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Connectivity within the human connectome occurs between multiple neuronal
systems—at small to very large spatial scales. Independent component analysis (ICA) is
potentially a powerful tool to facilitate multi-scale analyses. However, ICA has yet to be
fully evaluated at very low (10 or fewer) and ultra-high dimensionalities (200 or greater).
The current investigation used data from the Human Connectome Project (HCP) to
determine the following: (1) if larger networks, or meta-networks, are present at low
dimensionality, (2) if nuisance sources increase with dimensionality, and (3) if ICA is prone
to overfitting. Using bootstrap ICA, results suggested that, at very low dimensionality,
ICA spatial maps consisted of Visual/Attention and Default/Control meta-networks. At
fewer than 10 components, well-known networks such as the Somatomotor Network
were absent from results. At high dimensionality, nuisance sources were present even
in denoised high-quality data but were identifiable by correlation with tissue probability
maps. Artifactual overfitting occurred to a minor degree at high dimensionalities. Basic
summary statistics on spatial maps (maximum cluster size, maximum component
weight, and average weight outside of maximum cluster) quickly and easily separated
artifacts from gray matter sources. Lastly, by using weighted averages of bootstrap
stability, even ultra-high dimensional ICA resulted in highly reproducible spatial maps.
These results demonstrate how ICA can be applied in multi-scale analyses, reliably
and accurately reproducing the hierarchy of meta-networks, large-scale networks, and
subnetworks, thereby characterizing cortical connectivity across multiple spatial scales.
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INTRODUCTION

Network models of neural processing used in neuroimaging are
continually evolving and becoming increasingly sophisticated.
Analytic advances in the past decade have identified major
canonical large-scale networks involved in cognition (Raichle
et al., 2001; Greicius et al., 2003; Vincent et al., 2008). More recent
work has identified subnetworks within these larger networks
(Smith et al., 2009; Andrews-Hanna et al., 2010; Shirer et al., 2012)
and even smaller regional parcellations (Glasser et al., 2016). This
network topology, encompassing multiple spatial scales, has long
been hypothesized as a fundamental architecture of cognitive
neuroscience (Churchland and Sejnowski, 1988) and is now the
focus of active investigation (Park and Friston, 2013; Sporns,
2015; Betzel and Bassett, 2017; Eickhoff et al., 2018). However,
analytic tools needed to investigate multi-scale processing have
yet to be fully developed for independent component analysis
(ICA), a powerful and widely used tool in network analyses.

As an example of multi-scale processing, consider the
following thought experiment. When is a visual stimulus only
processed within the primary visual cortex—on a relatively
small spatial scale? When is it processed widely throughout
the entire visual system—on a larger spatial scale? Under what
circumstances will processing extend beyond the visual system,
perhaps to encompass attention systems as well? While a simple
line displayed on a screen may result in processing localized to
a single circumscribed region, a complex visual recognition task
may result in widespread engagement of occipitotemporal and
occipitoparietal pathways (Kandel et al., 2000).

This simplified thought experiment suggests that the visual
system processes information across a wide range of scales—
from the small to the large. Similarly, other systems feature a
multi-scale organization. Processing can be localized to a small
region, distributed across multiple large-scale networks, or at an
intermediate scale, depending on the properties of the stimuli
(Churchland and Sejnowski, 1988; Sporns, 2015; Betzel and
Bassett, 2017; Eickhoff et al., 2018). In practice, however, most
current analyses investigate neural processing at a single scale by
applying a single region-of-interest atlas or network parcellation.
In these analyses, processing and connectivity occurring at
smaller scales are obscured due to regional averaging. Processing
and connectivity occurring over larger scales may be hidden or
missed by the narrow analytic focus. Additional techniques are
needed to investigate the full range of multi-scale processing.

Multi-scale processing can be investigated using multiple
techniques, such as hierarchical clustering (Doucet et al., 2011;
Yeo et al., 2011; Thirion et al., 2014; Gotts et al., 2020),
hierarchical modularity (Meunier et al., 2009), fuzzy-c-means
clustering (Lee et al., 2012), multi-level k-means clustering (Bellec
et al., 2010), gradient-weighted Markov random field models
(Schaefer et al., 2018), non-negative matrix factorization (Li et al.,
2018), or multi-scale ICA (Iraji et al., 2021). Similarly, multi-
granularity analyses segment the brain into interrelated spatial
scales by applying multiple gray matter atlases (Arslan et al.,
2018; Gong et al., 2018). These results have shown that the
brain is organized as multiple large-scale networks, or intrinsic
connectivity networks (ICNs). ICNs typically encompass regions

from multiple cortical lobes, with smaller subnetworks nested
within in a hierarchical structure. The two largest networks
encompass task-negative regions and task-positive regions.
Within each are nested subnetworks encompassing canonical
large-scale networks such as the default mode network (DMN),
frontoparietal control network (FPCN), and visual network. The
large task-negative network encompasses the DMN as well as the
FPCN (Meunier et al., 2009; Doucet et al., 2011; Lee et al., 2012;
Gotts et al., 2020), while the task-positive network encompasses
visual as well as other primary sensory and attention systems.

