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ABSTRACT Zika virus (ZIKV) is a mosquito-borne Flavivirus that has emerged as the
cause of encephalitis and fetal microencephaly in the Americas. ZIKV uniquely per-
sists in human bodily fluids for up to 6 months, is sexually transmitted, and tra-
verses the placenta and the blood-brain barrier (BBB) to damage neurons. Cells that
support persistent ZIKV replication and mechanisms by which ZIKV establishes per-
sistence remain enigmatic but central to ZIKV entry into protected neuronal com-
partments. The endothelial cell (EC) lining of capillaries normally constrains transpla-
cental transmission and forms the BBB, which selectively restricts access of blood
constituents to neurons. We found that ZIKV (strain PRVABC59) persistently infects
and continuously replicates in primary human brain microvascular ECs (hBMECs),
without cytopathology, for �9 days and following hBMEC passage. ZIKV did not per-
meabilize hBMECs but was released basolaterally from polarized hBMECs, suggesting
a direct mechanism for ZIKV to cross the BBB. ZIKV-infected hBMECs were rapidly re-
sistant to alpha interferon (IFN-�) and transiently induced, but failed to secrete,
IFN-� and IFN-�. Global transcriptome analysis determined that ZIKV constitutively
induced IFN regulatory factor 7 (IRF7), IRF9, and IFN-stimulated genes (ISGs) 1 to 9
days postinfection, despite persistently replicating in hBMECs. ZIKV constitutively in-
duced ISG15, HERC5, and USP18, which are linked to hepatitis C virus (HCV) persis-
tence and IFN regulation, chemokine CCL5, which is associated with immunopatho-
genesis, as well as cell survival factors. Our results reveal that hBMECs act as a
reservoir of persistent ZIKV replication, suggest routes for ZIKV to cross hBMECs into
neuronal compartments, and define novel mechanisms of ZIKV persistence that can
be targeted to restrict ZIKV spread.

IMPORTANCE ZIKV persists in patients, crossing placental and neuronal barriers,
damaging neurons, and causing fetal microencephaly. We found that ZIKV persis-
tently infects brain endothelial cells that normally protect neurons from viral expo-
sure. hBMECs are not damaged by ZIKV infection and, analogous to persistent HCV
infection, ZIKV constitutively induces and evades antiviral ISG and IFN responses to
continuously replicate in hBMECs. As a result, hBMECs provide a protective niche for
systemic ZIKV spread and a viral reservoir localized in the normally protective blood-
brain barrier. Consistent with the spread of ZIKV into neuronal compartments, ZIKV
was released basolaterally from hBMECs. Our findings define hBMEC responses that
contribute to persistent ZIKV infection and potential targets for clearing ZIKV infec-
tions from hBMECs. These results further suggest roles for additional ZIKV-infected
ECs to facilitate viral spread and persistence in the protected placental, retinal, and
testicular compartments.
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Zika virus (ZIKV) is the cause of encephalitis and fetal microcephaly outbreaks in
Brazil and Puerto Rico (1–7). ZIKV is transmitted by mosquitoes, and ZIKV is

predicted to cause �4 million clinical cases per year in the Americas (8). Unlike other
mosquito-borne flaviviruses (FVs), ZIKV has unique properties that result in persistence
(1 to 6 months) and sexual transmission (9, 10). ZIKV infects fetal and maternal cells,
including neural stem cells, astrocytes, neuronal progenitor cells, microglia, Hofbauer
cells, and endothelial cells (ECs) (6, 11–16). ZIKV crosses placental and blood-brain
barrier (BBB) ECs, cells which normally prevent mixing of maternal and fetal blood and
restrict access to adult and fetal neuronal compartments (17, 18).

Mosquito-borne FVs primarily cause acute febrile infections that are transient and
resolve in ~2 weeks (19–21). Approximately 80% of FV infections are asymptomatic,
with neurologic symptoms in �1% of Japanese encephalitis virus (JEV) and West Nile
virus (WNV) cases and in an even smaller subset of dengue virus (DENV)-infected
individuals. JEV causes more severe disease in children, and WNV encephalitis occurs
primarily in elderly or inmunocompromised individuals (21, 22). DENVs have striking
homology to ZIKV, cocirculate in humans and mosquitoes (20), but cause fever,
hemorrhagic fever, and shock syndrome that are not central nervous system (CNS)
associated and are instead linked to vascular leakage and EC dysfunction (19). Preex-
isting anti-FV immunity was recently found to enhance ZIKV pathogenesis in mice (23);
however, among FVs, only ZIKV causes fetal demise and microcephaly during human
infection (5, 16).

Hepatitis C virus (HCV) is a divergent blood-borne FV that persistently infects human
hepatocytes and is transmitted from person to person (24, 25). Mechanisms of HCV
persistence remain enigmatic but require balanced HCV replication in hepatocytes
without cytopathology, as well as evasion of innate and adaptive immune responses
that normally limit acute RNA virus infections (25–27). In humans, ZIKV is present in
patient blood, tears, saliva, semen, and urine for �6 months (12). Cytotoxicity associ-
ated with ZIKV infection of neurons, neuronal progenitor cells, and trophoblasts (11, 14,
16) suggests that discrete cellular reservoirs enable acytopathic ZIKV replication and
persistence. Although ZIKV does not establish HCV-like permanence, ZIKV persistence
is unique to mosquito-borne FVs and likely to be a key to the ability of ZIKV to be
sexually transmitted and enter neuronal compartments.

Innate and adaptive immune responses normally restrict acute FV replication and
spread. Pretreating cells with type I interferon (IFN-�/�) blocks FV infection; however,
FVs have developed mechanisms to restrict antiviral IFN-�/�, IFN regulatory factors
(IRFs), and IFN-� receptor (INFAR) signaling defenses (20, 28–32). In murine settings,
ZIKV fails to cause disease unless adapted or grown in immunocompromised (SJL),
IRF�/�, or IFNAR-deficient (A129) mice (33–38). In these settings, ZIKV replicates to high
titers, infects neurons, persists in tears, and causes optic damage, neurologic symptoms,
placental damage, and fetal demise (12, 39). ZIKV infection of immunocompetent
macaques results in persistent viremia (for �57 days in pregnant animals) with ZIKV
present in cerebrospinal fluid, lymph nodes, saliva, and urine (40–42), similar to ZIKV
persistence in humans.

