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Abstract
Introduction: Functional	connectivity	alterations	within	individual	resting	state	net-
works	(RSNs)	are	linked	to	disorders	of	consciousness	(DOC).	If	these	alterations	in-
fluence	 the	 interaction	quality	with	other	RNSs,	 then,	brain	alterations	 in	patients	
with	DOC	would	be	characterized	by	connectivity	changes	in	the	large-scale	model	
composed of RSNs. How are functional interactions between RSNs influenced by 
internal	alterations	of	individual	RSNs?	Do	the	functional	alterations	induced	by	DOC	
change	some	key	properties	of	the	large-scale	network,	which	have	been	suggested	
to	be	critical	 for	 the	consciousness	emergence?	Here,	we	use	network	analysis	 to	
measure	functional	connectivity	in	patients	with	DOC	and	address	these	questions.	
We	hypothesized	that	network	properties	provide	descriptions	of	brain	 functional	
reconfiguration associated with consciousness alterations.
Methods: We apply nodal and global network measurements to study the reconfigu-
ration	linked	with	the	disease	severity.	We	study	changes	in	integration,	segregation,	
and centrality properties of the functional connectivity between the RSNs in sub-
jects with different levels of consciousness.
Results: Our	analysis	indicates	that	nodal	measurements	are	more	sensitive	to	dis-
ease	severity	than	global	measurements,	particularly,	for	functional	connectivity	of	
sensory and cognitively related RSNs.
Conclusion: The network property alterations of functional connectivity in different 
consciousness	levels	suggest	a	whole-brain	topological	reorganization	of	the	large-
scale	functional	connectivity	in	patients	with	DOC.
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1  | INTRODUC TION

Disorders	 of	 consciousness	 (DOC)	 encompass	 a	 set	 of	 particular	
conditions	occurring	after	coma	(Bruno,	Laureys,	&	Demertzi,	2013),	
including	 the	 minimally	 conscious	 state	 (MCS),	 in	 which	 patients	
exhibit	 signs	 of	 fluctuating,	 yet,	 reproducible	 remnants	 of	 nonre-
flex	behavior,	and	the	unresponsive	wakefulness	syndrome	(UWS),	
related	 to	patients	who	open	 their	 eyes,	 but	 remain	unresponsive	
to	 external	 stimuli	 (Laureys	 &	 Schiff,	 2012;	 Schnakers	 &	 Laureys,	
2012). Due to the difficult communication imposed by these con-
ditions,	 brain	 activity	 registered	 at	 rest	 (Biswal,	 2012)	 is	 used	 to	
develop	complementary	diagnosis	approaches.	In	particular,	resting	
state	functional	magnetic	resonance	imaging	(R-fMRI)	protocols	are	
used to understand brain activity while subjects are not exposed to 
stimuli	 (Demertzi	et	al.,	2014;	Sporns,	2013),	overcoming	the	need	
for	their	active	participation.	R-fMRI	studies	in	healthy	controls	(HC)	
suggest	that	the	brain	is	organized	into	large-scale	resting	state	net-
works	(RSNs)	of	sensory/cognitive	relevance	(Fox	&	Raichle,	2007;	
Rosazza	 &	Minati,	 2011).	 At	 least	 ten	 of	 these	 functional	 entities	
were	identified	in	HC	including	auditory,	cerebellum,	default	mode	
network	 (DMN),	 executive	 control	 left	 (ECN	 Left),	 executive	 con-
trol	 right	 (ECN	 Right),	 saliency,	 sensorimotor,	 visual	 lateral,	 visual	
media,	and	visual	occipital	(Damoiseaux	et	al.,	2006).	RSNs	provide	
a suitable representation to study the preservation of sensorial and 
cognitive	brain	functions	without	any	explicit	stimulation	(Rosazza	&	
Minati,	2011)	specifically	for	DOC	studies.

First	 analyses	 of	 RSNs	 in	 patients	 with	 DOC	 focused	 on	 al-
terations of the functional connectivity inside the DMN. This is a 
functional structure that encompasses specific brain regions linked 
to	 the	 consciousness	 emergence	 phenomenon	 (Boly	 et	 al.,	 2008;	
Demertzi,	Soddu,	&	Laureys,	2013).	Decreases	in	functional	connec-
tivity within this network are linked to modifications of the level of 
consciousness	in	these	patients.	Posterior	studies	showed	that	DOC	
conditions may affect functional connectivity within multiple RSNs 
(Demertzi	et	al.,	2014,	2013;	Di	Perri,	Stender,	Laureys,	&	Gosseries,	
2014;	Di	Perri,	Thibaut,	et	al.,	2014;	Guldenmund	et	al.,	2013;	Heine	
et	al.,	2012;	Ribeiro	de	Paula	et	al.,	2017).	In	particular,	variations	in	
intrinsic connectivity for specific RSNs were related to alterations in 
sensorial	and	awareness	functions	(Boly	et	al.,	2008;	Demertzi	et	al.,	
2013;	Di	Perri,	Stender,	et	al.,	2014).	Additional	evidence	indicates	
changes	in	the	connectivity	between	RSNs,	for	instance,	reductions	
of	 the	 connectivity	 strength	between	RSNs	 in	patients	with	DOC	
compared	to	HC	subjects	(Rudas	et	al.,	2014)	and	alterations	in	the	
level	of	anti-correlation	between	RSNs	associated	with	the	recovery	
of	consciousness	(Di	Perri	et	al.,	2016).	In	summary,	these	analyses	
focused on alterations within particular RSNs or between specific 
pairs of RSNs that may have functional relevance for consciousness 
emergence.

Nevertheless,	these	approaches	may	be	limited	because	they	do	
not	consider	a	more	general	view	of	the	brain,	regarding,	for	instance,	
the existence of multiple functional units in the brain and the inter-
actions	among	them	(van	den	Heuvel	&	Hulshoff	Pol,	2010).	They	are	
instead	focused	on	specific	consciousness-related	circuits	within	the	

brain.	A	more	general	perspective	is	important	because	conscious-
ness	 preservation	 in	 these	 patients	 would	 also	 require	 functional	
units related not only to consciousness processing but also to stimuli 
and	response,	and	possibly	systems	to	orchestrate	them	(Tononi	&	
Koch,	2015).	The	understanding	of	 interactions	among	these	units	
may provide valuable information about these conditions (Tononi 
&	Koch,	2015).	Recently,	a	model	of	functional	connectivity	among	
RSNs	has	been	proposed	 in	 the	so-called	 functional	network	con-
nectivity	 (FNC;	 Jafri,	 Pearlson,	 Stevens,	 &	 Calhoun,	 2008),	 which	
considers	the	functional	interaction	between	these	large-scale	units.	
This model provides a network representation in which interactions 
between	high-order	functional	systems	can	be	characterized	using	
network	measurements	 (Bullmore	&	Sporns,	 2009,	 2012;	 van	den	
Heuvel	&	Hulshoff	Pol,	2010).	Lately,	connectivity	density	decreases	
were	associated	with	consciousness	alterations	 in	coma,	providing	
a	 general	 description	 of	 FNC	 alterations	 (Malagurski	 et	 al.,	 2019).	
However,	the	specific	reconfiguration	of	FNC	associated	with	con-
sciousness states is not tackled.