Multi-model order ICA (Abou−Elseoud et al., 2010) may
represent an alternative method for multi-scale analyses. In fact,
although ICA does not impose a hierarchy upon the data, ICA
networks nevertheless appear to correspond to a nested hierarchy
of networks. This hierarchical structure is broadly similar to
many network features observed in other analyses (Kiviniemi
et al., 2009; Abou−Elseoud et al., 2010). Multi-model order
ICA was recently extended to investigate dynamic interactions
between multiple scales (Iraji et al., 2021). Additionally, high-
dimensional ICA can reliably estimate neural processing and
connectivity across a wide range of spatial scales, well beyond
the limits of other hierarchical methods. ICA is capable of
reliably and reproducibly estimating 70 networks in a single
analysis (Abou−Elseoud et al., 2010). Even more networks
may be examined using ultra-high-dimensional ICA in analyses
involving 700 networks or more (Iraji et al., 2019). However, ICA
is not without its own limitations, including potential instability
at a very high dimensionality of 100 or more networks.

The overall goal of the current study is to evaluate the
potential of multi-model order ICA as a method for multi-
scale analysis and to address its potential limitations. In the
current investigation, the ICA model order was sequentially
adjusted across a wide range, effectively treating the parameter
as a tuning knob (Betzel and Bassett, 2017). This simple yet
effective approach demonstrates how this widely used network
analysis tool can, without modification, be applied in a multi-
scale analysis.

The specific goals of the current study are to explore
the challenges presented by this approach, including potential
limitations of ICA. The first goal is to determine if low-
dimensional ICA results are in close agreement with the large
meta-networks commonly found using hierarchical methods.
Specifically, the initial partition into task-positive and task-
negative meta-networks has yet to be reported using low-
dimensional ICA. If confirmed, this will establish that the
major features of multi-scale networks are not dependent on
analytic techniques.

The second goal is to investigate the stability of ICA results
at very high dimensionality, including potential contamination
by noise and nuisance artifacts. These artifacts may be present
even in denoised data due to limitations of current denoising
strategies (Parkes et al., 2018). Furthermore, noise and nuisance
artifacts may be increasingly prominent at high dimensionality
due to increasing degrees of freedom in the analysis. ICA model
orders greater than 70 have been shown to be unstable and
unlikely to replicate (Abou−Elseoud et al., 2010). The increasing
instability with model order may be due to the increasing
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prominence of artifacts in higher-dimensional ICA. Currently,
noise and nuisance artifacts are identified using subjective
criteria, such as by visual inspection of ICA spatial maps.
However, visual inspection is time-consuming and infeasible at
high dimensions (De Martino et al., 2007; Sochat et al., 2014).
Easily automated quantitative criteria that measure the same
qualitative attributes used in visual inspection and that identify
the same artifactual signals are necessary to facilitate independent
component analyses at a very high dimensionality. This would
establish that ICA can be utilized to investigate the fine-grained
spatial scales of the hierarchy of networks, in addition to the
coarser spatial scales observable with hierarchical techniques.

We hypothesized that, at a very low dimensionality of fewer
than five components, ICA would result in aggregations of two
or more canonical ICNs as a network of networks, or meta-
network, similar to the task-positive and task-negative observed
using hierarchical methods (Meunier et al., 2009; Doucet et al.,
2011; Lee et al., 2012; Gotts et al., 2020). We also hypothesized
that components representing nuisance signals in the white
matter (WM) or cerebrospinal fluid (CSF) or from artifactual
overfitting [“spikes and bumps” (Hyvärinen et al., 1999; Särelä
and Vigário, 2003)] would be readily identifiable with relatively
simple quantitative criteria based on the qualitative criteria used
in visual inspection. Lastly, we hypothesized that when these
potential artifactual spatial maps are identified and removed from
the analysis, the remaining ICA components would be stable and
replicable with bootstrap stability analysis. If confirmed, these
hypotheses would suggest that ICA can be used to investigate the
full richness of multi-scale processing.

MATERIALS AND METHODS

Subjects
Data used in the preparation of this work were obtained
from the Human Connectome Project (HCP) database1.
The HCP project (principal investigators: Bruce Rosen,
MD, Ph.D. Martinos Center at Massachusetts General
Hospital; Arthur W. Toga, Ph.D., University of Southern
California; Van J. Weeden, MD, Martinos Center at
Massachusetts General Hospital) is supported by the National
Institute of Dental and Craniofacial Research (NIDCR),
the National Institute of Mental Health (NIMH), and the
National Institute of Neurological Disorders and Stroke
(NINDS). Collectively, the HCP is the result of efforts of
co-investigators from the University of Southern California,
Martinos Center for Biomedical Imaging at Massachusetts
General Hospital (MGH), Washington University, and the
University of Minnesota.

Data from healthy participants in the HCP S1200 release2

were included in the current investigation, with “healthy” defined
broadly by the HCP in order to recruit a sample representative
of the general population (Van Essen et al., 2013). Specifically,
subjects were excluded for severe neurodevelopmental disorders

1https://ida.loni.usc.edu/login.jsp
2https://www.humanconnectome.org

(e.g., autism), neuropsychiatric disorders (e.g., schizophrenia),
neurologic disorders (e.g., Parkinson’s disease), and vascular
illness that may negatively impact data quality (e.g., diabetes or
hypertension). Only subjects with available rs-fMRI scans were
included. With these criteria, the sample size for the current
investigation was 1,084 (males = 497, females = 587, mean
age = 28.8 ± 3.7 years). All subjects provided informed consent
(Van Essen et al., 2013).

Imaging Acquisition and Preprocessing
Individual resting-state fMRI scans were acquired and
preprocessed by the HCP. Data were acquired on a Siemens
3T Skyra scanner with a 32-channel head coil. MRI acquisition
parameters [published previously (Smith et al., 2013)] were
as follows: total scan rs-fMRI duration of 15 min with a
multiband acceleration factor of eight and a TR of 720 ms,
resulting in 1,200 volumes with isotropic 2.0-mm voxels.
Preprocessing included gradient distortion correction, head
motion correction, bias field removal, T1-weighted image
registration, intensity normalization, and weak high-pass filtering
(>2,000 s FWHM). Common noise sources, corresponding to
head-motion and cardiac artifacts, as well as signals from CSF
and WM sources were identified and removed using ICA-
FIX by the HCP (Smith et al., 2013; Salimi-Khorshidi et al.,
2014).