ECs serve a primary barrier function that normally limits the access of blood
constituents to the privileged neuronal, retinal, testicular, and placental compartments
(18, 43–45). Brain capillaries form a BBB composed of unique brain microvascular ECs
(BMECs), which restrict the emigration of immune cells and viruses to neuronal com-
partments (17, 46). Evidence that the BBB serves as a viral barrier is clear from findings
that nonneurovirulent viruses injected into murine brains cause lethal neuronal pathol-
ogy (21, 22). ZIKV infects patient ECs and human ECs derived from the aorta, brain, and
lymphatic and umbilical vessels (6, 11, 12, 15, 39, 47, 48), suggesting that brain ECs may
serve as potential conduits for ZIKV to bypass BBB restrictions.

Mladinich et al. ®

July/August 2017 Volume 8 Issue 4 e00952-17 mbio.asm.org 2

http://mbio.asm.org


Sites of ZIKV persistence and spread remain to be defined but appear central to the
ability of ZIKV to breach barriers that normally restrict viral access to brain, testicular,
and fetal tissues. We found that ZIKV (PRVABC59) persistently infects primary human
BMECs (hBMECs) for �9 days postinfection (dpi) or following passage in hBMECs,
without cytopathic effects. ZIKV was released from basolateral and apical surfaces of
polarized hBMECs, but fail to alter hBMEC permeability. ZIKV infection of hBMECs was
resistant to IFN-� added at �3 hpi, and IFN-� and IFN-� were transiently induced but
absent from cell supernatants for 1 to 9 dpi. Transcriptome analysis revealed that the
chemokine CCL5 was highly induced and secreted by ZIKV-infected hBMECs and that
infected hBMECs persistently induced and expressed cellular ISGs, including IFIT1 and
MxA, as well as ISG inducers IRF7 and IRF9. ZIKV induced prosurvival factors and
apoptosis regulatory genes ATF3, EGR1, IAP-2, and XAF1 and factors associated with
HCV persistence, ISG15, HERC5, and USP18 (26, 27, 49). Our findings revealed that ZIKV
persists in hBMECs by evading innate antiviral IFN and ISG responses and by uniquely
balancing viral replication and cell survival in hBMECs. Persistently infected hBMECs
provide a ZIKV reservoir that is uniquely situated to permit systemic ZIKV spread and
basolateral emigration into neuronal compartments.

RESULTS
ZIKV (strain PRVABC59) productively infects and spreads in primary human

brain ECs. ECs present in placental, fetal, and brain capillaries are infected in ZIKV
patients (6, 12, 15), and ZIKV transmission to fetal neurons requires the virus to cross
placental and brain EC barriers. hBMECs form a protective blood-brain barrier that
restricts viral access to neuronal compartments (18), and mechanisms by which ZIKV
bypasses the BBB remain to be defined. We initially assessed the ability of early-passage
ZIKV (PRVABC59) to infect primary hBMECs (passages 3 to 10) by immunoperoxidase
staining ZIKV-infected cells. We found that hBMECs were 80% infected by 12 to 24 hpi
and remained infected for 1 to 3 dpi (Fig. 1A). ZIKV titers, RNA levels, and numbers of
infected cells increased from 12 to 48 hpi (Fig. 1B to D), and inoculation of hBMECs with
ZIKV at low multiplicities of infection (MOIs) of 0.1 to 1 resulted in viral spread within
hBMEC monolayers for 1 to 3 dpi. ZIKV reached titers of 1 � 106 focus-forming units
(FFU)/ml in hBMECs (Fig. 1B), similar to ZIKV grown in IFN locus-deficient Vero E6 cells
or a telomerase-immortalized human cerebral MEC (hCMEC/D3) cell line (see Fig. S1B
and C in the supplemental material).

ZIKV-infected hBMECs rapidly become type I IFN resistant. The ability of ZIKV to
replicate and spread in hBMECs, similar to infection of Vero E6 cells, suggested that
ZIKV may potently regulate antiviral IFN responses. We added IFN-� exogenously at
various times before or after ZIKV infection of hBMECs and Vero E6 cells (which are
IFN-� responsive) and quantitated ZIKV-infected cells 24 hpi. Compared to untreated
cells, prior addition of IFN-� inhibited ZIKV infection of both hBMECs and Vero E6 cells
(Fig. 1E). Prior IFN-� addition also blocked ZIKV infection of human umbilical vein
endothelial cells (HUVECs) and the hCMEC/D3 cell line (Fig. S1D). While simultaneous
addition of IFN-� and ZIKV to Vero E6 cells blocked ZIKV infection, effects on ZIKV
infection when IFN was added 3, 6, or 12 hpi were sequentially blunted (Fig. 1F; Fig.
S1A). In contrast, hBMECs coadministered IFN-� and virus showed reduced ZIKV
infection by ~70%, while IFN-� addition 3 to 6 hpi only reduced infected hBMECs by 10
to 20% (Fig. 1G). These findings indicate that ZIKV infection is inhibited by prior
addition of IFN-�, but that by 3 hpi ZIKV-infected hBMECs are highly resistant to the
effects of exogenously added type I IFN.

