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Hypertension is the most frequent cardiovascular pathology,
afflicting approximately one-third of the population, and its
prevalence is rapidly increasing with higher age. The term
essential or idiopathic hypertension reflects its unknown
etiology. However, decades of research have disclosed the
apparent mechanisms leading to essential hypertension and
involve endothelial dysfunction, increased oxidative load,
neurohumoral imbalance, kidney alterations, or genetic
predisposition. What remains truly idiopathic is the level of
participation of one or several potential etiologic factors in
hypertensive individuals during a particular period of
hypertension development. In other words, what renders
hypertension as essential is our inability to discern these
factors in a particular patient. This is subsequently asso-
ciated with uncertainty in the choice and dosing of anti-
hypertensive drugs, resulting in poor hypertension control
worldwide.

Treatment-resistant hypertension is when blood pressure
(BP) remains above the goal despite the use of three anti-
hypertensive drugs of different classes at optimal doses or
when target values of BP are achieved only by four or more
antihypertensive medications [1]. Resistant hypertension
carries greater adverse cardiovascular risk than that of
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controlled nonresistant hypertension. Based on large clin-
ical trials, the prevalence of resistant hypertension varies
from 10 to 30% and increases with the age of the patients
and the duration of hypertension [1]. Although a spectrum
of antihypertensive agents is accessible, their inadequate
effectiveness, side effects and nonadherence stimulated the
introduction of invasive approaches, such as selective renal
sympathetic denervation. However, interventional therapy
requires a special team and devices, is expensive and results
in the loss of counterregulatory adaptive mechanisms
against potential hypovolemia; as a result, only a minority
of patients with treatment-resistant hypertension are satis-
factory candidates for this therapy [1]. Thus, the search after
novel conservative treatment options is unremitting.

N-acetyl-5-methoxytryptamine (melatonin) was dis-
covered as the secretory product of the vertebrate pineal
gland. It is present in unicellular organisms, fungi, plants,
and all animals [2, 3]. This extensive distribution suggests
the hypothetic view that primitive bacteria, which evolved
melatonin as an antioxidant defense mechanism, were
engulfed by early prokaryotes and developed into mito-
chondria or chloroplasts. In the phylogenetic development
from unicellular to multicellular organisms, melatonin
spread to all organisms with subsequent modification of
biosynthetic pathways, sites of generation, and functional
implications [3]. Melatonin is a pleiotropic molecule that
exerts a variety of receptor-dependent and receptor-
independent biological effects. The principle receptor-
dependent melatonin action is to coordinate the circadian
rhythms of various physiological functions. The regulation
and coordination of biological rhythms is based on the
mutual interactions between the master clock (the supra-
chiasmatic nucleus (SCN)) in the hypothalamus and several
areas in the central nervous system, as well as in peripheral
tissues. The information related to light wavelength and
intensity is sensed by the retina, transferred to the SCN, and
transmitted to the pineal gland, where it controls melatonin
production in terms of elevated melatonin secretion during
darkness [4].
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The broad antioxidant effects of melatonin are well
recognized. This indoleamine limits oxidative stress both
extracellularly and intracellularly by a variety of mechan-
isms, such as direct radical scavenging, stimulating the
activity and expression of antioxidative enzymes, support-
ing glutathione synthesis and recycling, protecting other
antioxidants and downregulating pro-oxidant enzymes.
Melatonin also improves mitochondrial electron transport
and energetic gain and modifies inflammation and apopto-
sis. These subcellular protective actions of melatonin result
in a number of potentially beneficial actions in various
systems, including a BP-reducing effect [4]. Whether mel-
atonin can exert protection in the treatment of resistant
hypertension has not been investigated.