Independent component analysis was implemented using
the GIFT toolbox v3.0b3. Resting-state scans were masked
by the whole brain template provided by HCP. Data were
first normalized to voxel variances. Two data reduction steps,
subject and group levels, were applied. Subject-level principal
component analysis (PCA) was estimated with singular value
decomposition, with a final dimension of 300. Group-level
PCA was estimated with Multi Power Iteration [MPOWIT
(Rachakonda et al., 2016)], with a final dimension determined
by the ICA model order. Group ICA was then estimated using
the Infomax algorithm (Bell and Sejnowski, 1995). Following
ICA, whole-brain spatial maps were back-reconstructed for each
ICA component (IC) and each individual subject using GICA3
(Erhardt et al., 2011). IC weights within each spatial map were
centered and scaled by subtracting the volume mean and dividing
by the volume standard deviation.

Independent Component Analysis Model
Spatial ICA represents the data as a linear combination of
statistically independent source signals, with the generative
model (Hyvarinen et al., 2001):

X =
K∑

k=1

aksT
k (1)

where X is an N × V matrix containing fMRI data for N time
points from V voxels, sk is the spatial map of the kth independent
source as a V × 1 vector containing the IC weights, ak is a N × 1
vector containing temporal dynamics for the kth independent
component, K is the number of source signals (i.e., ICA model

3https://trendscenter.org/software/gift/
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order), and uppercase superscript T (e.g., XT) indicates matrix
transposition. If the vectors ak are concatenated into the mixing
matrix A, and similarly with the sk into the source matrix S,
Equation 1 then becomes the more succinct notation X = AS.

When applied to fMRI, group ICA is performed by temporally
concatenating voxel time series across all subjects (Calhoun et al.,
2001). For any single ICA model, K is a fixed parameter, while
ak and sk are estimated simultaneously for all components using
the principle of non-Gaussianity (Hyvarinen et al., 2001). For
the current analysis, separate ICA models were fitted to the data,
with varying model order parameter K in Equation 1. For low-
dimensional ICA, model orders of K = 2, 3, 4, 5, 6, 7, 8, 9, and
10 components were analyzed. Subsequently, model orders of K
ranging from 10 to 300 in steps of 10 were analyzed (i.e., K = 10,
20,. . ., 290, 300 components). To facilitate comparison between
different model orders, ICAK will denote Equation 1 with model
order K.

ICASSO and Bootstrap Reproducibility
ICASSO is a bootstrap resampling method for ICA (Himberg
et al., 2004). ICASSO elegantly resolves the sign, scale, and
permutation ambiguities inherent in Equation 1 that would
otherwise prevent bootstrap resampling. Additionally, ICASSO
provides a powerful measure of IC reproducibility, the bootstrap
stability index Iq. Since Iq is a key technique used in the current
analysis, an overview of ICASSO and the terms used in the
calculation of Iq will be provided in this section.

At each bootstrap replicate, PCA-reduced data from a random
subset of subjects are chosen with replacement (i.e., duplicate data
from the same subject is allowed). All subjects are used to select
the bootstrap sample. The bootstrap sample size is equal to the
original sample size (i.e., n = 1,084). The resulting bootstrapped
dataset is then temporally concatenated and entered into an
ICA with model order K as above. Since ICA components are
unordered, it is initially unclear which bootstrap spatial maps
correspond to which spatial maps in the original data. ICASSO
resolves this ambiguity using hierarchical clustering (Hastie et al.,
2009) to group bootstrap replicates based on their similarity
with spatial maps in the original data. A dissimilarity measure,
based on the absolute value of the correlation between spatial
maps, is used to construct a dendrogram. The dendrogram is
then cut at a level corresponding to the ICA model order K.
This procedure parcellates the set of all spatial maps into disjoint
clusters, with spatial maps within each cluster corresponding to
bootstrap replicates of an original spatial map.

If an IC spatial map is highly reproducible and stable,
its bootstrap replicates will be nearly identical. Consequently,
correlations between these bootstrap replicate spatial maps will
be nearly perfect. Conversely, if an IC spatial map is unstable,
its bootstrap replicates will be highly variable and correlations
between them will be low. This intuition can be formalized using
the bootstrap stability index metric.

The reproducibility of a spatial map under bootstrap
resampling is measured by the stability index, Iq. Let Bk denote
the set of all bootstrap replicates corresponding to the original
spatial map sk, and let #{B} denote the cardinality of set B, i.e., the

number of elements it contains. The bootstrap stability index for
component k is then as follows:

Iq (Bk) =
1
a2
k

∑
i,j∈Bk

∣∣rij∣∣− 1
akbk

∑
i∈Bk

∑
j/∈Bk

∣∣rij∣∣ , (2)

ak = #{Bk}, bk =
∑
l 6=k

#{Bl}.

where rij is the correlation coefficient between spatial maps si
and sj, and | r| denotes the absolute value of r. Descriptively,
the first term in this equation is the average similarity between
bootstrap replicates of the same spatial map, while the second
term is the average similarity with bootstrap replicates of different
spatial maps. Iq(Bk) is equal to one for an ideal cluster with perfect
replication and decreases as the bootstrap replicates of a spatial
map become unstable.

