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A B S T R A C T

With the advent of Big Data Imaging Analytics applied to neuroimaging, datasets from multiple sites need to be
pooled into larger samples. However, heterogeneity across different scanners, protocols and populations, renders
the task of finding underlying disease signatures challenging. The current work investigates the value of multi-
task learning in finding disease signatures that generalize across studies and populations. Herein, we present a
multi-task learning type of formulation, in which different tasks are from different studies and populations being
pooled together. We test this approach in an MRI study of the neuroanatomy of schizophrenia (SCZ) by pooling
data from 3 different sites and populations: Philadelphia, Sao Paulo and Tianjin (50 controls and 50 patients
from each site), which posed integration challenges due to variability in disease chronicity, treatment exposure,
and data collection. Some existing methods are also tested for comparison purposes. Experiments show that
classification accuracy of multi-site data outperformed that of single-site data and pooled data using multi-task
feature learning, and also outperformed other comparison methods. Several anatomical regions were identified
to be common discriminant features across sites. These included prefrontal, superior temporal, insular, anterior
cingulate cortex, temporo-limbic and striatal regions consistently implicated in the pathophysiology of schizo-
phrenia, as well as the cerebellum, precuneus, and fusiform, middle temporal, inferior parietal, postcentral,
angular, lingual and middle occipital gyri. These results indicate that the proposed multi-task learning method is
robust in finding consistent and reliable structural brain abnormalities associated with SCZ across different sites,
in the presence of multiple sources of heterogeneity.

1. Introduction

Neuroimaging studies have widely explored the clinical value of
machine learning methods for differentiating psychiatric patients from
healthy controls at the individual level. In addition to providing in-
dividualized indices for diagnostic purposes, machine learning methods
may ultimately help identify brain regions affected by disease in subtle
ways that can only be elucidated using multi-variate analysis. While
most of these neuroimaging studies to date have been performed using
single-site datasets, it is essential to integrate multi-site data for two
reasons. First, multi-site data provide sufficient statistical power for

detecting subtle, but informative patterns of brain structure and func-
tion (Brown et al., 2011; Friedman et al., 2006; Schnack et al., 2010),
which may be difficult to unravel with the relative small sample sizes
usually acquired in single centers (Pearlson, 2009; Segall et al., 2009).
Second, large sample sizes enhance sample generalizability by pooling
large patient populations with diverse demographic features and clin-
ical characteristics including disease onset, symptom severity, and types
and duration of treatment (Brown et al., 2011; Friedman et al., 2006;
Glover et al., 2012; Pearlson, 2009; Sutton et al., 2008; Van Horn and
Toga, 2009). Multi-site studies are therefore becoming increasingly the
norm in neuroimaging research (Casey et al., 1998; Van Horn and Toga,
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2009).
Multi-site data reflect a more comprehensive abnormal pattern of

disease, and therefore may provide a richer understanding of disease
signatures than single-site data. However, two recent studies found that
simple pooling of multi-site data did not outperform single-site disease
classification. Colby (Colby et al., 2012) and Nielsen (Nielsen et al.,
2013) pooled multi-site data and trained a common classifier for all
data, to identify attention deficit hyperactivity disorder (ADHD) and
autism, respectively. Results in these two studies showed that the
pooled dataset exhibited lower accuracy than each single-site datasets.
Here we seek a new approach to synergistically integrating multi-site
data, by emphasizing two points. First, since datasets collected in
multiple imaging centers have a common disorder of interest (e.g.
schizophrenia (SCZ), in our experiments herein), the abnormal patterns
in each dataset are strongly related and thus, to some extent, may share
a common imaging signature. The pattern reproducibility among multi-
site data has been repeatedly demonstrated in several multi-site studies
on functional MRI (fMRI) (Casey et al., 1998; Costafreda et al., 2007;
Gee et al., 2015; Jovicich et al., 2015), morphometric MRI (Cannon
et al., 2014; Schnack et al., 2010), and diffusion-tensor imaging (DTI)
(Jovicich et al., 2014; Pfefferbaum et al., 2003). Most of these studies
arrived at similar conclusions, namely that with appropriate multi-site
data collection, different data sites shared highly consistent feature
patterns. With this, the site-shared features reveal consistent brain ab-
normalities in multi-site data, which can lead to a more accurate neu-
robiological understanding of the psychiatric disorder under in-
vestigation. On the other hand, though the integration of multiple
single-site data is advantageous, the unavoidable presence of site-spe-
cific features might decrease the accuracy of a classifier that merely
pools data together across studies. Heterogeneity can emanate from
multiple sources including scanner differences, differences in image
acquisition protocols, or ethnic and treatment differences among par-
ticipating patient populations (Jovicich et al., 2015; Schnack et al.,
2010; Van Horn and Toga, 2009). Given such site-related hetero-
geneity, multi-site datasets should not simply be merged into larger
cohorts for further machine learning investigation (Pan and Yang,
2010). In an attempt to eliminate or reduce the site-specific variability,
studies have suggested same scanning protocols, consistent scanner
parameters and etc. (Brown et al., 2011; Calhoun and Adali, 2009;
Pearlson, 2009; You et al., 2011) in data collection, as well as the uti-
lization of smoothness equalization (Friedman et al., 2006) and in-
dependent component analysis (Kim et al., 2009; Meda et al., 2008) in
data preprocessing. Despite these efforts, site-specific heterogeneities
still exist due to their complex causes (Pearlson, 2009; Segall et al.,
2009).

