi-
tions are known to enhance mitochondrial fusion/fission; for example, limited nutrient
availability favors a hyperfused mitochondrial network that increases ATP production [52]
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and protects mitochondria against mitophagy [53], which is dependent on mitochondrial
fragmentation. Mitochondrial reorganization is also an integral part of the control of cell
cycle progression to ensure the correct distribution between daughter cells [54–56].

Some cellular protective adaptations, for instance, autophagy, cause mitochondrial
hyperfusion to prevent mitochondrial degradation [57]. In another protective context, the
p53-dependent transient fusion of mitochondria with lysosomes allows mitochondria to
escape mitophagy [58], a process linked to cellular Ca2+ [59]. Mitochondria (hyper)fusion
also occurs in response to oxidative stress and extracellular acidosis and is often referred to
as stress-induced mitochondrial hyperfusion. Again, this serves as a protective measure
to increase respiratory efficiency and limit cell death [54,60]. Additionally, the balance
between stemness and differentiation is related to mitochondrial dynamics and appears to
be also tightly linked to the interplay between mitochondria and Ca2+ signaling [61–64].

Aging is a major risk factor for many human diseases, such as Alzheimer’s disease,
cancer and cardiovascular diseases [65]. Evidence suggests that aging occurs in a regulated
manner and that perturbation of discrete cell signaling pathways (nutrient signaling,
mitochondrial function, etc.) can extend lifespan and delay age-related diseases [66].
Regulation of mitochondrial dynamics has emerged as an important regulatory hub during
aging. For instance, the RBP Pumlio 2 (PUM2) prevents MFF-mediated mitochondrial
dynamics and associated mitophagy during aging [67]. In fact, PUM2 (and its ortholog in
C. elegans PUF-8) regulates the translation of MFF mRNA. PUM2/PUF-8 is overexpressed
during and represses MFF expression, which prevents mitochondrial fission. Inhibition of
mitochondrial fission represses the mitophagy response to exert the control of quality and
replacement of deleterious mitochondria by promoting mitochondrial dysfunction that
affects and reduces longevity. This led to the identification of the RBP PUM2 as a negative
regulator of longevity and health span in nematode and mouse models.

Both oncogene- and radiation-induced senescence is associated with increased mito-
chondrial biogenesis, fusion, and reduced mitophagy [68]. The mechanistic link, if any, is
incompletely understood but seems likely to involve increased ROS levels. While further
evidence is needed, we speculate that inducing senescence is another way in which mito-
chondrial dynamics could play an important role in cancer cells, because senescent cells
are protected from chemotherapy-induced death yet can contribute to cancer development
through the senescence-associated secretory phenotype (SASP) [68]. While some previous
reports suggest that mitochondrial hyperfusion is initiated to ameliorate cellular stress,
the precise mechanism of mitochondrial hyperfusion and its role in maintaining cellular
homeostasis as well as its negative impact on cellular health in disease conditions, however,
remains unclear [64].

Cellular senescence is linked to coordinated programs of gene expression control at
the transcriptional and post-transcriptional levels [69,70]. Our study and previous observa-
tions [14,24] suggest that ablation of TIA1 in MEFs can lead to a senescence-like phenotype,
involving diminished cell growth, delayed cell-cycle progression, nuclear DNA damage
and low global rates of de novo protein synthesis [14,24]. We show here that TIA1-KO MEFs
remain metabolically active with higher respiratory rates than in equivalent proliferating
cells, which is also observed during senescence, and is in agreement with the mitochon-
drial proteomic profiling and morphology results. A typical feature of senescent cells is
the production and secretion of a substantial amount of inflammatory proteins as part
of the SASP [64]. This complex secretome contains inflammatory cytokines, interleukins,
and chemokines, angiogenic growth factors, and tissue-remodeling metalloproteases and
insoluble factors of the extracellular matrix [64]. TIA1 regulates the decay and translation
of mRNAs encoding a diverse class of proteins, including inducible proinflammatory
cytokines, constitutive survival factors, and angiogenic growth-associated proteins [12–17].
There are no RNA binding maps of TIA1 in MEFs, but previous findings and the present
study (by using large-scale binding and functional maps of human RBPs in human cells)
suggest that TIA1 could regulate mRNA stability and RNA decay through varying regula-
tory mechanisms that likely involve cell-type-specific co-factors [18–22]. Thus, TIA1 could
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have a functionally versatile role, acting as a dual agent pro-growth or pro-senescence
factor during embryonic development, cellular homeostasis and stress, or tumorigenesis in
a cellular context-dependent manner [2,24–28].