Bootstrap stability index Iq was evaluated using sample
quantiles (Shao, 2003) for each ICA model order. Bootstrap
convergence for each quantile was confirmed by fixing the
ICA model order at 20 and varying the number of bootstrap
replicates from 10 to 100. All quantiles converged with as
few as 20 replicates, with the exception of the minimum Iq
(Supplementary Figure 1). To confirm that this was not affected
by ICA model order, bootstrap convergence was then repeated
at a higher model order of 70 and the number of bootstrap
replicates similarly varied. Again, all quantiles converged quickly
with as few as 20 replicates, with the exception of the minimum Iq
(Supplementary Figure 1). Based on this analysis, 50 bootstrap
replicates were chosen for all ICASSO runs in order to ensure
convergence of all but the minimum Iq across the varying
conditions of the analysis. Statistical inference on Iq quantiles
was carried out by permuting cluster membership 1,000 times per
ICA model order.

Analysis of Component Spatial Maps
The aim of the current investigation was to quantitatively
describe ICA spatial maps across a wide range of model orders.
In this section, the quantitative tools used in the current analysis
will be introduced. In the section “Voxel Inclusion Probabilities
and Volumes”, novel analytic tools, Voxel Inclusion Probabilities,
and resulting Voxel Inclusion Probability Volumes will be
introduced. Voxel Inclusion Probability Volumes are used to
display quantitative measures as a whole-brain statistical map in
subsequent sections. Sections “Independent Component Analysis
Multi-Scale Network Topology” through “Network Subdividing
and Bootstrap Instability” describe the quantitative measures that
will be used in the analysis. Each measure will be introduced
by a motivating research question, followed by a summary of
its interpretation.

Voxel Inclusion Probabilities and Volumes
Voxel Inclusion Probabilities localize quantitative network-level
traits, shared by many ICs, to individual voxels. For example,
displayed in Figure 1 are spatial maps for three ICs. Two
of the ICs represent nuisance sources in the WM and CSF,
while the third spatial map is an ICN centered on visual
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FIGURE 1 | Example Voxel Inclusion Probability Calculation. Shown are spatial maps for three independent component analysis (ICA) components (ICs), each with a
color bar thresholded at the 95th percentile and correlations with cerebrospinal fluid (CSF) and white matter (WM) tissue probability maps. From left to right,
displayed are spatial maps for component number 36 from ICA model order 60 (ICA60,36), ICA270,81, and ICA2,1, respectively. ICA60,36 and ICA270,81 correlated
strongly with CSF and WM, respectively, while ICA2,1 did not correlate substantially with either noise source (rCSF = 0.07, rWM = –0.03). ICA weights for a voxel
marked by an asterisk are mapped onto each color bar. For the first IC, this voxel is less than the cutoff for the 95th percentile (IC weight = 0.09, | cutoff| = 0.26,
range = ± 1.6). For the second IC, the voxel is within the 95th percentile (IC weight = 0.41, | cutoff| = 0.22, range = ± 1.1). For the third IC, the voxel is outside of
the 95th percentile (IC weight = 0.02, | cutoff| = 1.22, range = ± 3.8). Therefore, for this voxel, event A is true for the second IC, while event B is true for the first and
second ICs. The marked voxel then has a probability of 1/2 of being strongly weighted by a noise component, given the three ICs shown. Repeating this calculation
for all voxels and all ICs in the analysis yields the Voxel Inclusion Probability Volumes displayed in Figures 4, 5 and Supplementary Figure 6.

cortices. The goal of Voxel Inclusion Probabilities is to capture
the shared information (informally speaking) of the noise ICs
located at the voxel marked by an asterisk. This is more
challenging than may be apparent due to the sign and scale
indeterminacies in Equation 1, as well as the inclusion of
both noise and non-noise ICs in the analysis. The simple
procedure, developed formally below, consists of three steps.
First, the number of times the voxel is strongly weighted in
a spatial map is determined (event A, indicated by red or
blue segments of the color bars in Figure 1). Second, the
number of spatial maps classified as noise is determined (event
B, based on correlations rCSF and rWM shown underneath
the spatial maps). Third, conditional probability is applied to
quantify what proportion of noise ICs strongly weight the
marked voxel (calculated as 1/2 in this example, as shown on
the bottom of the figure). Finally, when this procedure is

repeated for all voxels, the result is a spatial map showing the
shared features of the noise ICs, such as the prominent third
ventricle in the example (Figure 1). The result is a flexible
and powerful visualization method that can be used to display
arbitrary sets of ICs.

Voxel Inclusion Probabilities are calculated using conditional
probability. From basic probability theory, the conditional
probability of an event A given event B is the joint probability of
events A and B, divided by the unconditional probability of event
B, or Pr{A| B} = Pr{A and B}/Pr{B}. Formally, let v denote a voxel
with IC weight s in component spatial map sk, and let P95 denote
the 95th percentile cutoff from | sk|. Let event A denote the event
{| s| > P95}, indicating that voxel v is in the 95th percentile of a
spatial map. Event B is a criterion or set of criteria on the spatial
map, such as a correlation exceeding a cutoff criterion. The Voxel
Inclusion Probability for voxel v is the conditional probability
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that v is in the 95th percentile of a spatial map, given that the
spatial map satisfies criteria B, which is calculated as follows:

Pr{υεA | B} =
#{A∩B}

#{B}
(3)

Equation 3 is calculated for every voxel within the brain. The
results can then be displayed as whole-brain spatial maps showing
the distribution of heavily weighted voxels satisfying criteria B,
termed a Voxel Inclusion Probability Volume. Equation 3 is zero
for voxels with weak IC weights in all spatial maps meeting
criteria B and obtains a maximum of one for voxels with large
IC weights for every spatial map in B.