ZIKV infection of hBMECs does not cause CPE. ZIKV pathogenesis is linked to its
capacity to damage neurons, and the cytopathic effect (CPE) of ZIKV on Vero cells is
well established. However, we observed little, if any, cytopathology in ZIKV-infected
hBMECs 1 to 3 dpi (~80% cells were ZIKV infected) (Fig. 1). We compared Vero E6 and
hBMEC cell survival following ZIKV infection in propidium iodide (PI)/calcein-AM and
CyQuant viability assays. We found that ~50% of ZIKV-infected Vero E6 cells were PI
positive (dead) 2 to 3 dpi, with a dramatic reduction in viable cell uptake of calcein-AM
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(Fig. 2A). In contrast, ZIKV-infected hBMECs were nearly all PI negative and viable based
on calcein-AM uptake 2 to 3 dpi (Fig. 2A). Similar viability was observed following ZIKV
infection of the hCMEC/D3 cell line (Fig. S2A). CyQuant analysis confirmed that ZIKV-
infected Vero E6 cells and hBMECs were, respectively, 55% and �95% viable 2 to 3 dpi
(Fig. 2B). These findings indicate that ZIKV fails to cause cytopathic effects in hBMECs.

ZIKV persistently infects hBMECs. Given the survival of ZIKV-infected hBMECs and
the continued spread of ZIKV within infected hBMECs, we analyzed the ability of ZIKV
to persistently infect hBMECs. We replenished hBMEC culture medium every 3 days for
infected or uninfected monolayers and evaluated viral titers and hBMEC viability 2 to
9 dpi. Consistent with ZIKV persistence in hBMECs, we observed ZIKV titers (~1 �

106/ml) and RNA levels 9 dpi that were similar to those observed at 2 to 3 dpi (Fig. 3A
and B), as well as expression of ZIKV envelope protein in hBMEC lysates (Fig. 3C).

FIG 1 Zika virus infection of primary hBMECs. (A) Primary hBMECs were infected with ZIKV (PRVABC59) at an MOI of 10,
and 12 to 72 hpi ZIKV antigen-positive cells were detected by anti-DENV4 HMAF. (B to D) Titers of ZIKV-infected hBMEC
supernatants were determined in an FFU assay (B) and analyzed for cellular ZIKV RNA levels by qRT-PCR (C) and for infected
cells (D). (E to G) hBMECs and Vero E6 cells were pretreated with IFN-� (1,000 U/ml) for 3 h prior to ZIKV infection (MOI,
10) (E), or IFN-� was added at the indicated time postinfection and infected Vero E6 (F) or hBMECs (G) were immunostained
and quantitated 24 later.
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ZIKV-infected and mock-infected hBMECs were similarly PI negative, calcein-AM posi-
tive, and ~100% CyQuant viable 9 dpi (Fig. 3D and E). In contrast, ZIKV-infected Vero E6
cells (9 dpi) were nearly all PI positive, calcein-AM negative, and only ~10% viable by
CyQuant analysis (Fig. 3D and E). ZIKV also persistently infected HUVECs and hCMEC/D3
cells 9 dpi based on immunoperoxidase staining, with no apparent CPE (Fig. S2B). These

FIG 2 hBMECs are viable after ZIKV infection. (A) Vero E6 or hBMECs were infected with ZIKV (MOI, 10), and costained 3 dpi
with calcein-AM (green [live cells])/propidum iodide (red [dead cells]). Following calcein-AM/PI staining, monolayers were fixed
and immunostained for ZIKV antigen. (B) Viability of ZIKV-infected Vero E6 cells and hBMECs was assessed via CyQuant NF
uptake 3 dpi, and results were compared to those for mock-infected controls.

FIG 3 ZIKV persistently infects viable hBMECs 9 dpi. (A) hBMECs were infected with ZIKV as described for Fig. 2A, and titers present
in cell supernatants were compared 2 to 9 dpi. (B and C) hBMECs were infected as described above, and cell lysates were analyzed
for ZIKV RNA by qRT-PCR (B) and for ZIKV envelope protein (anti-Env) by Western blotting (C). Results were compared to those for the
GAPDH controls 1 to 9 dpi. (D and E) Vero E6 cells or hBMECs were analyzed 9 dpi for ZIKV antigen and via calcein-AM/PI stain (D)
or in CyQuant assays (E) for cell viability.
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findings indicate that ZIKV persistently infects hBMECs without significantly diminishing
hBMEC viability.

ZIKV-infected hBMECs are viable following passage. ZIKV antigen-positive Vero
E6 cells adhere as monolayers regardless of their viability. However, trypsinizing
ZIKV-infected Vero E6 cells resulted in �50% of cells being able to reattach to
monolayers, and virtually all cells were PI positive after 3 days and unable to be
passaged further (Fig. 4A and C). In contrast, trypsinization of ZIKV-infected hBMECs
resulted in the propagation of viable ZIKV antigen-positive hBMECs through �3
passages (PI negative, calcein-AM positive) (Fig. 4B and C). Passage of highly infected
hBMECs resulted in continued division and the production of ZIKV titers of ~2 to 5 �

106/ml (Fig. 4D) with little or no cytopathology, similar to results in control hBMECs
(Fig. 4C). Thus, ZIKV-infected hBMECs are viable following cellular passage and persis-
tently produce ZIKV progeny.

Global transcriptional changes in ZIKV-infected hBMECs. Persistent ZIKV infec-
tion and spread suggests that ZIKV regulates antiviral responses and fosters hBMEC
survival. We kinetically analyzed global transcriptional responses of hBMECs to syn-
chronous ZIKV infection (80% infected at 1 dpi) (Fig. 1A). Human gene-level transcrip-
tome arrays (Affymetrix, with �20,000 genes) were used to quantitate ZIKV-induced
transcriptional changes in hBMECs compared to responses in mock-infected hBMECs.
Selected, transcriptional changes are presented in Table 1, with complete data files
available in the NCBI GEO database (GSE98889). ZIKV-infected hBMECs transiently