The above considerations highlight the need for a feature-learning
framework in multi-site disease classification that can extract the site-
shared features, while also accounting for the site-specific features; this
approach generally seeks an overarching signature of disease, whereas
it accommodates potential sub-cohort and other differences to be taken
into consideration. In recent years, multi-task learning has been suc-
cessful in learning task-shared and task-specific features simulta-
neously, which effectively improves generalization compared with
traditional machine learning methods. For example, support vector
machine (SVM) with single-task learning (Caruana, 1997) learns a
distinct feature pattern and finds a maximum margin hyperplane to
classify two groups, which extracts information within a single learning
task. In contrast, multi-task learning extracts a subset of task-shared
features to generate more accurate models on multiple tasks, with the
task-specific features learned simultaneously (Marquand et al., 2014).
The basic assumption of multi-task learning is that the feature weights
of different tasks share similar sparse patterns (Chen et al., 2012),
which can be learned by imposing sparsity regularization penalties on
the task weight matrix (Kumar and Daume III, 2012). l1-norm and l2,1-
norm are two commonly used sparsity regulating terms in multi-task
learning, which enforces the weight matrix of different tasks to be

sparse across all tasks. Particularly, an l1-norm term highlights task-
specific features by encouraging the weights of irrelevant features to be
very small (Wang et al., 2015), while l2,1-norm introduces group spar-
sity and enforces task-shared features to have larger weights (Watanabe
et al., 2014; Yan et al., 2015).

The advantage of multi-task learning makes it suitable for multi-site
data learning, considering the site as task, and the site-shared and site-
specific features as task-shared and task-specific features.
Neuroimaging studies have shown the effectiveness of performing
multi-task learning in the brain decoding and disease classification
(Marquand et al., 2014; Obozinski et al., 2010; Rao et al., 2013; Wang
et al., 2015; Watanabe et al., 2014). Specifically, multi-site fMRI data of
ADHD was demonstrated better than single-site classification by
learning site-shared and site-specific features using multi-task scheme
(Watanabe et al., 2014). In this work, though the multi-task learning
scheme successfully extracted site-shared and site-specific features in
multi-site data, the form of the objective function was rather complex
and specific as it included an l2,1-norm group sparsity regularization
term and a 6-D spatial structure penalty (generated by the GraphNet,
fused Lasso, or the isotropic total variation). In order to make the multi-
task learning scheme more simple and applicable, an objective function
including l1-norm and l2,1-norm penalty terms was used in the current
study (Wang et al., 2011; Wang et al., 2015).

Building upon this emerging literature, we aim to distinguish SCZ
patients from healthy controls across multiple-site MRI data using
multi-task learning. We hypothesized that using multi-task learning
framework on multi-site classification would not only have better per-
formance than single-site data classification, but would also identify the
abnormalities shared by all sites, and also specific to each site. These
site-shared brain structural alterations should be consistent with the
previously reported altered regions in SCZ, such as the brain regions
involving prefrontal, superior temporal, insular, temporo-limbic re-
gions, among others.

2. Materials and methods

2.1. Participants and MRI acquisitions

MRI data were collected by three academic centers, including lo-
cations in the United States (University of Pennsylvania; site A)
(Davatzikos et al., 2005), Brazil (University of Sao Paulo; site B)
(Schaufelberger et al., 2007; Zanetti et al., 2013), and China (Tianjin;
site C). From each site, a balanced dataset was obtained with 50 normal
controls (NCs) and 50 SCZ patients randomly selected from a larger
pool of available subjects. In total, we had 150 NCs and 150 SCZs,
which didn't differ by age and gender significantly (p > 0.05; see
Table 1).

All SCZ patients met DSM-IV criteria. Written informed consent was
obtained from all participants before MRI scanning. In site A, the 50
SCZ patients had chronic symptoms and were receiving treatment with
antipsychotics (mean duration of illness 16.2 ± 12.3 years). In site B,
all SCZ subjects were recruited shortly after they made their first con-
tact with mental health services due to psychotic symptoms, and their
duration of illness was 1.0 ± 1.3 years; 31 patients had been on anti-
psychotic treatment within 3 weeks of MRI, while the remaining 19
patients were free of antipsychotics at the time of MRI scanning. Site C
contributed 5 first-episode, never-treated SCZ patients and 45 chronic
SCZ patients under antipsychotic treatment (mean duration of illness
10.5 ± 7.2 years).

In site A, the imaging data were acquired using a Siemens Trio 3-T
scanner (Siemens Medical Systems, Erlangen Germany), with the fol-
lowing protocol: slice thickness= 1mm, TE=3.51ms, TR=18.1 ms,
flip angle= 9°, acquisition matrix= 240×180, and slice
number= 160, no gaps, 1-mm isotropic voxels. In site B, the T1 images
were acquired using two identical 1.5-T GE Signa scanners (GE Medical
Systems, Milwaukee WI, USA) with the following protocol: T1-SPGR
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sequence providing 124 contiguous slices, TE=5.2ms, TR=21.7 ms,
flip angle= 20°, FOV=22 cm, acquisition matrix= 256×192.
Details of the MRI scanning in site B can be found in Zanetti et al.
(2013). In site C, all scans were obtained using a GE 3-T Signa scanner
(GE Medical Systems, Milwaukee WI, USA) with the following protocol:
slice thickness= 1mm, TE=3.2ms, TR=8.2ms, flip angle= 12°,
acquisition matrix= 256×256, FOV=25.6 cm.

2.2. Preprocessing

The imaging data were preprocessed using the following steps as
previously described (Davatzikos, 1998; Davatzikos et al., 2001;
Goldszal et al., 1998; Shen and Davatzikos, 2003): (1) skull stripping,
(2) bias field correction, (3) brain tissue segmentation into gray matter
(GM), white matter (WM), cerebrospinal fluid (CSF), (4) spatial regis-
tration to Montreal Neurological Institute (MNI) template, (5) genera-
tion of the Regional Analysis of Volumes Examined in Normalized
Space (RAVENS) (Davatzikos et al., 2001; Goldszal et al., 1998) maps of
GM, WM, and CSF using deformable registration (DRAMMS) (Ou et al.,
2011), and (6) spatial smoothing of RAVENS maps using a 6-mm Full
Width at Half Maximum (FWHM) Gaussian filter. In our study, we in-
vestigated the RAVENS value changes in the GM images, which in-
dicated regional GM volumetric alterations in the brain. Note that the
RAVENS method has been demonstrated to provide more accurate and
reliable quantification of volumes of different brain regions (Goldszal
et al., 1998). In order to reduce computational requirements, and since
SCZ is not known to be associated with very localized volumetric re-
ductions, the GM RAVENS maps were resampled to have a spatial re-
solution of 3×3×3mm3. After applying a GM mask, 66,732 voxel-
wise features for each subject were extracted. These images yielded a
feature matrix of dimensionality of 100×66,732 for each site dataset.
In order to ensure that features in each site are within the same level
and contribute equally in the process of feature weight learning, the
feature matrices were then standardized to zero mean and unit variance
across all subjects within each site, respectively.