Independent Component Analysis Multi-Scale
Network Topology
To compare network topology from ICA to network topology
observed using other methods, results from ICA model orders
of 2–10 were classified by correlating all IC spatial maps with
existing low-dimensional ICN templates (Yeo et al., 2011).
Additionally, ICNs were compared to networks resulting from
other analytic methods with a similarly low model order, such
as hierarchical clustering (Doucet et al., 2011; Gotts et al.,
2020) or modularity (Meunier et al., 2009). A specific ICN
was considered present in the ICA model if any IC correlated
with the appropriate template at p < 0.001, with Family-Wise
Error (FWE) Rate (FWER) controlled using Bonferroni’s method.
Differences in network topology across ICA model orders were
assessed by evaluating changes in the maximum correlation with
the ICN templates.

To demonstrate that a canonical ICN is contained within
the group PCA space, but absent from ICA results at a specific
model order, a Snowball ICA (Hu et al., 2020) was performed.
In this procedure, at each iteration, the most stable IC was
identified using bootstrap stability index Iq, then respective
back-reconstructed spatial maps were subtracted from subjects’
data. ICA was then repeated as before, including data reduction
with PCA, on the subtracted data. Subsequent iterations then
identified and removed the most stable IC from the data and
repeated ICA. This procedure reliably extracts more ICNs than
are initially present in ICA results for a single model order
(Hu et al., 2020).

Identifying Non-neuronal Source Signals
Despite the use of ICA-FIX to remove non-neuronal signals from
the HCP data, residual signals from WM and CSF may remain.
To investigate this possibility, all component spatial maps were
correlated with WM and CSF tissue probability maps from
SPM124 (Ashburner and Friston, 2005). Resulting distributions
of correlation coefficients, rWM and rCSF , were displayed as
histograms. To identify components with spatial maps primarily
located in the WM or CSF, extremum values for rWM and rCSF
were chosen based on the tails of each histogram.

To ensure that resulting extremum cutoff values (| rCSF | > 0.2
or | rWM| > 0.2) identified components primarily located in the
CSF or WM without inadvertently including gray matter voxels,

4https://www.fil.ion.ucl.ac.uk/spm/software/spm12

Voxel Inclusion Probabilities were calculated using Equation 3,
with event A defined as {| s| > P95}, indicating that the voxel
is in the 95th percentile of a spatial map, and event B as {| rCSF |
> 0.2 or | rWM| > 0.2}. Ideally, the Voxel Inclusion Probability
Volumes would encompass primarily CSF and WM voxels with
minimal extension into the gray matter, as verified by overlaying
onto T1 structural volumes.

Identifying Artifactual Source Signals
At high model orders, ICA is potentially prone to artifactual
overfitting. The resulting output takes the form of “spikes
and bumps,” where the spatial map is composed entirely of
single, intense foci limited to a small cluster of voxels and
IC weights near zero outside of this cluster (Hyvärinen et al.,
1999; Särelä and Vigário, 2003). Overfitting artifacts represent
potentially significant confounders in high-dimensional (K > 70;
Abou−Elseoud et al., 2010) or ultrahigh dimensional ICA
(K > 200; Iraji et al., 2019), thus impeding analyses at the
fine-grained scales of the brain’s multi-scale network topology.
Importantly, overfitting ICs are hypothesized to be quantitatively
and qualitatively distinct from the focal gray matter ICs resulting
from ultrahigh dimensional ICA (Iraji et al., 2019).

To identify potential overfitting artifacts, the use of simple
summary statistics on spatial maps was investigated. The
maximum IC weight smax from spatial map sk was calculated:

Smax = maxsεsk | S | (4)

The size of all clusters was calculated as the number of
voxels contained within each cluster above a cluster-determining
threshold, the top 95th percentile of the absolute value of all
IC weights, denoted P95. Let Clu denote the set of all voxels
encompassed by a single cluster, and let v denote a voxel with
IC weight s in spatial map sk. Then, the size of each cluster was
calculated:

Clusize = #{υ : | s |≥ P95, υ εClu}, (5)

with the maximum cluster size, denoted Clumax, as the maximum
of Equation 5. The mean magnitude of voxels outside of the
largest cluster (i.e., the complement of Clumax) was calculated:

µc
=

1
#{υ /∈ Clumax}

∑
υ /∈Clumax

| s | (6)

Using these measures, components resulting from overfitting
were indicated by a high smax, small Clumax, and µc near zero.
Statistical inference on these measures was carried out using (in
order, respectively) order statistics (Shao, 2003), random field
theory (Worsley et al., 1996), and permuting voxel values 100
times per IC across all model orders.

Given the large number of subjects and long scanning time
in the HCP dataset, we hypothesized that overfitting would be
rare for low to intermediate ICA model orders, as reflected
by the above measures. We further hypothesized that, when
these measures were plotted as scatterplots for all components,
resulting clusters of overfitting components would be distinct
from known ICNs and could be quickly and easily identified
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using a simple set of criteria: high smax, small Clumax, and
µc near zero. Visual inspection was used to confirm that ICs
meeting these criteria were distinct from focal ICNs reported
at high-dimensional or ultra-high-dimensional ICA (Iraji et al.,
2019). Lastly, Voxel Inclusion Probabilities were calculated using
Equation 3, event A as {| s| > P95}, and event B as {smax > 6,
and Clumax < 5,000 voxels, and µc < 0.035}. The resulting Voxel
Inclusion Probability Volume displayed the spatial distribution
of components meeting these criteria.