FIG 4 ZIKV-infected hBMECs are viable and productive following cellular passage. (A and B) ZIKV-infected Vero E6 cells or
hBMECs (MOI, 10) were trypsinized and passaged (1:3) 3 dpi and every 3 days thereafter. ZIKV-infected passaged hBMECs were
detected by immunostaining. (C) Cells were infected and passaged as for panels A and B, and cell viability was assessed via
calcein-AM/PI staining and fluorescent image overlay. (D) ZIKV titers in supernatants of hBMECs consecutively passaged 1 to
3 times (every 3 days).
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induced IFN-� and IFN-� at 1 to 2 dpi, and a subset of ISGs was highly induced 1 to 9
dpi (Table 1). Consistent with IFN-� and ISG induction, IRF1 was transiently induced (1
to 2 dpi) while IRF7 and IRF9 were constitutively induced 1 to 9 dpi (50). ISG15, ISG15
family ligases (HERC5/6), and ISG15 proteases (USP18/41), which are implicated in HCV
persistence (26, 27, 51), were also induced 1 to 9 dpi (Table 1). Transcription factors
ATF3, EGR1, and TRAF1, which are linked to cell survival (52–54), were upregulated 39-
to 301-fold (1 to 2 dpi), and ATF3 was induced 1 to 9 dpi. ZIKV also induced
apoptosis-inhibitory and -regulating factors IAP2 and XAF1 (55) 5- to 201-fold (1 to 9
dpi) (Table 1). Two genes associated with cell permeability, Rnd1, a constitutively
activated Rho GTPase (56), and ARHGAP26, a Rho-activating factor (57), were also
induced in ZIKV-infected hBMECs. Chemokine CCL5/RANTES was highly induced (40- to
2,327-fold) 1 to 9 dpi, along with a subset of moderately induced CXCL10/11 and CCL20

TABLE 1 Global transcriptional responses of ZIKV-infected hBMECs

Category and
protein

Fold induction versus controls at:
Confirmed by
qRT-PCR12 hpi 1 dpi 2 dpi 3 dpi 9 dpi

Interferons
IFN-� 142 7 4 X
IFN-�1 238 212 4 X
IFN-�2 11 10
IFN-�3 23 23 2

ISGs
IFIT1 62 734 1,086 650 2,071 X
IFIT2 17 1126 869 68 58 X
IFIT3 6 226 434 130 282
IFITM1 3 5 5 8
MX1 36 515 1,081 575 209 X
OAS2 6 271 961 475 737 X
RSAD2a 57 193 106 616

ISG15 and related
ISG15 28 64 43 90 X
HERC5 5 451 292 52 46 X
HERC6 36 43 20 26
USP18 3 4 7 13 X
USP41 3 6 7 13

IRFs
IRF1 114 24
IRF7 5 9 6 10
IRF9 6 7 3 3

Transcription factors
ATF3 4 301 101 7 7
EGR1 7 168 155 20
TRAF1 86 39 3
JUNB 4 14 15

Apoptosis regulatory factors
BIRC3 IAP2 35 43 5 6 X
XAF1 5 62 201 86 50 X

Permeability
Rnd1 3 169 80 5 X
ARHGAP26 RhoAct 12 8 2

Chemokines and related
CCL5/RANTES 9 2,327 1,914 352 40 X
CXCL10 247 179 35 60 X
CXCL11 305 244 57 7
CCL20 385 126 8
IL-1 20 11 5 3
IL-6 10 11 3 2

aMX2 and OAS1 were similarly induced.
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chemokines (Table 1) (GEO GSE98889). Selected genes identified as upregulated by
array were transcriptionally verified 1 to 9 dpi based on quantitative real-time PCR
(qRT-PCR) analysis (Fig. S3). ZIKV-directed hBMEC transcriptional responses suggest that
ZIKV evades antiviral IFN and ISG responses while engaging cell survival genes and
pathways to establish persistence in hBMECs.

Analysis of hBMEC responses to ZIKV infection. Analysis via an enzyme-linked
immunosorbent assay (ELISA) determined that CCL5 was highly secreted into the
supernatants of ZIKV-infected hBMECs at all time points from 1 to 9 dpi (Fig. 5A).
Despite high levels of IFN-� secreted by hBMECs in response to poly(I/C) (Fig. 5B), we
failed to detect IFN-� or IFN-� secretion from ZIKV-infected hBMECs 1 to 9 dpi (Fig. 5B
and C). In contrast, induced ISGs MxA and IFIT1 were expressed in ZIKV-infected
hBMECs 2 to 9 dpi (Fig. 5D) and at levels similar to ISG expression levels induced by
IFN-� treatment of hBMECs (Fig. 5E). Distinct from CCL5 secretion, these findings
suggest that ZIKV uniquely regulates IFN-�/� expression or secretion posttranscription-
ally and further demonstrate that ZIKV evades antiviral functions of highly induced and
expressed ISGs to persist in hBMECs.

hBMEC monolayers are not permeabilized by ZIKV infection. hBMECs form a BBB
that prevents paracellular permeability and that in vivo restricts access of blood
constituents to neuronal compartments (17, 18). We evaluated changes in the barrier
function of hBMECs following ZIKV infection by assessing the transendothelial electrical
resistance (TEER) (58) and fluorescein isothiocyanate (FITC)-dextran permeability (59) of
hBMEC monolayers grown on Transwell inserts. We found no significant change in TEER
of ZIKV-infected versus mock-infected hBMECs at 1 to 3 dpi (Fig. 6A). After establishing
that Transwell monolayers were intact, we disrupted paracellular hBMEC junctions with
EDTA and found an ~100-� decrease in the TEER of hBMEC monolayers. Consistent
with the TEER findings, the permeability of hBMECs to FITC-dextran was not enhanced
by ZIKV infection of hBMECs compared to responses of mock-infected hBMEC controls
(Fig. 6B). Collectively, these findings indicate that the barrier integrity and permeability
of hBMECs is not significantly altered by ZIKV infection.