2.3. Multi-site classification using multi-task learning framework

In our study, the multi-task learning framework was used to learn
the site-shared and site-specific features in the three data sites. These
selected features were then used to classify the different data sites re-
spectively. The workflow of multi-site learning is shown in Fig. 1.

We model the classification between SCZs and NCs of different sites
as a multi-task learning problem with t learning tasks (one task for each
site). In the ith learning task, Xi=[xi1,xi2,…,xin]∈ Rd×n is features of
training samples, where d is the number of features and n is number of
training samples, and their class labels are Yi=[yi1,yi2,…,yin]∈ Rn,

where yj∈ {+1,−3} stands for NCs and SCZs, respectively. Let wi∈ Rd

denotes a feature weight vector for the ith learning task, and
W=[w1,w2,…,wt]∈ Rd×t denotes the feature weight matrix of all
tasks. The columns of W (wi∈ Rd) are the feature weights in each task,
and the rows of W (wp∈ Rt, where p=1, 2,⋯, d) hold the weight
vectors of each feature across all learning tasks. Our goal is to learn the
feature weight matrix W by minimizing the following cost function:

∑ ∑ − ⎯→⎯ + +
= =

y w x α W β Warg min max(0, 1 , ) ‖ ‖ ‖ ‖ ,
i

t

j

n
ij i

T
ij1 1 1 2,1

(1)

where ⎯→⎯w x,i
T

ij is the dot product of the feature weights and feature
values in each training sample, and the first term in the objective
function is the hinge loss cost of all training samples in all tasks, the
second term ‖W‖1= ∑i=1

t|wi| is l1-norm of W, the last term ‖W‖2,
1= ∑k=1

d‖wk‖2 is a l2,1-norm penalty. The l1-norm term encourages
task-specific sparsity, while l2,1-norm term encourages group sparsity
among all tasks to identify task-shared features. The l2,1+ l1 regular-
ization terms consider both the task-specific and task-shared features,
which make multi-task learning more suitable in classification of the
heterogeneous data. The optimal stochastic alternating direction
method of multipliers (SADMM) was adopted to solve the optimization
function (Azadi and Sra, 2014; Wang et al., 2015). Details in the so-
lution of the optimal problem using SADMM, and the converge prove
can be found in Wang et al. (2015).

In our study, the learning of feature weights at each data site was
considered as a different task. Due to the sparse penalty constrains in
the object function of multi-task learning, many elements in the feature
weight matrix W were forced to zero, or approximately equal to zero.
Weight values reflect the importance levels of different features in
learning the classification boundaries between two groups, while
weight values that are positive or negative tend to classify the sample
into either positive or negative classes, respectively. We assume that
features with larger weight coefficients (in terms of absolute value)
contribute more in discriminating SCZ from NCs. Moreover, features
with zero and near-zero weights make small contributions in the clas-
sification. Thus, in order to select the more important features for
further classification, we sorted the weight vector in each data site
according to their absolute values after the weights W were learned.

The consensus features in a small portion of the top-ranked features-
which were set to 5% across three data sites, were considered as the
site-shared features. The threshold of 5% was chosen because in terms
of classification performance, it outperformed others in a range of 5%,
10%, and 20% (Tan et al., 2013). For a single data site, the site-specific
and site-shared features were mixed together, as well as some irrelevant
features. Using the multi-task feature learning scheme, the feature
weights of the site-specific and site-shared features were obviously

Table 1
Characteristics of the participants in this study.

Variable Sample size Gender (male/female) Age (years) Mean ± SD (range)

Site A SCZ 50 28/22 35.38 ± 11.78(19–60)
NC 50 25/25 32.50 ± 12.96(15–65)
p value 0.69a 0.25b

Site B SCZ 50 34/16 27.48 ± 7.89(18–50)
NC 50 29/21 30.60 ± 8.17(18–50)
p value 0.30a 0.055b

Site C SCZ 50 25/25 34.10 ± 8.44(16–56)
NC 50 22/28 32.24 ± 11.42(21–57)
p value 0.55a 0.36b

Site A+B+C SCZ 150 87/63 32.32 ± 10.08(16–60)
NC 150 76/74 31.78 ± 10.99(15–65)
p value 0.20a 0.66b

Note: SCZ: schizophrenia; NC: normal controls.
a Pearson Chi-square test.
b Two-sample t-test.
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greater than the irrelevant features. Though the site-shared and site-
specific features were both very important, the site-shared features
were considered underlying the pathology of SCZ and more critical in
characterizing disease alterations. Thus, to further emphasize the in-
fluence of site-shared features in the classification, we increased the
weights of site-shared features using the following equation,

= ∗W W γ W{ ; },specific shared (2)

where γ≥ 1.
Note that the γ was not set to be a free parameter, which was also

tuned using the nested-loop cross-validation in our study.

2.4. Classification with top ranked features

The K top ranked features with the new feature weights were used
to classify each dataset. The classifier equation is shown as follows.

∑= ⋅y w xsign( ),i
p p (3)

where wi
p denotes the new weight value of the pth feature in the ith data

site, xp denotes the pth feature value, and y denotes the sample label.
Given one testing sample in the ith data site, the dot product of the
feature weights, and the feature values of the K selected features were
summed up to get the sample label.