In	this	study,	we	hypothesize	that	the	FNC	model	may	highlight	
reorganizations	of	connectivity	related	to	the	underlying	pathology	
characterizing	the	DOC	condition.	These	interaction	patterns	were	
studied	by	assessing	modifications	in	integration,	segregation,	and	
centrality	properties,	which	have	been	suggested	to	be	highly	rel-
evant	for	consciousness	emergence	(Tononi	&	Koch,	2015).	These	
properties	were	analyzed	for	three	populations	in	different	states	
of	 consciousness:	 healthy	 controls,	 subjects	 with	MCS,	 and	 sub-
jects	with	UWS.	In	contrast	to	previous	studies	that	only	focused	
on	a	limited	set	of	RSNs,	we	considered	the	interactions	among	the	
whole	set	of	functional	units.	To	reach	this	objective,	the	FNC	was	
computed for each subject obtaining a general brain functional rep-
resentation	with	the	interactions	between	RSNs.	Next,	we	used	a	
set of network measurements to assess the mentioned properties. 
In	 particular,	 degree,	 strength,	 clustering	 coefficient,	 between-
ness,	 and	 eigenvector	 centralities	 were	 used	 to	 understand	 key	
brain functional property modifications for different states of con-
sciousness. Degree and strength assess the integration between 
functional	 brain	 regions,	 that	 is,	 how	 the	 regions	 are	 connected	
and	how	strong	are	the	connections,	respectively.	Clustering	coef-
ficient	measures	the	segregation	of	brain	regions,	that	is,	how	the	
regions	are	interconnected	creating	functional	units.	Betweenness	
and eigenvector centralities evaluate the relevance of a region in 
the	 functional	 model,	 that	 is,	 how	 important	 a	 region	 is	 for	 the	
communication because it belongs to the shortest path or it is con-
nected	to	other	relevant	regions,	respectively.	Our	results	suggest	
that	decreases	in	the	level	of	consciousness	in	patients	with	DOC	
are	related	with	a	 topological	 reorganization	of	 large	spatial	scale	
connectivity,	 involving	 not	 only	 regions	 directly	 related	 to	 con-
sciousness,	 as	DMN,	 but	 also	 other	 functional	 systems	of	 senso-
rial and cognitive relevance. This finding has a major implication in 
functional	studies	related	to	consciousness,	suggesting	a	reconfig-
uration	of	sensorial	and	cognitive	systems,	in	particular,	reconfigu-
rations that may involve brain adaptations due to communication 
impairment.
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2  | MATERIAL S AND METHODS

We	 aim	 to	 characterize	 a	 functional	 connectome	 for	 HC	 sub-
jects	 and	 patients	 with	 DOC	 (Bullmore,	 2012;	 Calhoun,	 Adali,	
&	 Pearlson,	 2001;	 Sporns,	 2013;	 van	 den	 Heuvel	 &	 Hulshoff	
Pol,	 2010),	 in	 particular,	 a	 connectome	 with	 RSNs	 as	 nodes.	
This	connectome	corresponds	to	a	large-scale	network	of	func-
tional relationships between functionally related brain regions. 
Network-based	 measurements	 computed	 on	 this	 connectome	
provide	 a	 functional	 depiction	 of	 synchronized,	 spontaneous,	
and	 segregated	 activity	 (Rubinov	 &	 Bullmore,	 2013;	 Sporns,	
2013;	van	den	Heuvel	&	Hulshoff	Pol,	2010).	Importantly,	there	
is	a	methodological	challenge	in	the	characterization	of	the	func-
tional	 relationship	between	 large-scale	areas	 (RSNs)	 in	patients	
with	 severe	 brain	 damage.	 Particularly,	 brain-injured	 patients	
may present functional and structural affectations that may 
change	 the	 connectome	 properties.	 Therefore,	 in	 this	 study,	 a	
particular processing pipeline that accounts for these alterations 
were	considered,	including,	severe	structural	affectations,	large	
head	motions,	and	individual	variability,	among	others.	Figure	1	
summarizes	the	process	used	to	characterize	functional	connec-
tivity alterations at the general brain level of interactions be-
tween RSNs.

2.1 | Subjects and patients

Participants were healthy volunteers and patients with UWS or 
MCS following severe brain damage studied at least 5 days after 
acute brain insult. HC subjects were subjects free of psychiatric 
or neurological history. Clinical examination was performed using 
the	 French	 version	 of	 the	 Coma	 Recovery	 Scale-Revised	 (CRS-
R;	Giacino,	Kalmar,	&	Whyte,	2004;	Schnakers	et	al.,	2008).	The	
CRS-R	 is	 a	 standardized	measure	 for	 characterizing	 the	 level	 of	
consciousness and monitoring recovery of neurobehavioral func-
tion	(Giacino	et	al.,	2004).	It	consists	of	30	hierarchically	arranged	
items	 that	 comprise	 six	 subscales	 addressing	 auditory	 (5	 items),	
visual	 (6	 items),	motor	 (7	 items),	oromotor/verbal	 (4	 items),	com-
munication	(4	items),	and	arousal	(4	items)	processes.	The	scoring	
is based on the presence or absence of specific behavioral re-
sponses	to	sensory	stimuli	administered	in	a	standardized	manner,	
and the lowest item in each subscale represents reflexive activity 
while the highest item represents cognitively mediated behaviors 
(Giacino	 et	 al.,	 2004;	 Schnakers	 et	 al.,	 2008).	 Exclusion	 criteria	
were	contraindication	for	MRI	(e.g.,	presence	of	ferromagnetic	an-
eurysm	clips,	pacemakers),	MRI	acquisition	under	sedation	or	an-
esthesia and large focal brain damage (>50% of total brain volume). 
Structural brain damage was assessed by visual inspection of two 
experts. Written informed consent to participate in the study was 
obtained from the healthy subjects and from the legal surrogates 
of the patients. The study was approved by the Ethics Committee 
of	the	Medical	School	of	the	University	of	Liège	(Demertzi	et	al.,	
2014).

2.2 | Data description

Acquisitions	from	75	subjects	were	used	for	this	study:	27	HC	sub-
jects	 (14	women,	mean	age	47	±	16	years),	 24	patients	with	MCS	
(eight	women,	mean	 age	 47	±	 16	 years;	 nine	 of	 nontraumatic	 eti-
ology:	two	anoxic,	three	with	cerebrovascular	accident,	three	with	
hemorrhage,	 one	with	 seizure;	 14	 of	 traumatic,	 and	 one	 of	mixed	
etiology),	and	24	with	UWS	(12	women,	mean	age	50	±	18	years;	18	
of	nontraumatic	etiology:	nine	anoxic,	six	with	cerebrovascular	ac-
cident,	two	with	hemorrhage,	one	metabolic;	five	of	traumatic,	and	
one	of	mixed	etiology).	Thirty-one	patients	with	UWS	and	MCS	were	
assessed	in	the	chronic	setting,	that	is,	≥50	days	postinsult.	Further	
details about the patients' demography can be found in Table S1.