ZIKV apical and basolateral infection and release from hBMECs. hBMECs form
polarized monolayers with apical and basolateral surfaces that mimic lumenal and

FIG 5 Analysis of cellular protein expression in ZIKV-infected hBMECs. (A to C) hBMECs were mock infected or infected with ZIKV, and
1 to 9 dpi supernatants were analyzed in an ELISA (R&D Systems) for CCL/RANTES (A), IFN-� (B), and IFN-� (C) levels relative to antigen
standards. As an hBMEC IFN-� response control, we transfected hBMECs with poly(I/C) (1 �g/ml) and Fugene6 at 3:1 and evaluated
secreted IFN-� levels in supernatants via ELISA (36 h posttransfection) (D) Western blot analysis of MXA and IFIT1 genes, and GAPDH
controls, in lysates from mock-infected or ZIKV-infected hBMECs (1 to 9 dpi). IFIT and MxA protein levels in ZIKV-infected hBMECs 9 dpi
versus results 6 h post-IFN-� treatment (1,000 U/ml).
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FIG 6 ZIKV-infected hBMECs release ZIKV basolaterally. (A) Polarized hBMECs, grown for 5 days in
Transwell plates, were apically or basolaterally infected with ZIKV (MOI, 5) in triplicate, and TEER was
measured 1 to 3 dpi. To demonstrate monolayer barrier function, EDTA was added (10 mM for 10 min)
to hBMEC monolayers; this resulted in an ~100-� reduction in TEER. (B) hBMECs apically or basolaterally
infected with ZIKV were assayed for permeability to FITC-dextran (40 kDa), which was added to apical
medium at 3 dpi; fluorescence over time was measured in the lower chambers. (C) hBMECs grown on
Transwell inserts for 5 days were evaluated for TEER. Cells were apically or basolaterally infected (MOI, 5)
with ZIKV, and titers present in apical and basolateral supernatants were quantitated at 1 dpi. (D)
Potential model of the spread of ZIKV systemically and to neuronal compartments from hBMECs.
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ablumenal capillary surfaces (58, 60). In order to assess ZIKV entry and release from
polarized hBMECs, we grew hBMECs for 5 days on Transwell inserts, infected hBMECs
with ZIKV from the apical or basolateral sides, and assessed ZIKV titers in the upper and
lower chambers at 1 dpi. ZIKV infection of either the apical or basolateral surfaces
resulted in ZIKV release from both apical and basolateral hBMEC surfaces (Fig. 6C), while
inoculation controls and TEER revealed no leakage across hBMEC monolayers. These
results suggest that ZIKV infects and is released from both the lumenal and ablumenal
sides of hBMECs. This observation provides a potential mechanism for ZIKV to cross
hBMEC barriers and spread to neuronal compartments (Fig. 6D).

DISCUSSION

ZIKV is distinguished from other mosquito-borne FVs by its unique ability to be
sexually transmitted, cross placental and blood-brain barriers, cause in utero microen-
cephaly, and persist for up to 6 months in patients (6, 12, 15, 16, 61). During human
infections, ZIKV is found in a variety of body fluids (tears, saliva, semen, cervical mucus,
and urine) that facilitate viral replication and dissemination, and ZIKV damages placen-
tal, corneal, and neuronal tissues (6, 12, 62). However, beyond the acute phase of
infection, its persistence suggests that ZIKV uniquely replicates in cellular reservoirs
where it balances cell survival and viral replication and evades innate and adaptive
immune responses for extended periods. Persistence alone is likely to facilitate the
ability of ZIKV to be sexually transmitted, spread across the placenta, and gain access
to fetal and neuronal tissues. Our findings indicate that ZIKV infects primary hBMECs
without the cytopathology that is reported for ZIKV-infected neurons and placental
tissues (6). Cell death, observed following ZIKV infection of Vero E6 cells, was noticeably
absent in ZIKV-infected hBMECs even at 9 dpi and after serial passage of infected
hBMECs. This suggests the potential for persistently infected hBMECs to serve as cellular
reservoirs for ZIKV replication and enable viral spread across BBBs into neuronal
compartments.

Permeabilizing the endothelium is one mechanism for viruses to bypass EC barriers
(21, 45). We found that ZIKV induced Rnd1 and ARHGAP26Rho in infected hBMECs,
which direct brain capillary permeability (56, 57). These findings suggested potential
mechanisms for ZIKV to permeabilize and spread across the BBB. However, when we
evaluated hBMEC permeability, we found no significant difference between control and
ZIKV-infected hBMEC monolayers. Instead, we found that ZIKV exited from apical and
basolateral surfaces of hBMECs, suggesting a discrete mechanism for ZIKV to enter
neuronal compartments via basolateral release and for systemic spread of ZIKV that is
released apically from hBMEC reservoirs. Infection of HUVECs and other EC sites also
provides prospective mechanisms for ZIKV to cross testicular, placental, and retinal EC
barriers in ZIKV patients.

Successful viral pathogens have evolved mechanisms to evade antiviral innate
immune responses. We found that ZIKV infection of primary hBMECs was inhibited by
prior IFN-� addition, but that ZIKV-infected hBMECs were highly resistant to IFN-� by
3 hpi. In addition, ZIKV continued to spread within hBMECs for 1 to 9 dpi without
apparent paracrine IFN restriction. In contrast, DENV spread in HUVECs was blocked by
IFN-� secreted from DENV-infected cells (1 to 3 dpi) and relieved by an IFN-� antibody
blockade (63). ZIKV’s resistance to IFN and its spread in hBMECs suggests that ZIKV
employs discrete mechanisms to regulate innate hBMEC responses.

ZIKV-directed changes in hBMECs were initially addressed by kinetically analyzing
global transcriptional responses to synchronous ZIKV infections. IFN-� and IFN-� were
transiently induced 1 to 2 dpi but, consistent with ZIKV persistence and spread in
hBMECs, we failed to detect secreted IFNs in cell supernatants (Fig. 5). The absence of
IFN does not appear to be due to altered secretion, as the CCL5/RANTES chemokine
was both induced and highly secreted by ZIKV-infected hBMECs, and hBMECs were fully
competent in secreting high levels of IFN-� in response to double-stranded RNA
(Fig. 5B). In contrast, a subset of antiviral ISGs were highly induced and constitutively
expressed in infected hBMECs 1 to 9 dpi (Table 1). In the absence of type I IFN secretion,
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ISG induction might be explained by the activation of existing IRFs or by ZIKV inducing
IRF7 and IRF9 1 to 9 dpi (Table 1) (64), as IRF9 reportedly induces ISGs, including ISG15,
without IFN and IFNAR-directed STAT1/2 phosphorylation (50).