2.5. Validation experiments

To evaluate the proposed method, ten comparison experiments were
designed in the consideration of three aspects. (1) To show the effec-
tiveness of gathering multi-site data, we reported the classification re-
sults of single-site, pooled, and multi-site data, respectively. Single-site
classification learns features of each single-site data separately for
classification; pooled classification pools the three data sites together as
a larger dataset regardless of the site differences, which contributed to a
simple binary classification of 150 controls and 150 patients; and multi-
site classification uses multi-task learning to learn the site-specific and
site-shared features simultaneously, in the three data sites, and combine
the two types of features to classify each dataset separately. (2) To show
the effectiveness of using multi-task feature learning framework, two
widely used feature learning methods including principal component
analysis (PCA) and two-sample t-test (ttest2) were also tested. (3) The
proposed classifier based on the learned feature weights was compared
to the SVM classifier with a linear kernel. Differences between these
two classifiers exist as the SVM focuses on the selected features and
calculates new feature weights for classification, while our proposed
classifier takes advantage of the feature weights obtained in the feature
learning step, and then generate the classification label. Table 2 listed
the ten comparison methods in the current study.

Fig. 1. Workflow of each iteration in multi-site classification (with total 20 repeated experiments). (1) There were three sites in our study (sites A, B, and C). After
preprocessing, the N samples in each data site were randomly divided into 5 folds and designated to three sets: one fold for testing, 80% and 20% of the other 4 folds
for training and validation, respectively. Each sample had the feature dimension of D. (2) Feature learning. The training sets from three sites were used in the multi-
task learning framework, which generated the feature weights of the three sites W. The three column vectors in the weight matrix W were then sorted according to
their absolute values respectively, while the feature weights of the site-shared features obtained according to the K top ranked feature weights were strengthened. The
new feature weights matrixW′ was generated. (3) Parameter tuning. Using the feature weights learned in the last step, the K features and their corresponding weights
in the validation samples from three sites were used to classify the validation sets. The parameter set which contributed to the best classification accuracy was
selected. (4) Testing. The best parameter set was used in testing and the classification accuracy was obtained.
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In the first three experiments, the same proposed feature learning
and classifier framework was applied in the multi-site, single-site and
pooled data classification, respectively. In the single-site data classifi-
cation, for each data site, we used the l1-norm feature selection (Wang
et al., 2015), which included the hinge loss function and the l1-norm
sparsity regularization term in the cost function. In the pooled data
classification, the feature learning cost function was similar to the
single-site classification, which considered the pooled data as a single
cohort. Note that the feature learning framework applied in the single-
site data classification and the pooled data classification was a special
case of the multi-task feature learning framework, with the l2,1 sparsity
regularization term disabled. The site-specific features were learned in
the same way in all three classification experiments, while the site-
shared features were only emphasized in multi-site learning, which
could show the influence of site-shared features more clearly. The
classifier for single-site data and pooled data classification was the same
as Eq. (3), however, increasing weights of site-shared features in Eq. (2)
was not applied as we did in multi-site learning, since there were no
site-shared features in the single-site and pooled data classification.

In other seven experiments, the SVM classifier with a linear kernel
was used after different feature learning methods. As shown in Table 2,
the 4th to 6th experiments used the proposed multi-task feature
learning technique, taking the feature learning method in single-site
and pooled data as a special case of multi-site feature learning. In the
7th and 8th experiments, the PCA method was used, while in the 9th
and 10th experiments, the ttest2 method was used in the single-site and
pooled data classification, respectively.

The nested loop 5-fold cross-validation was used in the ten experi-
ments to evaluate the classification performance. In specific, the sam-
ples were randomly separated into five subsets: one (20% of all sam-
ples) was used for testing, and the other four (80% of all samples) were
divided further into two parts with the proportion rates of 80% (64% of
all samples) and 20% (16% of all samples), respectively. The larger of
the two parts was used as a training set, and the smaller part was used
as a validation set, as described previously (Koutsouleris et al., 2014).
The training samples were used for feature learning and classifier
training, while the validation samples were used to tune all parameters
with the trained classifier, and the best parameter set which contributed
to the best classification accuracy of the validation samples was se-
lected. Finally, the best parameters in the validation step were used to
classify the testing samples and obtain the classification result. The
whole process was repeated for 20 repeated experiments. The average
accuracies of the 20 iterations for each site was considered as the final
classification result.

The parameters of the multi-task feature learning framework were
tuned by grid searching the regularization factors in the range of α,
β∈ {10−8, 10−6, 10−4, 10−2, 10−1, 0.3, 0.5, 1, 5, 10, 102, 103}, while
in the special case of using multi-task feature learning in the single-site
and pooled data, the l2,1-norm term was disabled and β was set to 0. In
the proposed classifier in the multi-site classification (the first

experiment), the ratio to increase the site-shared feature weights γ was
tuned in the range of {1, 2, …, 100}. The number of selected features K
ranged from {500, …, 20,000}, with the step-size of 100. In the ex-
periments with the SVM classifier, the linear kernel was used and the
cost value C was set to 1.

The site-shared and site-specific features were obtained in the multi-
site classification, which used the proposed multi-task learning frame-
work. After the parameter tuning, the best parameter set of the reg-
ulation terms α, β, the number of selected features K, and the site-
shared feature increasing ratio γ were obtained. In each iteration, the
best classification accuracy in each site corresponded to a specific W
vector. We first calculated the mean W vectors of the 20 iterations that
were contributed to the best accuracy in all three sites respectively,
then the mean W vector of sites A, B, and C was obtained. The con-
sensus features with weights that ranked the top 5% of the three sites
were shown as the site-shared features, and the remaining features were
considered as the site-specific features for each site, respectively. The
feature weights of the site-shared and site-specific features were dis-
played using the Caret package (Van Essen, 2005), in which the clusters
comprising of> 50 voxels were shown.