The two-kidney one-clip model of hypertension, intro-
duced by Goldblatt almost a century ago, is induced by the
narrowing of one renal artery inducing unilateral renal
ischemia with the activation of the renin—angiotensin sys-
tem (RAS). Recent experiments disclosed the complex
nature of this model, represented by renal hypoperfusion,
oxidative stress stimulation, and sympathetic nervous sys-
tem (SNS) and RAS activation. The crosstalk between the
brain and kidney is impressive [5]. Kidney efferent sym-
pathetic fibers stimulate renal artery vasoconstriction, renin
release from juxtaglomerular cells and sodium and water
reabsorption by the tubular system. Ischemic kidney (IK)
afferent nerves modulate neurotransmission in brain areas
involved in cardiovascular control. The hypothalamic
paraventricular nucleus (PVN) and brainstem rostral ven-
trolateral medulla (RVLM) are supposedly influenced by
tissue and/or circulating angiotensin II (Ang II), resulting in
a sequence of events in transcriptional factor synthesis that
alter the passage of impulses in baroreflex sympathetic
neurons [6]. Indeed, angiotensin type 1 receptors (AT1R)
and oxidative stress were shown to be increased in RVLM
along with baroreflex disturbance and BP enhancement [5].
Moreover, the renal density of ATIR and urinary angio-
tensinogen was increased in the 2K1C model [5]. Although
2K1C is a model of secondary hypertension, due to its
complex pathophysiology, this model bears considerable
resemblance to resistant hypertension in clinical conditions.

The attractive and stimulating recent works of Nishi et al.
[5, 7]. showed that alterations in the 2K1C model were partly
reversed either by unilateral sympathetic denervation or by
melatonin treatment. These authors demonstrated that the
unilateral renal denervation of IK reduced the mean arterial BP
and renal and splanchnic activity of SNS (rSNS, sSNS) in the
contralateral kidney, with a reduction in ATIR and oxidative
stress in IK and kidney protection in terms of preserving
structure and reducing proteinuria. Moreover, oxidative stress
and the AT1 and AT2 receptor numbers were reduced in the
PVN and RVLM in the 2K1C model [5]. As such, these
results support the idea that 2KI1C hypertension is

renovascular in its etiology but neurogenic in its mechanisms.
Subsequently, the hypothesis of central modulation/treatment
of this type of hypertension emerges. Indeed, gavage treatment
by melatonin (30 mg/kg/day) for 15 days after the 5-week
clipping of the left renal artery, prominently reduced mean
arterial pressure (by 45 mmHg), attenuated sympathoexcita-
tion to the IK, and normalized cardiac baroreflex gain and
rSNS answer. Renal protection was reflected by the reduction
in oxidative stress in IK and the lowering of proteinuria [7].
Yet, the study still leaves a gap in the knowledge. The prin-
cipal unanswered question is where the primary action of
melatonin took place. The central modulation of sympathetic
outflow remains the most plausible option. However, a direct
renoprotective effect of melatonin with subsequent reduced
afferent stimulation from the kidney could also be postulated.
Moreover, to document the potential interference of melatonin
with the RAS, the Ang II levels and ATIR number in the
brain and kidney should be investigated. It might also be
valuable to determine the serum aldosterone level or AT1R
number in the renal cortex, since aldosterone seems to play an
important role in resistant hypertension. Furthermore, serum or
tissue melatonin concentrations would indicate whether exo-
genous melatonin compensated for the potential melatonin
deficit. These areas remain a challenge for future experiments.

In terms of the recent experimental findings and
depending on the answers to the open questions, the fol-
lowing mechanisms could emerge (Fig. 1):