For	 each	 subject,	 fMRI	 data	 were	 acquired	 in	 a	 3T	 scanner	
(Siemens	Medical	Solution).	Three	hundred	fMRI	volumes	multislice	
T2*-weighted	functional	images	were	captured	(32	slices;	voxel	size:	
3 × 3 × 3 mm3;	matrix	size	64	×	64	×	32;	repetition	time	=	2,000	ms;	
echo	time	=	30	ms;	flip	angle	=	78°;	field	of	view	=	192	×	192	mm2). 
The three initial volumes were discarded to avoid T1 saturation ef-
fects.	In	addition,	for	anatomical	reference,	a	structural	T1-weighted	
image	was	acquired.	Patients	were	scanned	in	sedation-free	condi-
tion,	and	healthy	volunteers	were	instructed	to	close	their	eyes,	relax	
without	falling	asleep	and	refrain	from	any	structured	thinking	(e.g.,	
counting	and	singing),	as	commonly	performed	in	resting	state	par-
adigms	(Beckmann,	Luca,	&	Devlin,	2005;	Guldenmund	et	al.,	2013).

2.3 | Data preprocessing

Data preprocessing was performed using the Statistical Parametric 
Mapping	(SPM8)	(Friston,	2007)	toolbox	for	Matlab	(The	Mathworks,	
Inc.).	 SPM	 preprocessing	 stages	 included	 realignment	 and	 adjust-
ment	 for	 movement-related	 effects,	 coregistration	 of	 functional	
onto	structural	data,	segmentation	of	structural	data,	normalization	
into	 standard	 stereotactic	MNI	 space,	 and	 spatial	 smoothing	with	
a	Gaussian	kernel	of	8	mm.	To	evaluate	 the	data	acquisition	qual-
ity,	the	frame-wise	displacement	(Power,	Barnes,	Snyder,	Schlaggar,	
&	Petersen,	2012)	was	assessed	on	each	population,	further	details	
Supplementary	Material	 Section	 2.	Motion	 correction	 (e.g.,	 small,	
large	and	rapid	motions,	noise	spikes	and	spontaneous	deep	breaths)	
was	 applied	 by	 using	 ArtRepair	 toolbox	 for	 SPM	 (Demertzi	 et	 al.,	
2014;	Mazaika,	Hoeft,	Glover,	&	Reiss,	2009).

2.4 | Resting state networks identification

For	each	subject,	 the	resting	state	networks	 (RSNs)	were	selected	
as	follows:	First,	the	rs-fMRI	signal	was	decomposed	into	maximally	
independent	spatial	maps	using	spatial	ICA	(McKeown	et	al.,	1998).	
ICA	 decomposition	 was	 performed	 with	 30	 components	 (Jafri	 et	
al.,	2008)	and	the	 infomax	algorithm	as	 implemented	 in	GroupICA	
toolbox	(Calhoun	et	al.,	2001).	Each	spatial	map	(source	fMRI	signal)	
has	an	associated	 time-course,	which	corresponds	 to	 the	common	
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dynamic	 exhibit	 by	 the	 component.	 Second,	RSNs	were	 identified	
at	 individual	 level	 (Demertzi	 et	 al.,	 2014)	by	using	a	 two-fold	pro-
cess: template matching and neuronal/artifactual classification 
(see	 Supporting	 Information	 Section	 4).	 Template	 Matching	 is	 an	
approach that aims to identify each RSN directly from the single 
subject	 sICA	decomposition	 (Demertzi	 et	 al.,	 2014).	 It	 is	 a	match-
ing problem with two constraints: (a) a template had to be assigned 
to	one	of	 the	30	 ICs	 and	 (b)	 an	 IC	 could	be	 labeled	 as	 an	RSN	or	
not. These two conditions ensure that all the templates (one for 
each	RSN)	have	to	be	assigned	and	a	unique	identification	of	each	
IC,	 which	 deal	 with	 the	 potential	 concurrent	 component	 assigna-
tion.	 The	 pair	 between	 the	 template	 and	 the	 IC	with	 the	 highest	
goodness-of-fit	score	was	selected	(Demertzi	et	al.,	2014).	Later,	a	
neuronal/artifactual	classification	of	independent	components	(ICs)	
was	performed	by	using	a	machine	learning-based	labeling	method	
(Demertzi	et	al.,	2014).	It	consists	of	a	binary	classification	approach	
by means of support vector machine (SVM) classifier trained on 19 
independently assessed healthy subjects. This SVM uses the fin-
gerprints	obtained	from	ICA	decomposition	(n	=	30	components)	as	

the	feature	vector	containing	both	spatial	(i.e.,	degree	of	clustering,	
skewness,	kurtosis,	 spatial	entropy)	and	 temporal	 information	 (i.e.,	
one-lag	autocorrelation,	temporal	entropy,	power	of	five	frequency	
bands:	 0–0.008	 Hz,	 0.008–0.02	 Hz,	 0.02–0.05	 Hz,	 0.05–0.1	 Hz,	
and	0.1–0.25	Hz).	Commonly,	components	of	artifactual	origin	en-
compasses	(a)	high-frequency	fluctuations	>0.1Hz,	(b)	spikes,	one	or	
more	abrupt	changes	in	the	normalized	time-course,	(c)	the	presence	
of	sawtooth	pattern,	and	(d)	the	presence	of	threshold	voxels	in	the	
superior	 sagittal	 sinus.	 Finally,	 neuronal	 time-courses	of	 the	RSNs	
were	extracted	at	the	individual	level,	and	they	were	subsequently	
used for the functional connectivity computations.

2.5 | Functional network connectivity estimation

For	each	subject,	a	FNC	matrix	was	computed	by	using	a	measure	
of	 dependency	 between	 pairs	 of	 representative	 time-courses,	 re-
sulting in a matrix with strengths of the interactions between the 
identified RSNs. The strength for edges pointing to RSNs marked as 

F I G U R E  1   Illustration	of	the	methodological	procedure	defined	as	the	sequence	of	the	following	processes:	data	acquisition	consisting	
of	300	volumes	of	functional	magnetic	resonance	imaging	(MRI)	at	rest	and	a	structural	MRI	for	each	subject;	data	preprocessing	including	
brain	extraction,	alignment,	registration,	Gaussian	smoothing,	motion	correction,	and	normalization;	extraction	of	the	resting	state	networks	
(RSNs)	using	spatial	independent	component	analysis	and	a	template	matching	strategy	under	a	data-driven	approach;	computation	of	
functional	network	connectivity	(FNC)	between	RSNs	by	the	lagged	distance	correlation	method;	and	finally,	computation	of	integration,	
segregation	and	centrality	measurements	to	characterize	the	populations	in	different	states	of	consciousness
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no-neuronal	was	set	as	zero,	indicating	no	interaction.	The	measures	
of dependency level were computed using the distance correlation 
(DC)	 between	 time-courses	 (Székely,	 Rizzo,	 &	 Bakirov,	 2007).	 DC	
aims to measure nonlinear dependencies between two random vari-
ables	X	and	Y	with	finite	moments	in	arbitrary	dimension.	In	order	
to	account	 for	 time	delays,	a	circular	shifted	 lagged	version	of	 the	
DC	was	used	(Jafri	et	al.,	2008;	Rudas	et	al.,	2014).	Once	the	FNC	
was	 computed,	 it	 induces	 a	 functional	 connectivity	matrix,	 which	
was	 used	 to	 characterize	 alterations	 of	 functional	 connectivity.	 In	
particular,	a	10	×	10	weighted	matrix	was	computed	to	model	inter-
actions between different RSNs. Each one of them models a brain 
region associated with specific arousal and awareness regions re-
lated	 to	 consciousness	 emergence.	 An	 entry	 cij in this matrix cor-
responds to the interaction between the RSNi and RSNj assessed by 
using	the	lagged	DC.	Further	details	of	this	approach	can	be	found	in	
Supporting	Information	Section	5.