3. Results

The classification results of multi-site, single-site, and pooled data
were listed in Table 3. Using the proposed multi-task feature learning
framework and the classifier based on the learned feature weights, the
average classification accuracies of sites A, B, and C, based on the multi-
site data learning, were 78.5%, 64.5%, and 84.5%, which outperformed
the accuracies of 76%, 56%, and 82.5% on single-site learning, as well
as the accuracies of 70%, 57.5%, and 75.3% on the pooled classifica-
tion.

Using the multi-task feature learning framework and the SVM
classifier, the average accuracies in multi-site (67.3%), single-site
(69.0%) and pooled (61.7%) data classification were lower than the

Table 2
Summary of the comparison methods.

Method Description

l2,1+ l1 (MS) The proposed multi-task classification framework on multi-site data, which contains l2,1+ l1 regularization terms in the feature learning step, and the
classifier based on the learned feature weights.

l1 (SS) Single-task classification on each single site data: the single-task feature learning step uses the l1 regularization term, and the classifier uses the same
classifier formula as the multi-task classification framework.

l1 (PO) Data from all the datasets are pooled together as a larger dataset. The classification framework is the same as the single-task classification.
l2,1+ l1+ SVM (MS) Using multi-site data, the feature learning step is multi-task learning, and uses SVM classifier with the linear kernel.
l1+ SVM (SS) Use single-task feature learning framework and a SVM classifier to classify each single site data.
l1+ SVM (PO) Use single-task feature learning framework and a SVM classifier to classify the pooled data.
PCA+SVM (SS) Use principal component analysis (PCA) to learn features in each single site data and a SVM classifier with the linear kernel.
PCA+SVM (PO) Use principal component analysis (PCA) to learn features on the pooled data and a SVM classifier with the linear kernel.
ttest2+ SVM (SS) Use two-sample t-test (ttest2) to learn features in each single site data and a SVM classifier with the linear kernel.
ttest2+ SVM (PO) Using two-sample t-test (ttest2) to learn features on the pooled data and a SVM classifier with the linear kernel.

Table 3
The average accuracy values of multi-site, single-site and pooling classification
with 20 repetitions in 10 experiments.

Method Site A Site B Site C Average of 3 sites

l2,1+ l1 (MS) 0.785 0.645 0.845 0.758
l1 (SS) 0.76 0.56 0.825 0.713
l1 (PO) 0.70 0.575 0.753 0.676
l2,1+ l1+ SVM (MS) 0.713 0.648 0.658 0.673
l1+ SVM (SS) 0.728 0.598 0.825 0.690
l1+ SVM (PO) 0.610 0.573 0.668 0.617
PCA+SVM (SS) 0.668 0.474 0.724 0.622
PCA+SVM (PO) 0.646 0.494 0.732 0.624
ttest2+ SVM (SS) 0.562 0.468 0.680 0.570
ttest2+ SVM (PO) 0.672 0.530 0.646 0.616

MS: multi-site data; SS: single-site data; PO: pooled data.
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results using the proposed classifier (75.8%, 71.3%, and 67.6%), re-
spectively. However, the average accuracy of multi-site classification
was poorer than the single-site classification using multi-task feature
learning framework and SVM classifiers. In the experiments using PCA
feature learning method and SVM classifiers, the average results of
single-site and pooled data classification were 62.2% and 62.4%. In the
experiments using ttest2 feature learning method, the classification
accuracies were the lowest comparing to all other methods, which were
57.0% and 61.6%, respectively in single-site and pooled data classifi-
cation.

The best average accuracy was 75.8% with our proposed multi-task
feature learning classification method. The results indicated that multi-
site learning captured more precise feature patterns in revealing the
differences between SCZ patients and controls, than using only one
single-site data. Simply pooling all data sites together did not improve
classification performance compared with using single-site data.

The site-shared and site-specific features with the largest weights
were mapped onto a brain image template. As shown in the left panel of
Fig. 2, multi-site learning extracted a series of feature patterns as site-
shared features, which revealed gray matter abnormalities in a variety
of regions, including the fusiform, middle temporal, superior temporal,
inferior parietal, postcentral, angular, inferior frontal, middle occipital
and lingual gyri, insular, anterior cingulate cortex, precuneus, the
dorsolateral prefrontal cortex, and the cerebellum. The most dis-
criminative site-shared regions are all listed in Table 4. Detailed in-
formation including the BA area, side, cluster size and peak MNI co-
ordinates is also shown in Table 4.

The site-specific features were displayed in the right panel of Fig. 2.
The site-specific features of site A included regions of the fusiform,
lingual, inferior temporal, middle temporal, superior temporal, middle
frontal, superior frontal, superior medial frontal, postcentral, superior
parietal, precentral gyri, precuneus, putamen, supplemental motor
area, and the cerebellum. The site-specific features of site B included
regions of the fusiform, anterior cingulate cortex, posterior cingulate

cortex, hippocampus, parahippocampus, angular, inferior frontal,
middle frontal, postcentral, precentral, inferior parietal, middle occi-
pital gyri, precuneus, and the cerebellum. The site-specific features of
site C included regions of the fusiform, lingual, anterior cingulate
cortex, angular, middle temporal, inferior temporal, superior temporal,
middle frontal, postcentral, supramarginal, superior medial frontal gyri,
precuneus, insular, and the cerebellum. As shown, the site-specific
patterns in the three sites involved several regions that were located
adjacent to the same site-shared regions, including the fusiform, lin-
gual, postcentral, precentral, prefrontal gyri, and the cerebellum. De-
tailed information of the site-specific features are shown in Tables 5, 6,
and 7.