Network Subdividing and Bootstrap Instability
As the ICA model order increases, ICA algorithms subdivide
larger ICNs, such as the Visual Network that encompasses
the primary visual cortex and associated occipitotemporal and
occipitoparietal cortices, into their constituent subnetworks,
such as the primary and secondary visual subregions. This
phenomenon has been referred to as “network splitting”
(Abou−Elseoud et al., 2010). However, this term is largely used
informally and inaccurately conflates a temporal multi-scale
process, that of “splitting,” with a spatial multi-scale topology.
To better reflect the underlying spatial multi-scale biology, the
neutral term “network subdividing” will subsequently be adopted
for the current analysis.

Network subdividing may arise when the number of
independent sources in the data is greater than the model order
K. In this case, ICA can only estimate K components, less than
the true number of sources (Hyvarinen et al., 2001). The ICA
algorithm then necessarily either discards sources or bundles
together independent sources into a single component. As K
is increased, fewer sources are bundled together. Consequently,
when spatial maps from different values of K are compared,
the higher-order model will appear to subdivide a bundled
component in the lower-order model (e.g., the Visual Network)
into independent sources (e.g., the primary and secondary
visual regions).

To investigate the effect of network subdividing on bootstrap
stability, a weighted average of Iq was calculated. Weights
were based on correlation coefficients to the best matching
components from previous and subsequent model orders. To
support the use of a weighted average, consider the ideal case
of a component whose spatial map is unchanged between
ICAK−1 and ICAK , then is evenly divided into two subnetworks
in ICAK+1 (Figure 2). In this case, averaging together all
of the bootstrap stability indices Iq, from each instance of
the component from each ICA model, would provide a
better estimate of the stability of this component, without
the confounding effects of component subdividing on the
stability index. The weighted average bootstrap stability index Iq
generalizes this concept to non-ideal cases by using correlation
coefficients between associated spatial maps as weights.

For a component from ICAK with bootstrap stability index
Iq, correlations were calculated between all spatial maps from the
previous and subsequent models, denoted ICAK−1 and ICAK+1.
Let rK−1 denote the highest magnitude correlation coefficient
from ICAK−1, with associated bootstrap stability metric Iq.K−1.
Since ICNs potentially subdivide into two subnetworks, let rK+1.1
and rK+1.2 denote the two highest magnitudes from ICAK+1

with associated bootstrap stabilities Iq.K+1.1 and Iq.K+1.2. The
weighted average bootstrap stability index for a component is
then calculated:

Īq =

| rK−1 | ∗ Iq.K−1 + 1 ∗ Iq+ | rK+1.1 | ∗ Iq.K+1.1
+ | rK+1.2 | ∗ Iq.K+1.2

| rK−1 | +1+ | rK+1.1 | + | rK+1.2 |
. (7)

(See Figure 2 for a graphical display of this calculation and the
relationship between each variable.) Each term in the numerator
is an unweighted bootstrap stability index Iq calculated with
Equation 2, weighted by the correlation between the spatial maps.
In order in Equation 7, these are the best matching IC from
the previous model ICAK−1, the current component (with a
correlation coefficient of one since a random variable always
correlates perfectly with itself), and the two best matches from the
subsequent model ICAK+1. The denominator is a normalization
factor to ensure the weights sum to one. Compared to unweighted
Iq, weighted average Iq is expected to minimize the effects of
network subdividing on bootstrap stability, since an unstable
component with a low unweighted Iq will correlate highly with
more stable spatial maps from preceding and subsequent models
ICAK−1 and ICAK+1. Statistical inference on Iq was carried
out by permuting cluster membership 1,000 times per ICA
model order.

RESULTS

Independent Component Analysis
Network Topology at Low Model Order
At ICA model order K less than 10, component spatial
maps closely matched previously reported ICNs (Yeo et al.,
2011). Spatial maps closely matched templates for the FPCN,
DMN, Somatomotor Network (SMN), Dorsal Attention Network
(DAN), Ventral Attention Network (VAN), and Visual Network,
as indicated by a high maximum correlation with templates
for each of these ICNs (Table 1). No spatial map correlated
with the Limbic Network template, at any low model order
examined (| r| < 0.08, p > 0.001 uncorrected in all cases). As
K increased, many networks were subdivided into subnetworks.
At ICA5, the Visual Network is subdivided into Central and
Peripheral subnetworks. At ICA8, the FPCN is subdivided into
Right and Left Executive Control Networks (RECN and LECN,
respectively). At ICA10, the SMN subdivided into ventral and
dorsal subnetworks, corresponding to face and body subdivisions
of the somatomotor system, respectively (Yeo et al., 2011).

Several spatial maps notably differed from previously reported
ICA networks, consistent with hypothesized meta-networks. At
ICA2, a spatial map, denoted ICA2,1, encompassed both the
occipital lobe visual system as well as frontoparietal association
regions (Figure 3). This network correlated highly with both
Visual Network (r = 0.47, t1,082 = 17.5, p< 10−5 FWE-corrected)
and DAN templates (r = 0.37, t1,082 = 13.1, p < 10−5 FWE-
corrected). Correlations between ICA2,1 and the DMN template
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FIGURE 2 | Weighted Average Bootstrap Stability Index and Network Subdividing. Shown are a sequence of independent component analysis (ICA) models with
model orders K–1, K, and K+1. A component in ICAK (central purple circle, marked by star) is highly correlated with a spatial map in ICAK− 1 and subsequently
subdivides into two spatial maps in ICAK+1. Due to network subdividing, the bootstrap stability index Iq for this node is low. However, the nearly identical component
in ICAK− 1 is not affected by network subdividing and is consequently highly stable. Edge weights are correlations between spatial maps rK− 1, rK+1.1, and rK+1.2.
The Weighted Average Bootstrap Stability Index (Iq) for the marked node is then an average of the bootstrap stability indices for this network, with weights
proportional to the correlations (rK− 1, rK , rK+1.1, and rK+1.2). Iq is thus better able to estimate the true bootstrap stability of this component, independent of the
effects of network subdividing.