2.6 | Network characterization

Functional	network	connectivity	matrix	contains	a	measure	of	de-
pendency	between	pairs	of	RSNs	time-courses.	To	assess	functional	
connectivity	alterations,	 three	network	properties	were	computed	
for	each	FNC	matrix,	namely,	integration,	segregation	and	centrality	
of	the	functional	connectivity	between	RSNs.	FNC	integration	was	
assessed	by	degree	and	strength	 (Bullmore	&	Sporns,	2009,	2012;	
Rubinov	 &	 Sporns,	 2010).	 FNC	 segregation	 was	 characterized	 by	
clustering	 coefficient	 (Bullmore	&	 Sporns,	 2009,	 2012;	 Rubinov	&	
Sporns,	2010),	 and	FNC	centrality	was	estimated	by	betweenness	
centrality	 and	 eigenvector	 centrality	 (Lohmann	 et	 al.,	 2010;	 see	 a	
brief description of the network measurements in Table S3). These 
computations were performed using the brain connectivity toolbox 
(Rubinov	&	Sporns,	2010).

Functional	 network	 connectivity	 degree	 values	 quantify	 the	
number	 of	 nonzero	 correlations	 of	 each	RSN	with	 other	 nodes	 in	
the	network,	while	 strength	values	 indicate	not	only	 a	 correlation	
between RSNs but also the robustness of this correlation. They 
also	provide	a	measure	of	the	communication	quality	expressed	in	
the	correlation,	 that	 is,	higher	values	for	these	two	measurements	
indicate	 better	 communication.	 Similarly,	 FNC	 segregation	 was	
measured by clustering coefficient. This assessment indicates how 
well-connected	neighbor	nodes	are	 in	order	 to	become	a	grouped	
unit. High clustering coefficient values indicate that a set of nodes 
are	well	 connected	 among	 themselves.	 Additionally,	 FNC	 central-
ity was assessed by betweenness and eigenvector measurements. 
Higher betweenness centrality values of a RSN mean that a node 
belongs to a high number of the shortest paths (path with the min-
imum distance between two nodes) between pairs of nodes in the 
network.	For	example,	when	a	RSN	time-course	is	better	related	to	
other	time-course	in	sequence,	it	presents	a	better	communication	
path.	Furthermore,	a	higher	RSN	eigenvector	centrality	value	 indi-
cates that this RSN is better connected to other central nodes. This 
estimates how central a RSN is based on the direct connections to 

others	 that	have	strong	 links.	All	measurements	herein	used	were	
computed	for	each	node,	that	is,	for	each	RSN	in	the	FNC.	Average	
measurements	were	 calculated	 to	quantify	 communication	quality	
among the network nodes. They describe the global network func-
tional connectivity properties and depict all the network variations 
associated	with	FNC	alterations.

2.7 | Statistical analysis

To	assess	the	discrimination	power	of	the	network	properties,	an	un-
paired-sample	t	test	(Welch,	1947;	Bonferroni	corrected)	was	com-
puted.	For	 the	statistical	analysis,	 the	 following	comparisons	were	
performed:	HC	versus	subjects	with	MCS,	HC	versus	subjects	with	
UWS,	HC	versus	subjects	with	DOC	(UWS	and	MCS),	and	subjects	
with MCS versus subjects with UWS.

3  | RESULTS

In	this	study,	a	set	of	network	measurements	were	used	to	assess	
the	 integration,	 segregation,	 and	 centrality	 of	 the	 FNC	 between	
RSNs	 to	 characterize	 connectivity	 variations	 in	 different	 states	 of	
consciousness.

3.1 | Loss of functional network connectivity 
integration in DOC

Figure	2	shows	degree	and	strength	values	for	subjects	in	different	
states	of	consciousness	for	the	10	different	RSNs	herein	studied.	As	
observed	in	Figure	2a,	degree	values	were	higher	for	HC	compared	
to subjects with altered states of consciousness (MCS and UWS) in 
all	 RSNs,	 except	 by	 the	 sensorimotor	 network.	 Significant	 differ-
ences (p < .005) were observed for the values of degree when com-
paring	HC	with	MCS	populations	 in	auditory	network,	DMN,	ECN	
Left	 and	 visual	 medial	 network.	 Significant	 differences	 (p < .005) 
were also found when comparing HC versus subjects with UWS and 
when	comparing	HC	and	 subjects	with	DOC	 in	 auditory	network,	
DMN,	ECN	Left,	visual	medial	network,	and	ECN	Right.	Also,	degree	
values for subjects with MCS were greater than the UWS in all RSN 
but no significant differences were observed. Table S4 reports sta-
tistical details of these assessments.

As	observed	in	Figure	2b,	strength	values	were	higher	for	HC	in	
comparison to subjects with altered states of consciousness in all 
RSNs except by sensorimotor and cerebellum networks. Significant 
differences (p < .005) in strength values were observed for HC com-
pared to subjects with MCS and for HC versus the population of 
DOC,	in	auditory	network,	DMN	and	visual	medial	network.	HC	pre-
sented strength values significantly higher than subjects with UWS. 
No significant differences were observed between strength values 
of subjects with MCS compared to subjects with UWS. Table S5 re-
ports the statistical details about strength value comparisons.
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Figure	 3	 shows	 the	 average	 degree	 and	 average	 strength	 val-
ues.	 Average	 values	 were	 estimated	 as	 a	 global	 characteristic	 of	
functional	 connectivity	 network	 between	 RSNs.	 As	 observed	 in	

Figure	3a,	average	degree	values	were	higher	for	HC	compared	to	
altered states of consciousness. Significant differences were also 
found for HC (M	 =	 3.81,	 SD	 =	 2.10)	 when	 compared	 with	 UWS	

F I G U R E  2   Integration	measurements.	(a)	Degree	and	(b)	strength	show	a	similar	distribution	across	healthy	subjects	and	patients	with	
disorders	of	consciousness	(DOC).	Both	evidence	higher	values	for	healthy	controls	(HC)	than	subjects	with	DOC	in	the	same	resting	
state	networks	(RSNs;	auditory,	cerebellum,	default	mode	network	[DMN],	executive	control	network	[ECN]	Left,	ECN	Right,	saliency,	
sensorimotor,	visual	lateral,	visual	media	and	visual	occipital).	Significant	differences	between	HC	and	minimally	conscious	state	(MCS)	and	
unresponsive wakefulness syndrome (UWS) patients were assessed in RSNs associated with the phenomenon of consciousness emergence 
(auditory,	DMN,	ECN	Left,	ECN	right,	Saliency).	Fingerprints	lines	indicate	mean	values,	and	thin	lines	indicate	standard	deviation	values	
for each RSN. ✶ aims for significant difference between HC and MCS. ★ aims for significant difference between HC and UWS. ✠ aims for 
significant	difference	between	HC	and	DOC