4. Discussion

We present a method utilizing multi-task l2,1+ l1-norm learning to
simultaneously learn the site-shared and site-specific features, for multi-
site classification problems. The method was tested to differentiate SCZ
patients from healthy controls in three data sites. Compared to single-
site and pooled data classification, the multi-site classification perfor-
mance was significantly higher, which demonstrated that multi-site
data can enhance accuracy in identifying brain alterations in SCZ if
multi-task learning is applied. The multi-task learning framework thus
provides a new way to take advantage of multi-site data to better
classify and understand brain diseases.

4.1. Reliable identification of multi-site schizophrenia data using multi-task
learning

Single-site data contains information about pathophysiology, but
may simultaneously include information related to different scanners or
imaging protocols, as well as demographic differences that may influ-
ence the pattern investigations across individual subject samples. Using
single-site data is limited by smaller sample sizes and smaller diversity

Site-shared features

Site-specific features

Site A

Site B

Site C
-0.016       -0.0002    0.0003                0.017

0.029

0.001

-0.001

-0.029

0.011

0.0002

-0.0001

-0.009

0.010

0.0002

-0.0001

-0.010

Fig. 2. Left panel: locations of the site-shared features Right panel: locations of the site-specific features corresponding to each site. These site-shared and site-specific
features were shown with cluster size of> 50 voxels obtained by multi-task learning on multi-site schizophrenia classification. The colorbar represents the weight
values of features. The warm and hot colors corresponded to negative and positive weight values, respectively.
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in imaging features, both of which often lead to poor generalization
performance of classifiers on new patient populations. Data pooled
from multiple sites alleviate both of these problems at the expense of
introducing confounding heterogeneity in the imaging data, which
renders the pooled analysis challenging. In our study, using the pro-
posed multi-task feature learning scheme, the classification accuracy of
using pooled data was no better than using each single site and, in the
case of site C data, pooled learning performed worse than single-site
classification. This result might demonstrate that the site-specific fea-
tures in each data site may not always benefit for the pooled classifi-
cation. The advantage of the multi-task learning frame in our study is
that it can simultaneously learn site-shared and site-specific features,
which is suitable when combining multi-site data for disease classifi-
cation. The l2,1+ l1-norm penalty terms focuses on the group sparsity,
and sparsity to maximize weights of site-shared or site-specific features,
while setting all other irrelevant features to be very small. In addition,
the two penalty terms are very common and simple in sparsity reg-
ularization and can easily be generalized. The multi-task learning fra-
mework has attracted increasingly attention in other fields, such as in
data mining, bioinformatics and computer vision (Heisele et al., 2001;
Ji and Ye, 2009; Xue et al., 2007).

In the current study, the performance was poor in using the PCA and
ttest2 feature learning methods in the single-site and pooled classifi-
cation. PCA is a linear method for dimensionality reduction, which may
not consider the nonlinear correlations of different features, while
ttest2 is a univariate feature selection method, neglecting the re-
lationship of multiple variables. Thus, the accuracies of using PCA and
ttest2 were no better than using the proposed multi-task feature
learning framework. Results also showed that accuracies using the
proposed classifier were much better than using SVM. In the multi-task
feature learning step, the feature weights were calculated based on all
features and contained valuable information. Those features exhibited
the largest weights were selected and used in the classification step.

SVM classifier only used the sequencing information of the feature
weights, which had lost some valuable information of these selected
features. Therefore, better results using our proposed classifier showed
that the feature weights learned by the multi-task feature learning
method were accurate.

4.2. Site-shared and site-specific regions of gray matter alterations in
schizophrenia

A pattern of gray matter intensity alterations implicating several
brain regions in the SCZ sample was revealed by the site-shared feature
analysis of multi-site MRI data in our study. This is consistent with a

Table 4
The site-shared gray matter alteration features of brain regions.

Regions Side BA Cluster size (voxels) MNI coordinates

Cerebellum crus I, fusiform gyrus, lingual gyrus L 18,19 146 −32,−86,−17/−29,−74,−3
Middle temporal gyrus L 38,21,22 77 −44,12,−35/−59,−14,−8/−56,−59,−13/−65,−35,−1
Superior temporal gyrus, middle temporal gyrus, insula R 22,41,13 77 52,−41,−10/49,−17,1
Anterior cingulate, superior medial frontal gyrus L 32 51 −12,34,1/−12,34,25
Middle occipital gyrus, angular L/R 39,40 111 45,−55,20/33,−76,32/−51,67,39
Insula R 13 27 33,16,12
Middle frontal gyrus, inferior triangular frontal gyrus L/R 9,10,44,45 162 −51,26,28/−33,52,16/−42,22,13/39,35,24
Postcentral L 2 18 −49,−31,50
Precuneus L/R 31 25 −6,−43,36
Inferior parietal gyrus L 40 15 −40,−49,51
Superior parietal gyrus L 7,5 42 −28,−51,75
Superior frontal gyrus, middle frontal gyrus R 9,6 56 27,47,32/33,41,35/35,8,42
Superior frontal gyrus, middle frontal gyrus L 32,6 63 −16,23,47/−34,11,52
dlPFC L/R 9,6,32 119 −16,23,47/−34,11,52/27,47,32/33,41,35/35,8,42

Note: BA=Brodmann area, R= right, L= left.

Table 5
The site-specific gray matter alteration features of brain regions in site A.

Regions Side BA Cluster size (voxels) MNI coordinates

Fusiform gyrus, cerebellum VI, lingual gyrus L 37,19,18 135 −20,−59,−15
Inferior temporal gyrus, middle temporal gyrus L 37,20,19,21 50 −56,−56,−10
Superior temporal gyrus, middle temporal gyrus L/R 38,21,41 148 −47,9,−32/55,−53,−4
Putamen R 69 30,8,15
Middle frontal gyrus/superior frontal gyrus R 9,8,10 114 29,38,38
Postcentral gyrus, superior parietal gyrus R 3,2,5,40 236 −43,−37,65/26,−46,49
Superior medial frontal gyrus, supplemental motor area, superior frontal gyrus L 8,6 203 −19,35,58
Superior parietal gyrus, postcentral gyrus, precuneus gyrus L 7,5 92 −28,−54,75
Precentral gyrus L 6 54 −34,−12,77

Note: BA=Brodmann area, R= right, L= left.