TABLE 1 | Maximum Correlations Between Intrinsic Connectivity Network (ICN) Templates and independent component analysis (ICA) Spatial Maps by Model Order.

ICA model order (K): DMN DAN FPCN Limbic SMN VAN Visual

2 0.08 0.37** 0.48** −0.08 0.12 0.15* 0.47**

3 0.42** 0.41** 0.47** 0 −0.09 0.17* 0.74**

4 0.47** 0.41** 0.47** −0.02 0.56** 0.17* 0.76**

5 0.53** 0.36** 0.5** −0.03 0.62** 0.16* 0.72**

6 0.52** 0.55** 0.44** −0.02 0.62** 0.25** 0.5**

7 0.4** 0.53** 0.41** 0 0.65** 0.3** 0.54**

8 0.42** 0.54** 0.43** 0 0.66** 0.45** 0.5**

9 0.45** 0.47** 0.36** 0.03 0.66** 0.47** 0.43**

10 0.47** 0.43** 0.35** 0.02 0.37** 0.41** 0.43**

All spatial maps from a given ICA model were correlated with a set of seven ICN templates (Yeo et al., 2011), including the Default Mode Network (DMN), Dorsal Attention
Network (DAN), Frontoparietal Control Network (FPCN), Limbic Network, Somatomotor Network (SMN), Ventral Attention Network (VAN), and Visual Network. For each
ICN, the maximum correlation is displayed for each ICAK . Different ICAK show a different set of ICNs, and a sudden increase of the maximum correlation for an ICN
template indicates the appearance of that network within the ICA model. FWE, Family-Wise Error.
*p < 0.001, FWE-corrected.
**p < 10−5, FWE-corrected.

were strongly negative (r =−0.38, t1,082 =−13.5, p< 10−5 FWE-
corrected), consistent with anti-correlations previously observed
between DMN and DAN (Fox et al., 2005).

The second spatial map in ICA2, denoted ICA2,2, primarily
encompassed dorsolateral prefrontal and parietal control
regions and strongly matched the FPCN template (r = 0.48,
t1,082 = 18.0, p < 10−5). Interestingly, major positive
clusters in ICA2, 2 encompassed adjacent regions more
commonly associated with the DMN (Raichle et al., 2001;

Greicius et al., 2003), such as the lateral inferior parietal lobes,
precuneus, and posterior cingulate cortices (Figure 3). However,
the correlation between ICA2,2 and the DMN template was weak
(r = 0.08, t1,082 = 2.4, p = 0.012 uncorrected, p > 0.05 FWE-
corrected). This suggests that this network is more accurately
classified primarily as an FPCN that partially encompasses
the DMN.

Similar extensive networks that encompass more than one
canonical ICN template have not been widely reported in ICA.
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FIGURE 3 | Spatial Maps at independent component analysis (ICA)2. Component ICA2,1 encompassed Visual and Dorsal Attention Network regions (left top and
bottom, respectively). Component ICA2,2 encompassed Frontoparietal Control Network regions (top right), as well as regions more associated with the Default Mode
Network such as the lateral inferior parietal lobes, precuneus, and posterior cingulate cortices (bottom right). Frontoparietal Control and Default Mode Network
templates from Yeo et al. (2011).

However, these results are consistent with the task-positive and -
negative networks from hierarchical clustering analyses (Meunier
et al., 2009; Doucet et al., 2011; Lee et al., 2012; Gotts et al., 2020).
At the highest levels of the connectivity dendrogram, hierarchical
clustering initially separates the brain into Visual/Attention and
Default/Control meta-networks. The spatial maps for ICA2,1
and ICA2,2 suggest that these more extensive networks are
not artifactual or unique to hierarchical clustering but are
reproducible with ICA.

In contrast to hierarchical clustering analyses, ICA spatial
maps were not always neatly subdivided into nested subnetworks
as K increased. Instead, many prominent networks were initially
absent from lower-order models, then appeared seemingly de
novo as K increased. For example, at ICA2 and ICA3, no
spatial map correlated substantially with the SMN template
(Table 1; r < 0.15, p > 0.05 FWE-corrected, in all cases).
Subsequently, at ICA4, a spatial map encompassing the bilateral
primary somatosensory cortices strongly matched this template
(r = 0.56, t1,082 = 22.2, p < 10−5 FWE-corrected). Other
networks present in ICA4, the FPCN, Visual Network, and
DMN, were all relatively unchanged from lower model orders,
as indicated by a relatively constant maximum correlation in
Table 1 (Fischer’s z < 1.06, p > 0.05 uncorrected). In this case,
the SMN was entirely absent from K less than 4, appeared fully
formed at ICA4, de novo, and appeared without precedent at
lower orders. This result suggests that a canonical ICN may
be present within the data, yet may not appear in the results.
Since the number of ICs estimated is determined by ICA model
order, this is likely a consequence of limitations of the ICA
algorithm.