TIA1 also plays both general and specific roles as a translational repressor in response
to environmental stress agents (heat shock, oxidants, hyperosmolarity, etc.) [2,9–11]. Under
conditions of stress, cells can form non-membranous cytoplasmic structures termed stress
granules (SGs). TIA1 possesses three RNA recognition motifs and a prion-related domain
through which it can self-aggregate within SGs, hijack ribonucleoprotein complexes, and
suppress translation globally and specifically through the interaction with RNAs con-
taining A and U-rich sequence elements (AREs). Thus, TIA1 can directly mediate the
translational silencing and turnover of ARE-containing mRNAs and non-coding RNAs
(ncRNAs) and can indirectly function as a molecular sponge to modulate the regulatory
activity mediated by microRNAs [9–11,15–20]. Given the presence of TIA1 and other RBPs
that determine the fate of many cellular RNAs in SGs, these foci function as dynamic sites
of RNA triage during stress, where molecular decisions are made regarding the compo-
sition of RNA ribonucleoprotein complexes and their subsequent engagement with the
translation or degradation machinery by modulating the cellular and metabolism fate with
pathophysiological consequences on normal and abnormal cell growth [71–73].

Several RBPs (up to 14 RBPs reviewed in [74]) could directly and/or indirectly mod-
ulate (including through their crosstalk) mitochondrial versatility (phenotype and func-
tionality) in several cellular processes. Our results indicate that a deeper mechanistic
interrogation of RBP biology (comparing physiological and pathological levels) and their
pharmacological regulation are necessary to fully appreciate the biological and clinical
implications of this important metabolic and regulatory network. Indeed, recent literature
reveals that TIA1-mediated signaling captures a broad spectrum of survival and stress
pathways that likely influence its contrasting antagonistic functions as proto-oncogene
and tumor suppressor [24–28]. It is becoming increasingly apparent that TIA1 and its
isoforms have multiple intersections with numerous cellular processes, which adds further
complexity, interest, and broader therapeutic potential to the double life of multifunctional
TIA1 in health and disease [2].

4. Material and Methods
4.1. Cell Cultures

WT and TIA1-KO MEFs were generated and maintained as described [14,21].

4.2. Immunofluorescence and Electron Transmission Microscopy Analysis

MEFs were processed for immunofluorescence and TEM analysis as described [21].
For immunofluorescence microscopy analysis we used specific antibodies against CYCS
(sc-13156 (1/100), Santa Cruz Biotechnology); TOMM20 (sc-17764 (1/100), Santa Cruz
Biotechnology, Dallas, TX, USA); LAMP-1 (AB_528127 (1/50), DSHB, Iowa City, IA, USA);
and CANX (SPC-108B (1/200), StressMarq, Victoria, BC, Canada).