ZIKV regulation of IFN induction and INFAR signaling pathways has been reported,
and both ZIKV and DENV NS5 proteins regulate IFNAR-directed STAT2 signaling re-
sponses (20, 30, 65). STAT2 regulation may contribute to ZIKV resistance to added
IFN-�, but this fails to explain ZIKV spread in partially infected monolayers, unless IFN
expression is also inhibited. Our findings are supported by a recent study suggesting
that ZIKV (PRVABC59) translationally restricts type I IFN in primary human dendritic cells
(DCs) (28). However, findings that only ~8% of DCs were infected and that an INFAR
antibody blockade increased ZIKV titers by 300% suggest that IFN is expressed and that
ZIKV spread is severely restricted in DCs. Potential mechanisms of posttranscriptional
IFN regulation during ZIKV infection remain to be defined and factored into an
understanding of ZIKV persistence in hBMECs.

In vitro, ZIKV productively infects and induces ISGs in DCs, skin cells, macrophages,
and trophoblasts (11–13, 28, 39, 66). Comparison of transcriptional results across
studies is complicated by the different ZIKV strains used and in some studies analysis
of cells showed that only 2 to 10% ZIKV infected, potentially amplifying paracrine
IFN-directed ISG responses of bystander cells. In synchronously infected hBMECs (�80%
infected), a large subset of antiviral ISGs were induced 1 to 9 dpi, that are seemingly at
odds with ZIKV persistence in hBMECs. IFIT1, which interferes with Alphavirus transla-
tion (67), was highly induced and expressed in ZIKV-infected hBMECs without apparent
consequence to ZIKV replication or persistence. In contrast, IFITM1, which is suggested
to inhibit early ZIKV infection, was induced at very low levels by ZIKV while IFITM3,
which is reported to prevent ZIKV-induced HeLa cell death (68), was not induced in
ZIKV-infected hBMECs. These findings suggest that ZIKV employs novel mechanisms
that selectively restrict antiviral ISG responses in order to persistently replicate and
spread in hBMECs.

The lack of cytopathology during persistent ZIKV infection of hBMECs indicates that
cell survival responses are engaged and that apoptotic responses are restricted in
ZIKV-infected hBMECs. Several prosurvival genes are induced during ZIKV infection of
hBMECs, including EGR1, ATF3, and BIRC3 (52, 53), and the constitutively induced
chemokine CCL5 (40- to 2,327-fold 1 to 9 dpi) is also associated with cell survival
(69–72). In contrast, IRF1, which directs apoptosis when expressed constitutively, was
only transiently induced, while XAF1, a protein that inactivates inhibitor of apoptosis
proteins (IAPs; BIRC2/3), was continuously induced along with its regulatory target, IAP2
(55, 73). Additional prosurvival responses may also be directed by ZIKV-engaging Axl
receptors, as Axl performs proliferative and cell survival functions and is linked to IFNAR
regulation (48, 74). These findings suggest that ZIKV establishes persistence by balanc-
ing induced apoptotic and cell survival responses in hBMECs.

HCV replicates at low levels in persistently infected hepatocytes by inducing an
IFN-resistant state and promoting cell survival (24, 25). With HCV, ISG15 induction is
actually proviral and contributes to HCV persistence and IFN resistance in hepatocytes
(26, 27, 51). ISG15 knockdown renders HCV-infected cells susceptible to IFN regulation,
and human cells devoid of ISG15 have enhanced antiviral protection that is lost by
expressing ISG15 (26, 75). Further proviral ISG15 functions stem from human ISG15
interactions, which are crucial for USP18-mediated inhibition of IFN-�/� signaling
responses (49). Consistent with prosurvival roles for ISG15, ZIKV-infected hBMECs
constitutively induce ISG15, ISG15 ligases (HERC5/6), and ISG15 proteases (USP11/18/
41). ZIKV induction of the ISG15 family further suggests the potential for USP18-
directed downregulation of IFN-�/� translation and for HERC5 to enhance IRF stability
that may drive ISG induction during ZIKV infection (49, 75, 76). Whether ZIKV cytopa-
thology is linked to the absence of ISG15 in Vero cells (77) remains to be determined,
as do proviral or IFN regulatory roles for ISG15 in ZIKV-infected hBMECs.

CCL5 is a chemokine linked to antiapoptotic responses (70, 72, 78), and CCL5 was
the only chemokine highly induced and constitutively secreted by ZIKV-infected
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hBMECs (1 to 9 dpi). CCL5 responses are directed by WNV, DENV, and Tick-borne
encephalitis virus (TBEV) infection of brain ECs, and CCL5 induction is associated with
increased WNV and TBEV pathogenesis (79, 80). On the EC surface, CCL5 forms a
filamentous complex that is key to the recruitment of immune cells and activated CD4�

T cells to human BMECs (70, 72). Although the half-life of CCL5 on the surface of ECs
is only 30 min, constitutive CCL5 secretion during persistent ZIKV infection of hBMECs
may traffic immune cells to the BBB, and both foster ZIKV’s spread to neurons and
inflammatory CNS pathology (69, 71, 78). Further studies are required to determine
whether transcytosis is an additional means of ZIKV crossing hBMEC barriers (81).