(a) (b)

F I G U R E  3   Distribution of the average integration measurements for the three populations herein studied. (a) Degree and (b) Strength. 
Red	lines	indicate	the	mean,	black	lines	indicate	the	median	and	red	wine	lines	indicate	the	maximum.	Each	dot	in	the	violin	represents	the	
measurement on a single subject. ✶ aims for a significant difference between healthy controls (HC) and minimally conscious state (MCS; 
p < .05). ★ aims for a significant difference between HC and unresponsive wakefulness syndrome (UWS; p < .05). ✠ aims for a significant 
difference between HC and patients with disorders of consciousness p < .05)
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(M	=	1.71,	SD	=	2.59;	t	=	3.16,	p	=	.003).	Similarly,	significant	differ-
ences in average degree were also found when HC subjects were 
compared	with	DOC	(M	=	1.97,	SD	=	2.69;	t	=	3.03,	p	=	.003).	Further,	
the average degree presented a decreasing tendency which corre-
sponds	to	the	increase	in	DOC	severity.	As	observed	in	Figure	3b,	
average strength values were higher for HC compared to altered 
states of consciousness. No significant differences were observed 
for	these	averages	when	compared	among	populations,	in	contrast	
to the previous observation of decreases in the average degree 
values.	 Also,	 average	 degree	 and	 average	 strength	 values	 exhibit	
greater spread distributions for subjects with MCS and subjects with 
UWS than for HC subjects.

3.2 | Loss of functional network connectivity 
segregation in DOC

Figure	4	reports	the	clustering	coefficient	values	for	subjects	in	dif-
ferent states of consciousness. Higher clustering coefficient values 
were obtained for HC in comparison to altered states of conscious-
ness	except	in	sensorimotor,	cerebellum	and	visual	lateral	networks	
(Figure	4a).	Clustering	coefficient	values	for	HC	present	significant	
differences (p < .005) compared to subjects with MCS in auditory 
network and DMN. Significant differences (p < .005) also were ob-
served when comparing HC and subjects with UWS for auditory and 
visual medial networks. No significant differences of clustering co-
efficient values were observed for the RSN when compare subjects 
with	UWS	and	subjects	with	MCS.	Finally,	differences	between	sub-
jects	with	DOC	and	HC	subjects	were	significantly	distinct	(p < .005) 
for	auditory	network,	DMN	and	visual	medial	network.	Table	S6	re-
ports statistical details about the comparisons performed for the 
clustering coefficient.

Figure	 4b	 shows	 the	 average	 clustering	 coefficient	 values.	
These values were higher for HC compared to altered states of con-
sciousness.	Average	clustering	coefficient	values	were	significantly	
higher for HC (M	=	0.20,	SD	=	0.06)	compared	to	subjects	with	MCS	
(M	 =	0.12,	SD	 =	0.12;	 t	 =	2.95,	p	 =	 .004).	 Similarly,	 significant	dif-
ferences were also higher when comparing HC and subjects with 
DOC	(M	=	0.12,	SD	=	0.14;	t	=	2.97,	p	=	.004).	Further,	distributions	
of the average clustering coefficient were narrower for HC than for 
subjects	with	DOC	while	 their	means	exhibit	 a	 slightly	decreasing	
tendency	in	correspondence	with	the	severity	of	DOC.

3.3 | Alterations of functional network connectivity 
centrality in DOC

Betweenness	 centrality	 and	 eigenvector	 centrality	 values	 are	 re-
ported	 in	Figure	5.	Betweenness	centrality	values	were	higher	 for	
HC in contrast to subjects with altered states of consciousness for 
DMN,	ECN	Left,	ECN	Right,	salience	network	and	cerebellum	net-
work,	as	observed	in	Figure	5a.	These	centrality	values	of	subjects	
with UWS were higher when comparing to subjects with MCS and 

when	comparing	to	HC	subjects,	 for	auditory,	sensorimotor,	visual	
lateral,	visual	medial	and	visual	occipital	networks.	Also,	ECN	Right	
and	 salience	 network	 has	 values	 of	 zero	 of	 betweenness	 central-
ity	for	UWS	patients,	 indicating	that	these	nodes	were	not	part	of	
any shortest path in the network. Table S7 reports statistical details 
about these comparisons.

As	 observed	 in	 Figure	 5b,	 eigenvector	 centrality	 values	 were	
higher	for	HC	compared	to	subjects	with	DOC	except	by	auditory	
and sensorimotor networks. Higher values of eigenvector central-
ity for HC with significant differences (p	<	.005),	were	observed	for	
DMN,	ECN	Left,	 ECN	Right,	 and	 visual	medial	 network	 compared	
with	 subjects	with	DOC.	 Similarly,	when	 contrasting	HC	and	 sub-
jects	 with	 MCS,	 significant	 differences	 (p < .005) were obtained 
for DMN. Eigenvector centrality values were significantly different 
(p	<	.005)	for	DMN,	ECN	Left,	ECN	Right	and	visual	medial	network	
in	comparison	with	HC	and	subjects	with	UWS.	Further,	eigenvector	
centrality values were higher for subjects with MCS compared to 
HC,	and	 for	 subjects	with	MCS	versus	UWS	 for	 the	 sensorimotor	
network.	 Finally,	 auditory	 network	 eigenvector	 centrality	 values	
were	higher	for	subjects	with	UWS	compared	to	subjects	with	MCS,	
which were also higher than HC. This observation in the auditory 
network	 indicates	 an	 increasing	 tendency	 in	 centrality,	which	 cor-
responds	with	the	severity	of	the	pathology.	For	this	network,	sig-
nificant differences (p < .005) were found between subjects with 
UWS	and	HC.	Table	S8	reports	statistical	details	about	eigenvector	
centrality comparisons.

Figure	 6	 illustrates	 average	 betweenness	 centrality	 and	 aver-
age	eigenvector	centrality.	Average	betweenness	centrality	values	
were higher for HC in contrast to subjects with altered states of 
consciousness.	Also,	the	distribution	of	these	values	is	narrower	for	
MCS	compared	to	HC	and	subjects	with	UWS	(Figure	6a).	Similarly,	
higher values of average eigenvector centrality were observed for 
HC	when	comparing	 to	subjects	with	DOC	 (Figure	6b).	Significant	
differences	were	observed	when	compare	the	populations,	between	
HC (M	=	0.25,	SD	=	0.06)	and	subjects	with	MCS	(M	=	0.19,	SD	=	0.08;	
t	=	3.61	p	=	.00071),	between	HC	and	subjects	with	UWS	(M	=	0.16,	
SD	=	0.08;	t	=	5.04	p	=	.00001),	and	between	HC	and	subjects	with	
DOC	(M	=	0.18,	SD	=	0.08;	 t	=	4.54	p	=	 .00002).	Further,	average	
eigenvector centrality values exhibit a decreasing tendency as the 
severity of the pathology increases. They also showed a narrower 
distribution	for	HC	in	comparison	to	subjects	with	DOC.