Table 6
The site-specific gray matter alteration features of brain regions in site B.

Regions Side BA Cluster
size
(voxels)

MNI coordinates

Cerebellum IV, V, fusiform
gyrus

R 19,36 51 22,−35,−20

Hippocampus,
parahippocampus,
fusiform gyrus

R 36 75 34,−35,−11

Anterior cingulate cortex L 32,9,24,10 294 −3,38,23
Inferior parietal gyrus,

middle occipital gyrus,
angular

R 40,39,7 105 −46,−49,47

Posterior cingulum L 65 −9,−43,36
Inferior frontal gyrus L 13,44,47 38 −39,22,13
Middle frontal gyrus L 8,9 53 −34,35,37
Precuneus L 7 120 −13,−67,37
Postcentral gyrus, precentral

gyrus
L/R 6,4,3,40 180 −52,−31,53

Note: BA=Brodmann area, R= right, L= left, dlPFC=dorsolateral pre-
frontal cortex.
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vast number of large-scale structural MRI investigations of SCZ, in-
cluding both meta-analyses of MRI results (Chan et al., 2011; Ellison-
Wright et al., 2008; Honea et al., 2005; Palaniyappan et al., 2012; Steen
et al., 2006; Vita et al., 2012; Wright et al., 2000), and mega-group
comparisons of mean indices combining data from multiple sites (Gupta
et al., 2015; Segall et al., 2009; Torres et al., 2016). These previous
studies have repeatedly highlighted the prefrontal cortex, lateral tem-
poral cortex, insular, striatum, anterior cingulate cortex, hippocampus
and other temporo-limbic structures as key components of the network
of brain regions showing volumetric deficits relative to healthy controls
from early stages of SCZ onwards. Most of those brain regions were
implicated in our study, indicating a high degree of consistency be-
tween the spatial distribution of findings in our site-shared feature
analysis and the previous MRI literature on SCZ. The brain regions in-
volved in this network are critical to emotion processing and several
cognitive domains known to be affected in schizophrenia, including
language processing, working memory and other executive functioning
operations, episodic memory, attention, self-monitoring, error detec-
tion, and attribution of salience to emotionally relevant stimuli, among
others (Backasch et al., 2014; Belin et al., 2000; Cabeza and Nyberg,
2000; Chao et al., 1999; Jeong et al., 2009; Kim et al., 2003; Noppeney
and Price, 2002; Ojemann et al., 2002; Palaniyappan and Liddle, 2012a;
Palaniyappan and Liddle, 2012b; Potkin et al., 2009; Price, 2010;
Tranel et al., 1997; Wright et al., 2003). Thus, the findings presented
herein provide evidence that our method robustly identifies consistent
and reliable structural brain abnormalities associated with SCZ across
different sites.

Additional brain regions often implicated in the pathophysiology of
SCZ were also highlighted in our site-shared analysis, such as the cer-
ebellum (Andreasen and Pierson, 2008). Though the cerebellum is
traditionally believed to participate in motor function, neuroimaging
studies, in both nonhuman primates and humans, have demonstrated
that it is also involved in brain cognitive and affective processing
(Bernard and Mittal, 2015; Dum and Strick, 2003; Hu et al., 2008; Kelly
and Strick, 2003). Several structural and functional neuroimaging stu-
dies have shown cerebellar abnormalities in SCZ subjects relative to
controls (Bernard and Mittal, 2015; Gupta et al., 2015; Ha et al., 2004;
Kim et al., 2014; Mothersill et al., 2016; Rusch et al., 2007; Shen et al.,
2010; Shenton et al., 2001; Wagshal et al., 2015). Abnormalities in the
cerebellum, through its connections to the prefrontal cortex via tha-
lamus, have been proposed as critical to the state of “cognitive dys-
metria” put forward by some authors to explain the behavior mani-
festations and cognitive deficits of schizophrenia (Andreasen et al.,
1999; Rusch et al., 2007; Shen et al., 2010). However cerebellar find-
ings should be interpreted cautiously, since segmentation between GM
and WM in that region is difficult and prone to errors, due to poor
contrast at this imaging resolution. Finally, other brain sites showing
volume abnormalities in our study, including the precuneus and lateral
parietal cortical regions, fusiform, lingual and middle occipital gyri,
have been variably implicated in previous neuroimaging studies of SCZ
(Borgwardt et al., 2010; Brunet-Gouet and Decety, 2006; Chou et al.,

2014; Davatzikos et al., 2005; Di Rosa et al., 2009; Dong et al., 2006;
Faget-Agius et al., 2012; Gaser et al., 1999; Herrmann et al., 2006;
Johnston et al., 2005; Lee et al., 2002; Mashal et al., 2014; Nierenberg
et al., 2005; Niznikiewicz et al., 2000; Onitsuka et al., 2005; Onitsuka
et al., 2003; Quarantelli et al., 2014; Schultz et al., 2010; Seiferth et al.,
2008; Shenton et al., 2001; Singh et al., 2014; Takahashi et al., 2011;
Tanskanen et al., 2010; Walther et al., 2009; Whalley et al., 2006; Yoon
et al., 2006). These brain regions are involved in a variety of cognitive
operations of relevance to schizophrenia, including language, visual
attention and emotional processing (Cohen et al., 1996; Dong et al.,
2006; Herrmann et al., 2006; Johnston et al., 2005; Kaas, 1995; Mashal
et al., 2014; Nierenberg et al., 2005; Niznikiewicz et al., 2000; Seiferth
et al., 2008; Walther et al., 2009; Whalley et al., 2006; Yoon et al.,
2006).