RNA viruses which lack DNA intermediates are rarely associated with extended or
persistent infections. Measles and rubella viruses are examples of RNA viruses that
persist and cause neuronal disease (60, 82, 83), but mechanisms of persistence remain
perplexing. While ZIKV infection does not establish HCV-like permanence, ZIKV persis-
tence in hBMECs without cytotoxicity suggests that hBMECs are potential ZIKV reser-
voirs that foster viral spread and pathogenesis. Nevertheless, ZIKV may also persist in
additional cell types and compartments. Recent studies suggested that human placen-
tal macrophages (Hofbauer cells) and DCs are 90% viable after ZIKV (PRVABC59)
infection (13, 28). However, it remains to be determined whether ZIKV directs survival
responses or persistently infects these cells, as only 5% of Hofbauer cells and 2 to 8%
of DCs were infected in these studies. In addition to discovering other persistently
infected cell types, studies of ZIKV evasion of adaptive immune responses are required
in order to understand ZIKV persistence mechanisms in vivo (84). A recent in vivo study
correlated persistent ZIKV infection of rhesus monkey CNS and lymph nodes with
transcriptomic responses of peripheral blood mononuclear cells (40). This study noted
the induction of ATF3, EGR1, JUNB, IRF7, ISG15, HERC5/6, additional ISGs, chemokines
CCL5 and CXCL10, prosurvival responses, and decreased proapoptotic genes, similar to
gene induction levels we found to be induced by ZIKV infection of hBMECs (Table 1)
(GEO GSE98889).

Strategic roles for ECs in ZIKV persistence and spread are suggested by the wide
range of restricted tissues targeted by ZIKV. ECs control immune cell recruitment,
targeting, and transcytosis into tissues and perform primary fluid barrier functions that
prevent capillary leakage. ECs innervate and protect immune-restricted compartments
from viral spread (17), and emigration across ECs is required for ZIKV to bypass
blood-retina barriers and blood-testicle barriers to infect retinal ganglion cells, aqueous
humor, the cornea, Sertoli cells, seminiferous tubules, and spermatagonia (18, 43, 44).
ECs express tolerizing PD-L1 receptors that prevent immune targeting of the endothe-
lium and which may foster viral immune evasion and persistence (85). Our findings
define hBMECs as ZIKV reservoirs that permit lumenal emigration and spread within
blood and potentially provide ZIKV the ability to cross brain EC barriers and enter
neuronal compartments. Remarkably, ZIKV persists in hBMECs with little or no cytopa-
thology through ZIKV-directed cell survival responses. These findings suggest mecha-
nisms for ZIKV persistence as well as potential hBMEC targets for restricting ZIKV
persistence and spread.

MATERIALS AND METHODS
Cells and virus. Vero E6 cells (ATCC CRL 1586) were grown in DMEM (Dulbecco’s modified Eagle’s

medium) supplemented with 8% fetal bovine serum (FBS) and penicillin (100 �g/ml), streptomycin
sulfate (100 �g/ml), and amphotericin B (50 �g/ml; Mediatech) at 37°C and 5% CO2. hBMECs (passage
3), derived from elutriation of dispase-dissociated normal human brain cortex tissue were purchased
from Cell Biologics (H-6023). HUVECs were purchased from Cambrex, and the immortalized hCMEC/D3
cell line was purchased from Cedarlane Labs. Inc. hBMECs (passages 4 to 10), HUVECs (passages 3 to 8),
and hCMEC/D3 cells were grown in endothelial cell basal medium-2 MV (EBM-2 MV; Lonza) supple-
mented with EGM-2 MV SingleQuots (Lonza) and incubation at 37°C and 5% CO2.

ZIKV (PRVABC59) was obtained from the ATCC, minimally passaged (MOI, 0.1 to 1), and propagated
for 5 days in Vero E6 cells in DMEM with 2% FBS. ZIKV was allowed to adsorb to ~60% confluent hBMEC
monolayers for 2 h. Following adsorption, monolayers were washed with phosphate-buffered saline
(PBS) and grown in supplemented EBM-2 MV with 5% FBS. Vero E6, HUVEC, and hCMEC/D3 cells were
similarly infected, washed, and supplemented with DMEM with 8% FBS. ZIKV titers were determined by
serial dilution and infection of Vero E6 cells, quantifying infected cell foci at 24 hpi by immunoperoxidase
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staining with anti-DENV4 hyperimmune mouse ascites fluid (HMAF; 1:1,200; ATCC), horseradish peroxi-
dase (HRP)-labeled anti-mouse IgG (1:2,000; KPL-074-1806), and 3-amino-9-ethylcarbazole staining (59,
86). For IFN-� inhibition studies, medium was supplemented with 1,000 U/ml IFN-� (Sigma-Aldrich) at
indicated times and cells incubated at 37°C and 5% CO2. For analysis of apical and basolateral release of
ZIKV, hBMECs were grown for 5 days on Costar Transwell inserts (3 �m) and evaluated for confluence by
T (EVOM2, STX3; World Precision Instruments, Inc.). hBMECs were ZIKV infected apically or basolaterally
(MOI, 5), washed with PBS and the medium, and incubated for 24 h prior to analyzing viral titers in apical
and basolateral supernatants.

CyQuant cell viability assay. ZIKV (MOI, 10) or mock-infected hBMECs or Vero E6 cells were assayed
for viability using a CyQuant NF cell proliferation assay kit (Thermo-Fisher Scientific). Medium was
removed from mock- or ZIKV-infected monolayers (MOI, 10) at the indicated day postinfection and
replaced with CyQuant reaction mixture. Wells were incubated for 15 min before fluorescence was
quantified using a BioTek FLx800 fluorimeter (490-nm excitation, 530-nm emission). Fluorescence units
of ZIKV-infected versus mock-infected cells were compared to determine the percent fluorescence
representing relative cell viability.

Live/dead assay. PI (Calbiochem) and calcein-AM (Invitrogen) uptake were used to evaluate hBMEC
and Vero E6 cell viability. ZIKV-infected (MOI, 10) or mock-infected hBMECs were seeded into 96-well
plates and at the indicated times costained by the membrane-permeable dye calcein-AM (3 �M; green
fluorescence in live cells), and 2.5 �M propidium iodide (red fluorescent DNA stain to detect dead cells).
Images of calcein-AM-positive versus PI-positive cells were resolved using an Olympus IX51 microscope
and Olympus DP71 camera and overlayed using Adobe Photoshop.