4  | DISCUSSION

In	 this	 paper,	 we	 studied	 whole-brain	 functional	 connectivity	
changes	in	different	states	of	consciousness:	HC,	subjects	with	MCS	
and	subjects	with	UWS.	Unlike	previous	approaches,	which	mainly	
focus on functional units that seem to be associated to conscious-
ness,	that	is,	DMN,	the	proposed	model	considers	a	more	general	set	
of	functional	units	that	represents	connectivity	between	RSNs,	in-
cluding	sensory	and	cognitive-related	ones.	So,	this	model	provides	a	
general perspective of the cognitive and sensory RSNs connectivity 
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variations in altered states of consciousness. We assessed the in-
teractions	between	 these	RSNs,	 resulting	 in	a	FNC	model	 that	 al-
lows	 describing	whole-brain	 system-level	 interactions.	We	 used	 a	
model	of	 functional	connectivity	among	RSNs,	which	corresponds	
to	large	spatial	scale	segregated	functional	units.	In	this	model,	the	
interaction	 between	 pairs	 of	 representative	 time-courses	 of	 each	
RSN	 is	computed	 (Biswal,	2012),	 resulting	 in	a	FNC	model	 that	al-
lows	describing	whole-brain	interactions	(Jafri	et	al.,	2008).	The	pro-
posed model provides a general perspective which overcomes the 
specific	or	single	consciousness-related	region	studies	(Demertzi	et	
al.,	2013;	Di	Perri,	Thibaut,	et	al.,	2014;	Guldenmund	et	al.,	2013).	
It	allows	describing	the	entire	brain	functional	reconfiguration	in	a	
broad scale of regions related to sensory and cognitive processes. 
This reconfiguration description goes further than previous gen-
eral	density	studies	 in	coma	(Malagurski	et	al.,	2019)	depicting	the	
functional variations between functional units associated with the 
consciousness level. The proposed model differs from the previous 
EEG	 holistic	 functional	 model	 which	 is	 used	 to	 discriminate	MCS	
and	UWS	patients	using	a	hemispheric	division	of	Brodmann	Areas,	
that	is,	84	regions,	to	build	the	functional	connectome	and	a	set	of	
network	measurements	revealing	alterations	in	the	small-worldness	
topology	 associated	 with	 the	 consciousness	 level	 (Cacciola	 et	 al.,	
2019). The mentioned general brain network model is affected by 
single RSN variations linked to changes in the level of conscious-
ness.	Additionally,	in	contrast	to	the	usual	description	of	the	interac-
tion	between	pairs	of	functional	units,	we	assessed	the	more	global	

properties	of	integration,	segregation,	and	centrality	that	have	been	
suggested to be critical in the emergence of the consciousness phe-
nomena	(Tononi	&	Koch,	2008).

Our	analysis	indicates	that	loss	of	consciousness	in	patients	with	
DOC	is	associated	with	significant	changes	in	the	functional	connec-
tivity at the RSN level for the three properties studied here. More 
specifically,	 severity	 of	 consciousness	 impairments	was	 related	 to	
reductions	of	 integration	 in	 sensory	 and	 cognitively	 related	RSNs,	
decreases	 in	 segregation	 level	 for	 sensory-related	 RSNs,	 and	 in-
creases	of	centrality	for	sensory-related	RSNs.	The	functional	anal-
ysis	of	altered	states	of	consciousness,	 from	the	proposed	general	
perspective,	 reveals	a	topological	 reorganization	of	the	 large-scale	
functional regions which are not described in previous analyses 
which	mainly	 focused	 in	specific	circuits	within	 the	RSNs.	 In	sum-
mary,	we	propose	a	large-scale	(RSNs)	functional	connectivity	model	
to explore network properties linked to the consciousness phenom-
ena,	and	we	found	a	reconfiguration	of	the	functional	connectivity	
properties in altered states of consciousness.

The discussion continues arguing about the main findings and 
implications related to the variations found in the measurements 
of	integration,	segregation,	and	centrality,	associated	with	the	con-
sciousness	 level.	 It	starts	by	discussing	the	results	over	alterations	
of	the	integration	values	from	a	general	perspective,	and	their	 link	
with	specific	brain	circuits	 in	the	section,	Integration	alterations	in	
DOC.	Following,	section	Segregation	alterations	 in	DOC	considers	
the variations of the segregation assessments and their relationships 

F I G U R E  4   Segregation measurement between resting state networks by clustering coefficient. (a) fingerprint (b) violin plot. Higher 
clustering	coefficient	values	were	observed	for	healthy	controls	(HC)	than	for	subjects	with	disorders	of	consciousness	(DOC)	except	by	
sensorimotor network. ✶ aims for a significant difference between HC and patients with minimally conscious state (MCS). ★ aims for a 
significant difference between HC and unresponsive wakefulness syndrome (UWS). ✠ aims for a significant difference between HC and 
patients	with	DOC

(a) (b)
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with	 previous	 findings.	 Then,	 in	 section	 Centrality	 alterations	 in	
DOC,	the	changes	in	the	centrality	measurements	of	the	large-scale	
regions	are	interpreted.	Finally,	the	discussion	indicates	some	limita-
tions of the presented approach and introduces some perspectives 
to go further.

4.1 | Integration alterations in DOC

Integration	measurements	suggest	that	RSNs	related	to	awareness	
are	 better	 connected	 for	 conscious	 subjects	 (Hannawi,	 Lindquist,	

F I G U R E  5  Centrality	measurements.	(a)	Betweenness	centrality	exhibits	a	central	role	changing	in	auditory,	sensorimotor,	visual	lateral	
and	visual	occipital	networks	for	subjects	with	disorders	of	consciousness	(DOC).	Similarly,	(b)	eigenvector	centrality	presents	a	role	
alteration	for	auditory	and	sensorimotor	networks	in	subjects	with	DOC.	✶ aims for a significant difference between Healthy Controls 
(HC) and patients with minimally conscious state (MCS). ★ aims for a significant difference between HC and patients with unresponsive 
wakefulness syndrome (UWS). ✠	aims	for	significant	difference	between	HC	and	patients	with	DOC

(a) (b)

F I G U R E  6  Average	centrality	distribution	measurements	(a)	Betweenness	Centrality,	(b)	Eigenvector	Centrality.	Red	lines	are	the	mean,	
black	lines	are	the	median,	red	wine	lines	are	the	maximum.	Average	eigenvector	centrality	shows	narrower	distributions	for	Healthy	
Controls	(HC)	than	subjects	with	disorders	of	consciousness	(DOC).	Also,	a	decreasing	tendency	is	observed	in	correspondence	with	the	
consciousness content. ✶ significant difference between HC and patients with Minimally Conscious State (MCS). ★ significant difference 
between HC and patients with Unresponsive Wakefulness Syndrome (UWS). ✠	significant	difference	between	HC	and	patients	with	DOC



10 of 13  |     MARTÍNEZ ET Al.