Findings of structural brain abnormalities in SCZ may be influenced
by clinical variables not specifically related to the pathophysiology of
the disorder, such as the use of antipsychotic medications. Several re-
cent studies have shown that the continued use of antipsychotics may
be significantly associated with some of the neuroanatomical changes
detected in MRI studies of SCZ, even after taking into account the in-
fluence of other potential moderators such as illness severity and sub-
stance abuse (Fusar-Poli et al., 2013; Ho et al., 2011; Torres et al.,
2016). In the present study, participants with SCZ from site B were all
in their first psychotic episode and had a relatively shorter duration of
illness in comparison to the samples contributed by sites A and C (both
of which included a substantial proportion of chronic, medicated SCZ
patients). Thus the overall SCZ sample from site B was less exposed to
antipsychotic treatment in comparison to the two other sites. The se-
lection of first-episode SCZ patients in site B may help to explain the
more modest diagnostic accuracy figures obtained in the single-site
analysis for that center in comparison to the two other sites, given the
fact that medicated SCZ patients in chronic disease stages display more
widespread brain volumetric abnormalities relative to healthy controls
than first-episode SCZ patients (Meisenzahl et al., 2008; Torres et al.,
2016). Since the three imaging sites contributed each an equal number
of SCZ patients and controls to the present investigation, disease
chronicity and antipsychotic exposure should be taken as clinical
variables that increased inter-site variability in our study, instead of
representing unifying features present in all sites. Therefore, the results
of the site-shared analysis presented herein can be more safely assumed
to reflect the commonality of SCZ neuropathology across the three sites,
rather than the potential influence of confounding clinical variables
ubiquitously present in the three centers. Disentangling the specific
neurobiological features underlying psychiatric disorders from clini-
cally relevant confounders is challenging in neuroimaging research,
given the highly prevalent influence of factors such as use of nicotine
and other drugs of abuse, cardiovascular risk factors, and exposure to
pharmacological treatment, all of which can affect brain structure
(Weinberger and Radulescu, 2016).

The site-specific regions of the three sites revealed in our study
consisted of two parts. The larger part of the site-specific features was

Table 7
The site-specific gray matter alteration features of brain regions in site C.

Regions Side BA Cluster size (voxels) MNI coordinates

Cerebellum crus I, crus II, fusiform gyrus, lingual gyrus L 18,19 209 −28,−84,−38
Middle temporal gyrus, inferior temporal gyrus L 21,20,22 274 −59,−12,−26
Superior temporal gyrus, middle temporal gyrus, insula R 22,13,41,21 112 46,−14,−2
Anterior cingulate cortex, superior medial frontal gyrus L 10,32,9 122 0,46,14
Angular R 39,22,13 62 45,−55,23
Middle frontal gyrus L 9,10 81 −28,56,37
Supramarginal gyrus L 40 80 −54,−37,29
Postcentral gyrus R 2,40,3 62 44,−31,55
Precuneus L/R 7 72 2,−66,67

Note: BA=Brodmann area, R= right, L= left.
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located in the same regions of the site-shared features, though the co-
ordinates were slightly different. These regions involved most of the
site-shared features, including the fusiform, lingual, postcentral, pre-
cuneus, prefrontal gyri and the cerebellum. The findings further im-
plicated that these site-shared and also the site-specific regions revealed
the abnormal feature patterns of the SCZ accurately, and multi-task
feature learning framework provided a promising method in detecting
these features. However, though these site-specific features were lo-
cated in the same regions with the site-shared features, the feature
distributed in adjacent areas. This was reasonable due to the data
heterogeneity resulted from each site. Another part of the site-specific
regions included some site-specific regions found exclusively in each
site, such as putamen and supplemental motor area in site A, hippo-
campus, parahippocampus, posterior cingulate cortex in site B, and
supramarginal gyrus in site C.

Studies have shown that supplemental motor area dysfunction was
related to motor disturbances in SCZ patients (Schroder et al., 1995).
The putamen was proposed to be related to the treatment response
(Buchsbaum et al., 2003; Li et al., 2012; Mitelman et al., 2009), and
also reflected the deficits of auditory verbal hallucinations of SCZ pa-
tients (Cui et al., 2016). The gyrus of hippocampus and para-
hippocampus were reduced (Razi et al., 1999), and hippocampus was
demonstrated to be associated with the positive symptoms of SCZ pa-
tients (Duan et al., 2015). Meanwhile, the posterior cingulate cortex has
recently been implicated in the pathophysiology of schizophrenia
(Newell et al., 2006). These site-specific regions may provide potential
evidences on interpreting the underlying multisite data heterogeneity
introduced by different scanners, subjects, treatment exposure, or dis-
ease symptoms or etc.

4.3. Limitations and future directions

Although the classification result of multi-site MRI data using multi-
task learning was encouraging, there are limitations in our work. First,
due to the limited sample sizes, small site numbers, and the specific
psychiatric disease type and data modality in our study, the effective-
ness of using multi-task learning scheme on multi-site classification
needs to be further validated in larger datasets. Moreover, an important
challenge in multi-task learning is that when new data is analyzed, the
multi-task learner would need to be recalculated. This would obviously
limit clinical utility. One solution is to apply our approach to obtain a
set of t discriminants, each associated with one of our training sites. It is
possible that as new data and sites are added to our analyses, one would
not need to solve the multi-task learning problem again, but rather
could apply all these t vectors and pool the classification results via
weighted consensus approaches.

5. Conclusion

This work proposes a multi-task learning framework for high-di-
mensional classification, which simultaneously learns the site-specific
and site-shared features in multi-site MRI data of brain morphology.
This method was tested on multi-site anatomical images of SCZ pa-
tients. The classification results of using multi-task learning out-
performed single-task learning and the pooled data. The most sig-
nificant site-shared features revealed brain structural alterations in SCZ
consistent with those previously reported in the literature. In summary,
multi-task learning provides a promising technique to learn the site-
shared features in multi-site data study without neglecting site-specific
features, which gives a new angle on integrating multiple single-site
data together for big data studies.
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