Affymetrix gene array analysis. Primary hBMECs (passages 5 to 10; Cell Systems) were synchro-
nously infected with ZIKV (PRVABC59) (MOI, 20) or mock infected. Mock- or ZIKV-infected hBMECs were
lysed, and total RNA was purified 12 hpi to 9 dpi by using RNeasy (Qiagen). Purified RNA was quantitated,
and transcriptional responses were detected with Affymetrix Clariom-S chip arrays in the Stony Brook
Genomics Core Facility. ZIKV-infected cell transcriptional responses were compared to those in mock-
infected cells harvested at each time pointm and fold changes in ZIKV versus control hBMEC transcripts
were analyzed by using the Affymetrix TAC software. Data obtained from these studies were submitted
to the NCBI Gene Expression Omnibus database (GEO GSE98889).

qRT-PCR analysis. Quantitative real-time PCR was performed on purified RNAs from mock- or
ZIKV-infected hBMECs as described above. cDNA synthesis was performed using a Transcriptor first-
strand cDNA synthesis kit (Roche) using random hexamers as primers (25°C for 10 min, 50°C for 60 min,
and 90°C for 5 min). qRT-PCR primers for specific genes were designed according to the NCBI gene
database with 60°C annealing profiles (provided by Operon). qRT-PCR primers to ZIKV (PRVABC59) RNA
were as follows: forward, CCGTGCCCAACACAAG; reverse, CCACTAACGTTCTTTTGCAGACAT. Genes were
analyzed using PerfeCTa SYBR green SuperMix with ROX (Quanta Biosciences) on an ABI 7300 real-time
PCR system (Applied Biosystems). Responses were normalized to internal glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA levels, and the fold induction was calculated using the 2�ΔΔCT method
for the difference between mock- and ZIKV-infected hBMEC RNA levels at each time point.

Transendothelial electrical resistance. hBMECs were plated on Costar Transwell inserts (3-�m pore
size; Corning) at high density, and 5 days postseeding hBMEC monolayers were analyzed for TEER
(EVOM2; STX3; World Precision Instruments, Inc.). Confluent Transwell cultures were infected with ZIKV
(MOI, 5) or mock infected, and TEER values for ZIKV-infected versus mock-infected hBMECs were
compared at 1 to 3 dpi. To assess Transwell monolayer resistance, 10 mM EDTA was added to apical
supernatants for 10 min, and TEER was assessed before and after this addition. EDTA treatment reduced
TEER by ~100 �, demonstrating the resistance change directed by disrupting interendothelial cell
junctions.

FITC-dextran permeability analysis. A gold standard Transwell permeability assay was used to
assess the permeability of ZIKV-infected hBMECs (59) on Costar Transwell plates in triplicate.
Transwells were seeded and infected (MOI, 5) or mock infected as described above. At 3 dpi,
FITC-dextran (40 kDa; 0.5 mg/ml; Sigma) was added to the upper chamber and the levels of
FITC-dextran observed in the lower chamber were monitored over time by using a BioTek FLx800
fluorimeter (490-nm excitation, 530-nm emission). FITC-dextran fluorescence directed by transit
across ZIKV-infected or mock-infected hBMECs was quantitated (59). The data presented represent
results of three independent experiments.

ELISA. Levels of IFN-�, IFN-�, and CCL5/RANTES in the supernatants of mock- and ZIKV-infected
hBMECs at 12 hpi to 9 dpi were measured using a DuoSet ELISA (R&D Systems). hBMECs transfected with
poly(I/C) (1 �g/ml) and Fugene6 (3:1; Promega) were similarly evaluated for secreted IFN-� at 36 h
posttransfection. ELISA plates (Immunolon 2, U-bottom; Dynatech Laboratories) were coated with
anti-IFN-�, anti-IFN-�, or anti-CCL5 ELISA reagents according to the manufacturer. Viral supernatants
were incubated on coated plates (2 h) and washed with PBS (0.1% Tween 20), and bound protein was
detected with target-specific antibodies conjugated to streptavidin-HRP and developed using tetram-
ethylbenzidine. Protein concentrations were determined based on the optical density, using a BioTek
EL312e microplate reader (450 nm), and compared to standard curves for purified IFN-�, IFN-�, and CCL5
(R&D Systems).

Western blotting. Western blot assays were performed as previously described (86). Briefly, MECs
were infected with ZIKV (MOI, 10) or mock infected and harvested at 1 to 9 dpi. Cells were washed
with PBS followed by lysis in buffer containing 1% NP-40 (150 mM NaCl, 50 mM Tris-Cl, 10% glycerol,
2 mM EDTA, 10 nM sodium fluoride, 2.5 mM sodium pyrophosphate, 2 mM sodium orthovanadate,
10 mM �-glycerophosphate) with protease inhibitor cocktail (Sigma). Total protein levels were
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determined in a bicinchoninic acid assay (Thermo Scientific), and 20 �g of protein was resolved by
SDS–12% polyacrylamide gel electrophoresis. Proteins were transferred to nitrocellulose, blocked in
5% bovine serum albumin, and incubated with the indicated antibodies. Antibodies used were
anti-ZIKV envelope (GTX133314; GeneTex), anti-IFIT1 (Santa Cruz Biotechnology), anti-MxA (D3W71;
Cell Signaling), and anti-GAPDH (G9545; Sigma-Aldrich). Protein was detected using HRP-conjugated
anti-mouse or anti-rabbit secondary antibodies (Amersham) and Luminata Forte Western HRP
substrate (Millipore).

Statistical analysis. Results shown in each figure were derived from two to three independent
experiments with comparable findings; the data presented are means � standard errors of the means
(SEM), with the indicated P values of �0.01 and �0.001 considered significant. Two-way comparisons
were performed two-tailed analysis of variance and an unpaired Student’s t test. All analyses were
performed using GraphPad Prism software version 4.0.
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