Caffo,	Sair,	&	Stevens,	2015).	Higher	degree	values	of	auditory	net-
work,	DMN,	ECN	Left,	ECN	Right,	and	visual	medial	network	for	HC	
indicate	 that,	 for	 this	population,	 these	RSNs	are	more	connected	
to	other	RSNs	than	in	subjects	with	DOC	(Figure	2).	This	reduction	
of the degree values in altered states of consciousness could be un-
derstood	as	a	reduction	of	relationships	between	RSN	time-courses,	
that	is,	representative	time-courses	are	less	or	not	correlated,	sug-
gesting an alteration of the functional connectivity structure in this 
patients. This result corroborates the disruption of external and in-
ternal	awareness	networks	(Demertzi	et	al.,	2013)	and	the	decrease	
in	anti-correlated	connectivity	previously	observed	in	subjects	with	
DOC	 (Di	Perri,	Thibaut,	 et	 al.,	 2014).	Also,	 functional	 connectivity	
of salience network was reported as diminished in altered states of 
consciousness	 (Guldenmund	 et	 al.,	 2013).	 This	 network	 is	 usually	
associated with the orchestration between internal attention and 
task-related-states,	and	its	alterations	were	linked	to	consciousness	
disorders	 (Heine	et	al.,	2012).	 In	our	experiment	degree	values	for	
salience	network	support	this	observation.	A	more	detailed	analysis	
of the integration phenomena can be obtained by studying strength 
values	alterations	(Figure	3).	These	values	were	also	reduced	in	al-
tered states of consciousness indicating that the amount of informa-
tion	that	different	time-courses	share	is	lower	for	subjects	with	DOC.	
This observation confirms the functional disruption associated with 
the	severity	of	the	pathological	condition,	as	was	reported	for	highly	
detailed networks in distinct consciousness states (Ribeiro de Paula 
et	al.,	2017).	Further,	this	reduction	could	result	from	a	deterioration	
process	of	the	connectivity	between	RSNs,	which	can	be	an	effect	of	
the	connectivity	drops	in	small	regions	(Hannawi	et	al.,	2015).	Also,	
averaged	integration	measurements,	both	degree	and	strength,	sug-
gest that preserved levels of consciousness seem to be related to 
narrow	 distributions	 for	 integration	 values.	 In	 particular,	 patients	
with UWS seem to exhibit a larger variety of connectivity values 
including hyperconnectivity (increment of connectivity) and discon-
nections,	when	compared	to	healthy	subjects.	Subjects	with	altered	
states of consciousness not only reduce the number of connections 
between	RSNs,	but	also	degrade	the	ones	that	 remain,	suggesting	
a	 reduction	of	 the	 synchronization	 level	 associated	with	 the	 com-
munication	 between	 networks.	 Importantly,	 the	 measures	 herein	
proposed were computed in large spatial regions that contain previ-
ously	studied	areas,	 such	as	 the	 thalamo-cortical	circuit	 (Demertzi	
et	al.,	2013).	Therefore,	breakdowns	in	 integration	seem	to	appear	
not	only	 for	small	brain	areas,	as	 reported	for	strength	reductions	
in	the	connectome	computed	from	EEG	(Cacciola	et	al.,	2019),	but	
also	for	larger	functional	systems.	Similarly	to	our	results,	Cacciola	
et al. (2019) compute integration measurements for subjects with 
MCS	and	UWS,	but	they	were	also	not	significant	to	discriminate	be-
tween	those	populations.	To	conclude,	the	local	integrations	meas-
urements corroborates previous findings of connectivity disruptions 
for	patients	with	DOC,	while	global	integration	describes	the	global	
integration assessments exhibits a decreasing tendency related to 
the	consciousness	level,	that	is,	the	conscious	subjects	seem	to	be	
better	 integrated	 than	patients	with	MCS,	and	patients	with	MCS	
seem to better integrated than patients with UWS.

4.2 | Segregation alterations in DOC

High values in clustering coefficient of the DMN seem to be related 
to	the	level	of	synchronization	of	this	network	with	other	RSNs.	This	
result was previously reported in specific awareness circuits involv-
ing	the	DMN	(Demertzi	et	al.,	2014).	Segregation	measurement	as-
sessed by clustering coefficient confirms that consciousness could 
be a phenomenon involving segregated functional units that work in 
an	integrated	manner	(Tononi,	Sporns,	&	Edelman,	1994).	RSNs	could	
be understood as segregated regions that execute specific tasks 
(Biswal,	2012)	but	 share	 information	 in	consciousness	phenomena	
(Heine	et	al.,	2012).	Sensory	and	cognitive-related	networks	appear	
to	be	more	clustered	for	HC.	In	contrast,	the	segregation	increases	
for	 sensorimotor	 in	DOC	with	 no	 significant	 differences	 between	
MCS	and	UWS.	A	similar	finding	was	reported	in	an	experiment	with	
altered	states	of	consciousness	and	anesthesia	(Guldenmund	et	al.,	
2017) where an increment of functional connectivity between thala-
mus and sensorimotor network was found in altered states of con-
sciousness.	Altered	segregation	values	 in	 the	sensorimotor	 region,	
jointly	 with	 integration	 changes,	 are	 suggesting	 a	 variation	 in	 the	
sensorimotor	 time-course	 behavior,	 becoming	 more	 synchronized	
with	other	high-related	RSNs;	thus,	these	variations	suggest	the	con-
figuration of a segregated functional unit. This behavior seems to be 
a	consequence	of	different	scenarios	out	of	the	scope	of	the	present	
study	that	could	be	analyzed	 in	future	explorations.	However,	 this	
finding is contrary to the reported by Cacciola et al. (2019) were they 
reveal an increment of the clustering coefficient in the patients with 
UWS	when	compared	against	MCS,	the	mentioned	difference	could	
be a result of the computation of the clustering coefficient using a 
binary	matrix	 instead	of	 a	weighted	 connectivity	matrix,	 as	 in	our	
case.	In	brief,	variations	of	the	segregation	measurements	in	patients	
with	DOC	seem	to	be	caused	for	a	reconfiguration	of	the	functional	
synchronized	groups.

4.3 | Centrality alterations in DOC

Centrality measurements indicate how central a node is in the net-
work. High centrality scores in auditory and sensorimotor networks 
suggest that these functional units play a central role in patients 
with	altered	states	of	consciousness,	revealing	a	behavior	alteration	
phenomenon even if these regions exhibit a functional connectivity 
reduction	 in	patients	with	 altered	 states	of	 consciousness,	 as	was	
previously	reported	(Demertzi	et	al.,	2013,	2014;	Kirsch	et	al.,	2017).	
This observation could be further explored to understand the kind 
of	 variation	 induced	 by	 DOC	 that	 reveals	 a	 centrality	 increment.	
Similarly,	 higher	 scores	 in	 sensorimotor	 network	 suggest	 that	 this	
network	also	 change	 its	nature,	becoming	more	 important	 in	 sub-
jects	with	altered	states	of	consciousness.	Interestingly,	even	if	the	
sensorimotor	input-output	loops	were	reported	as	not	required	for	
consciousness	 (Tononi	&	Koch,	 2008),	 the	 circuits	 involving	 these	
RSN	were	altered	by	the	pathology	(Di	Perri,	Stender,	et	al.,	2014).	
A	 surprising	 finding	 is	 the	 increment	 of	 centrality	 values	 for	 this	
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external	awareness	network	in	subjects	with	DOC,	which	is	not	ex-
pected due to its associated behavior to sensory stimuli and motor 
reaction.	 A	 similar	 finding	was	 reported	 by	 Cacciola	 et	 al.	 (2019),	
where an increment of the betweenness centrality in posterior cin-
gulate	and	visual	areas	were	stated	for	patients	with	UWS.	However,	
this finding at RSN level can be a result of a brain reconfiguration in 
response	to	not-conscious	stimuli	response	(Tononi	&	Koch,	2015).	
Increases	 of	 centrality	 values	 of	 functional	 connectivity	 between	
RSN in altered states of consciousness suggest a modification of 
their	time-courses	nature,	becoming	more	relevant	in	subjects	with	
DOC.	Nevertheless,	 this	new	central	 role	of	some	RSNs	would	be	
not	suitable	for	consciousness	phenomena,	where	a	sort	of	equilib-
rium	between	segregation	and	integration	is	required	(Cacciola	et	al.,	
2019;	Tononi	&	Koch,	2008,	2015;	Tononi	et	al.,	1994).	Summarizing,	
centrality alterations describe a reconfiguration of the relevant 
functional units in altered consciousness states that seem to be not 
suitable for the emergence of consciousness.