4.3. Western Blotting Analysis

Protein samples were separated by 10% SDS-PAGE and transferred to a nylon mem-
brane at 4 ◦C and 50 V for 2 h. The membrane was then blocked with 5% powdered milk
in phosphate-buffer saline solution (pH 7.5) containing 0.1% Tween-20 (Merck, Darmstadt,
Germany) (PBS/T). The membrane was then probed with specific antibodies against the
indicated proteins. Membranes were incubated with primary antibodies in PBS/T con-
taining 3% BSA (Sigma) overnight at 4 ◦C, washed, and then incubated with appropriate
HRP-conjugated secondary antibodies at room temperature for 1 h. The ECL reagent (GE
Healthcare, Chicago, IL, USA) for HRP was used as a developer. The antibodies used
were the following: ATP5F1A (ab14748 (1/2000), Abcam, Cambridge, UK); BAX (sc-493
(1/1000), Santa Cruz Biotechnology, Dallas, TX, USA); BCL2 (sc-492 (1/1000), Santa Cruz
Biotechnology, Dallas, TX, USA); CYCS (sc-13156 (1/1000), Santa Cruz Biotechnology,
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Dallas, TX, USA); DNM1L (33318 (1/1000), Signalway Antibody, College Park, MD, USA);
ELAVL1 (sc-5261 (1/4000), Santa Cruz Biotechnology, Dallas, TX, USA); FIS1 (33067 (1/500),
Signalway Antibody, College Park, MD, USA); MFF (orb101576 (1/1000), Biorbyt, Cam-
bridge, UK); MFN1 (sc-166644 (1/1000), Santa Cruz Biotechnology, Dallas, TX, USA); MFN2
(sc-100560 (1/1000), Santa Cruz Biotechnology, Dallas, TX, USA); MT-CO1 (GR3338268-2
(1/500), Thermo Fisher, Waltham, MA, USA); MT-CO2 (ab110258 (1/2000), Abcam, Cam-
bridge, UK); OMA1 (sc-168844, (1/1000), Santa Cruz Biotechnology, Dallas, TX, USA);
OPA1 (sc-393296 (1/1000), Santa Cruz Biotechnology, Dallas, TX, USA); SDHA (AB14715
(1/1000), Abcam, Cambridge, UK); TFAM (HPA040648 (1/1000), Prointech, Manchester,
UK); TIA1 (sc-1751 (1/3000), Santa Cruz Biotechnology, Dallas, TX, USA); TIAL1 (sc-1749
(1/3000), Santa Cruz Biotechnology, Dallas, TX, USA); TIMM23 (ab230253 (1/2000), Ab-
cam, Cambridge, UK); TOMM20 (sc-17764 (1/1000), Santa Cruz Biotechnology, Dallas,
TX, USA); TUBA (T5168 (1/5000), Merck, Darmstadt, Germany); UQCRQ (14975-1-AP
(1/2000), Proteintech, Manchester, UK); VDAC1 (ab15895 (1/2000), Abcam, Cambridge,
UK); and YME1L1 (sc-139302 (1/500), Santa Cruz Biotechnology, Dallas, TX, USA).

4.4. Seahorse Analysis

Mitochondrial activity assays and determination of mitochondrial oxygen consump-
tion rates were carried as described [46]. Briefly, cellular OCR was determined on the XF24
Extracellular Flux Analyzer platform (Seahorse Bioscience, North Billerica, MA, USA).
Cells were plated on XF24 microplates at 15,000 cells/well in supplemented medium
and incubated at 37 ◦C and 5% CO2 for 24 h. After measuring basal respiration, 6 µM
oligomycin was injected to inhibit complex V, and then 0.75 mM 2,4-dinitrophenol was
injected to uncouple respiration. Finally, respiratory complex I and III were inhibited by
injection of 1 µM rotenone and 1 µM antimycin A, respectively. OCR was determined
by subtracting the ‘non-mitochondrial OCR’ after treatment with rotenone + actinomycin
A, whereas mitochondrial basal respiration was determined from mitochondrial OCR
before administration of oligomycin. Mitochondrial maximal respiration was defined as
OCR after administration of 2,4-dinitrophenol. Spare respiration capacity was defined as
maximal respiration minus basal respiration. The cells shift to an almost exclusive aerobic
phenotype as indicated by a low ECAR and the cells shift to a more glycolytic phenotype
with an average OCR equal to 20 pmoles/min and an average ECAR equal to 75 mpH/min.

4.5. Functional Analysis of Gene Lists

Venn diagrams were constructed using the Venny 2.1.0—Bioinfo GP tool (http://
bioinfogp.cnb.csic.es/tools/venny (accessed on 9 September 2021)) from TIA1-iCLIP [18]
and the PARCLIP [19] database, comparing them to updated human nuclear-encoded
mitochondrial genes in MitoCarta 3.0 [49]. GO database analysis was performed with the
PANTHER classification system (http://pantherdb.org, accessed on 1 November 2021).
Statistical overrepresentation test was used to identify GO term enrichments in significantly
shared genes.

4.6. Statistical Analysis

The data were expressed as mean ± SEM. The student’s t-test was applied to de-
termine statistical significance between two groups. p values < 0.05 were considered
statistically significant.
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