First, endogenous melatonin production in the pineal
gland is bound with the SNS. The axons of neurons in the
PVN project to the preganglionic sympathetic neurons of
the cervical intermediolateral cell column controlling
vascular tone and arterial BP. The sympathetic impulses
from intermediolateral column cells simultaneously
project to the superior cervical ganglia to eventually
stimulate melatonin production by the pineal gland via
beta and alpha-1 adrenoceptor activation. Melatonin may
have a negative feedback effect on the sympathetic
system by GABA-ergic inhibitory signaling on PVN via
SCN, the action of which may be potentiated by nitric
oxide. Thus, endogenous melatonin may represent a
counterregulatory mechanism against excessive sympa-
thetic stimulation [8, 9]. Moreover, Melo et al. [10].
revealed in 2K 1C rats that the ATIR inhibitor losartan or
the activation of GABAergic receptor in the commissural
nucleus (cNTS), a part of the NTS, reduced ROS,
inflammation and microglia in the cNTS along with BP
reduction. Since exogenous melatonin readily crosses the
brain barrier [11], it may inhibit the NTS by augmenting
GABAergic neurotransmission and by its extraordinary
antioxidative actions to attenuate also other sympathetic
loci regulating BP. Given that alpha- and beta- blockers
are seldomly used because of side effects or metabolism

SPRINGER NATURE



1830

F. Simko et al.

Hypothalamus (PVN) |
stem (NTS, RVLM)

M SNS activation A

i constriction of rartery
i Na'H,0 reabsorption i
¥ renin/ Angll / Ald release:

Peripheral . Cardiac

output

ivasoconstriction
v H

4
=~ Volume :
yretention :

BP increase

Fig. 1 The paraventricular nucleus (PVN) of the hypothalamus and
rostral ventrolateral medulla (RVLM) and nucleus of the solitary tract
(NTS) of the brainstem participate in the activity of the sympathetic
nervous system (SNS). The sympathetic impulses from the inter-
mediolateral cell column increase the peripheral vascular tone and
cardiac output and modify kidney function in terms of volume reten-
tion, all of which result in an enhancement of blood pressure (BP).
Kidney alterations can stimulate SNS. Endogenous or exogenous
melatonin may attack two principal factors of resistant hypertension:
SNS and circulating volume overload. Endogenous melatonin, which
is stimulated by sympathetic flow via superior cervical ganglia, exerts
a negative feedback effect on SNS via y-aminobutyric acid (GABA)
inhibitory signaling on PVN, reducing the sympathetic outflow to
peripheral arteries, heart and kidneys. Exogenous melatonin may carry
analogical action in the SNS and can also increase the bioavailability
of nitric oxide (NO) with peripheral and renal artery vasodilatation,
resulting in BP reduction

disruptions, melatonin's sympatholytic action could be of
principal value.

Second, melatonin exerts protection in various models of
kidney damage, including hypertensive and diabetic
nephropathy, renal damage induced by toxic substances
or invasive interventions [2]. RAS seems to play an
important role in chronic kidney disturbances. The
impaired melatonin secretion is associated with increased
nighttime activation of local-renal RAS and renal damage
in patients with chronic kidney disease. Moreover, the
administration of melatonin improved structure and
function in animal models of renal damage, which was
associated with attenuation of intrarenal RAS activation
and oxidative stress [12]. Preserving kidney function
could attenuate the volume overload and hyperdynamic
mechanisms of resistant hypertension development.

Third, melatonin, via its antioxidant and antiproliferative
effects [13], may improve the endothelium-dependent and
smooth musculature-dependent dilation of arterioles,
resulting in a reduction of peripheral vascular resistance.

Since the BP threshold for starting antihypertensive
therapy was reduced to >130/80 mmHg in the AHA
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guidelines, the prevalence of patients with treatment-
resistant hypertension is likely to increase. Thus, finding a
novel therapeutic option is a challenging issue. Commonly
used therapeutic regimes involve volume reducing agents,
inhibitors of the formation or effects of Ang I, and calcium
channel blockers [1]. While the treatment-resistant hyper-
tension often contains a central neurogenic pathomechanical
component, the above postulated mechanisms of action of
melatonin could find their application in its treatment.
Based on the 2K1C model and other models of hyperten-
sion, melatonin triggers sympatholytic and bradycardic
effects [9] and, due to its apparent antiproliferative action
[13], this hormone even offers nephro- and cardioprotection
beyond BP reduction. Therefore, melatonin becomes an
essential candidate to be investigated for the treatment of
resistant hypertension.
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