4.4 | Limitations and future directions

The analysis developed in this experiment presents some meth-
odological	 limitations.	A	potential	confounding	factor	 is	 related	to	
head	motion.	In	order	to	study	this	potential	bias	source,	frame-wise	
displacements	(FWD;	Power	et	al.,	2012)	were	computed	for	each	
group	to	evaluate	data	quality	acquisition.	According	to	FWD,	 im-
ages with major displacements have to be removed for the func-
tional	connectome	computation	of	each	subject.	Average	FWD	for	
HC subjects was 0.02 (SD	=	0.003),	for	patients	with	MCS	was	0.3	
(SD	 =	 0.005),	 and	 for	 patients	with	 UWS	was	 0.04	 (SD	 =	 0.007).	
These values indicate that the variation ranges are similar even 
if	 the	 values	 for	MCS	 and	UWS	were	 higher	 (see	 Figures	 S1–S3).	
Therefore,	it	is	reasonable	to	assume	a	small	influence	of	large	head	
motions	in	the	results	herein	reported.	Another	potential	confound-
ing result is related to the brain gray matter reduction in patients 
with	DOC.	Gray	matter	 volume	can	 influence	 the	 functional	 con-
nectome measurements by reducing the amount of voxels which 
are	considered	to	be	in	a	region,	that	is,	in	a	RSN,	(Table	S2).	In	ad-
dition,	the	proposed	analysis	was	made	for	functional	connectivity	
between	RSNs,	that	is,	for	a	10	×	10	matrix	representing	a	broad	pic-
ture	of	the	brain	functionality.	This	feature	limits	more	specialized	
analyses	as	those	made	to	study	the	topology	for	larger	networks,	
that	is,	hubs	(Bullmore	&	Sporns,	2012),	and	small-world	(Rubinov	&	
Bullmore,	2013;	Sporns,	2003).	A	matrix	with	more	regions	would	
provide a detailed connectivity matrix which exhibits variations in 
the nodal measurements while the global network assessments re-
main	similar.	Indeed,	the	regions	of	the	detailed	matrix	can	be	sorted	
to arrange the regions into RSN to compare the individual and global 
measurements.	 Another	 consideration	 to	 address	 is	 the	 amount	
of	 information	 corresponding	 to	 the	 size	 of	 the	 samples	 for	 each	
population	associated	to	a	different	state	of	consciousness,	which	
in	this	experiment	corresponds	to	48	patients	with	DOC	(24	MCS	
and	24	UWS).	Additionally,	in	this	study	each	large-scale	region	was	

represented	 by	 an	 averaged	 time-course	which	 explains	 the	 neu-
ronal	activity	of	the	entire	region.	This	representative	time-course	
was	built	from	a	data-driven	approach,	a	combination	of	spatial	ICA	
of	neuronal	nature	 (Jafri	et	al.,	2008).	Functional	connectivity	be-
tween	the	representative	time-courses	of	each	RSN	was	computed	
by	using	 the	 lagged	distance	 correlation	 (Rudas	 et	 al.,	 2014).	 This	
approach captures nonlinearities which favors the communication 
(delayed	synchronization)	dynamic	between	RSNs.	The	window	size	
used	in	this	lagged	approach	was	defined	for	the	HC	subjects,	tak-
ing	into	account	that	this	fixed	size	in	subjects	with	DOC	might	not	
be suitable if the alterations induced by the pathology affect the 
synchronization	time,	that	is,	cause	a	communication	delay	between	
RSNs.	 Besides,	 integration,	 segregation	 and	 centrality	 measure-
ments herein used permit a broad exploration in a small network. 
Other	 graph	measurements,	 like	 small-world,	 rich	 club,	 efficiency	
and	shortest	paths,	have	been	successfully	applied	to	analyze	func-
tional connectivity alterations associated to different pathologies 
(Rubinov	&	 Sporns,	 2010).	 These	measurements	 provide	 a	 better	
understanding	 of	 network	 topological	 alterations;	 however,	 they	
require	 large	 networks,	 that	 is,	 networks	 with	 a	 large	 number	 of	
nodes.	Statistical	 analysis	was	based	on	 the	 family-wise	approach	
that	does	not	 require	 interpretation	of	 any	property.	 In	 this	work	
Network-Based	Statistic	(Zalesky,	Fornito,	&	Bullmore,	2010;	NBS)	
was not used to identify differences between networks due to the 
following	 considerations:	 (a)	 the	 network	 size;	 each	 FNC	 has	 10	
nodes	that	means	a	maximum	of	45	comparisons	per	network,	 (b)	
the	power	of	the	contrast	ratio	suggested	in	NBS	was	not	suitable.	It	
looks for preserved connections between nodes at different thresh-
old computations which impose a minimum strength in the relation-
ships.	These	conditions	were	also	indicated	by	the	NBS	author,	who	
highlights that the connections comprised the contrast of interest 
might	form	components,	that	is,	regions	with	high	power.	If	they	do	
not	form	components,	or	 if	 the	extent	of	the	components	formed	
are	too	small,	the	NBS	is	ineffective.	This	is	the	case	for	the	10	×	10	
FNC.	Finally,	in	order	to	get	a	clear	idea	about	integration,	segrega-
tion,	centrality	and	topological	alterations	related	to	specific	areas	
or	circuits	 in	the	brain,	 functional	connectivity	networks	 in	differ-
ent scales for the entire brain can be explored. This permits further 
understanding	of	time-courses	alterations	in	sensorimotor	and	audi-
tory networks to capture the essence of modifications induced by 
the altered state of consciousness.

5  | CONCLUSIONS

We use a general model of brain functionality to study its modifica-
tions in different states of consciousness. We found that this general 
model	built	from	large-scale	areas	exhibits	connectivity	alterations	
induced	by	 the	pathology.	 In	particular,	we	use	network	measure-
ments	to	observe	modifications	of	the	FNC	linked	to	consciousness	
level.	Our	results	suggest	that	the	FNC	is	better	integrated	and	seg-
regated	for	healthy	subjects	than	for	patients	with	DOC	except	by	
the	 sensorimotor	 network.	 Besides,	 FNC	 centrality	 indicates	 that	
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there exists a role alteration in sensorimotor and auditory networks 
for	patients	with	DOC	where	these	RSNs	become	more	important.
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