To demonstrate that the SMN is contained within the group
PCA space at low dimensionality, a snowball ICA was performed
(Hu et al., 2020). At each iteration, the most stable IC was
subtracted from all subjects’ data. ICA2 was repeated as before,
including data reduction with PCA, and two more components
extracted. After three iterations, this resulted in an IC strongly

resembling the SMN (Supplementary Figure 2). This IC was
centered on the bilateral pre-central gyri and strongly correlated
with the SMN template (r = 0.51, t1,082 = 19.5, p < 10−5

FWE-corrected). This suggests that the absence of SMN at low
dimensions results from the limitations of the ICA algorithm,
specifically the maximum number of components extracted.

Alternatively, the absence of the SMN at ICA2 and ICA3
may have been due to the limited span of the group PCA
space at these model orders (dimensions 2 and 3, respectively).
Increasing the dimension of the group PCA space to 30
resulted in an entirely new set of components, unrelated to
results from other ICA models (Supplementary Figure 2). The
resulting spatial maps were centered on CSF and parenchyma,
rather than gray matter, and did not include the SMN. This
suggests that different sets of components can be estimated by
the same ICA model order, depending on the parameters of
the model. Furthermore, this suggests that the absence of the
SMN at low model orders was not related to the dimension
of the PCA space.

Network subdividing did not always lead to binary
parcellations of a network into disjoint subnetworks. For
example, a Central Visual Network appeared at ICA5 [r = 0.51
with a template from 17-network parcellation of Yeo et al.
(2011), t1,082 = 19.5, p < 10−5 FWE-corrected], partially
overlapping with the more extensive Visual Network whose
spatial map was unchanged from ICA4. These networks
coexisted over several ICA model orders, with a gradual
rearrangement of the Visual Network into a distinctly
Peripheral Visual Network by ICA9 (Supplementary
Figure 3).

Surprisingly, network subdividing may result in a subnetwork
being temporarily absent from subsequent ICA models, even
while other subnetworks remain. As an example, right and
left dorsolateral prefrontal cortices were encompassed within
the bilateral FPCN at low K. At higher K, this network
was subdivided into lateralized RECN and LECN. In the
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current analysis, ICA7 included a symmetric and bilateral
spatial map corresponding to the FPCN. At ICA8, this
network subdivided into subnetworks, with only the RECN
appearing in ICA8. Left-lateralized frontoparietal control
regions were conspicuously absent from the component
spatial maps of ICA8 (Supplementary Figure 3). Although
a network matching the left-lateralized language regions
of the DMN template was present at ICA8, these regions
did not overlap with the adjacent regions encompassed by
the FPCN template. Subsequently, at ICA9, a spatial map
corresponding to the LECN then reappeared in the ICA model
(Supplementary Figure 3). In this example, an entire canonical
ICN, the LECN, was briefly and unexpectedly absent from
the sequence of ICA models and temporarily disappeared
from the results.

Spatial maps at the most widely used ICA model order, ICA20
(Smith et al., 2009), largely matched commonly reported ICNs
and subnetworks (Supplementary Figure 4; Yeo et al., 2011;
Shirer et al., 2012). The DMN was subdivided into anterior and
posterior ICs, matching previous reports (Abou−Elseoud et al.,
2010; Allen et al., 2011). The SMN was subdivided into dorsal
and ventral subnetworks, while the Primary Visual Network was
subdivided into central and peripheral subnetworks (Yeo et al.,
2011). RECN and LECN subdivisions of the FPCN coexisted with
an IC encompassing dorsolateral prefrontal cortices bilaterally.
While a non-template ICN encompassed the cerebellum, no
other IC substantially encompassed other subcortical regions in
the basal ganglia or cerebellum.

Identifying Nuisance Sources
Nuisance signals located within the CSF and WM were removed
using ICA-FIX (Smith et al., 2013). Despite this precaution,
residual noise sources may remain in the data and become
prominent as K increases. Indeed, at K as low as ICA30, a
component featuring a substantial correlation with the WM
tissue probability map (r = 0.26, t1,082 = 8.9, p < 10−5 FWE-
corrected) was observed, with a similar result for the CSF at K
as low as ICA50 (r = 0.30, t1,082 = 10.3, p< 10−5 FWE-corrected).
However, almost all ICs were uncorrelated with CSF and WM (| r|
< 0.1, | t1082| < 3.3, p> 0.001 uncorrected), with no appreciable
change asK increased (Figure 4). Based on these results, WM and
CSF components appear to be rare, but still present, even after
removal of noise signals with ICA-FIX.

At lower ICA model orders (K < 30), WM and CSF
components can be identified by manual inspection. However,
at higher model orders, manual inspection becomes infeasible
due to the increasingly large number of components. To
facilitate the use of high-order ICA, a method of automatically
identifying noise signals is essential. Based on the above results,
a correlation of | r| > 0.2 is a promising candidate guideline,
corresponding to the 0.1st and 99.9th sample percentiles across
all values of K. The spatial distribution within the brain of ICs
exceeding this cutoff, displayed as a Voxel Inclusion Probability
Volume (see section “Materials and Methods”), indicated that
this guideline captured spatial maps that were heavily weighted
toward WM and CSF, with minimal to no overlap with gray
matter (Figure 4). These results suggest that these nuisance

signals can be automatically identified and removed from high-
order ICA, without inadvertently discarding neuronal sources.

Identifying Source Components
Resulting From Model Overfitting
At high model orders, ICA may overfit the data as well, leading
to artifactual “spike and bump” components (Hyvärinen et al.,
1999; Särelä and Vigário, 2003). These non-neuronal source
signals consist of intensely focal spatial maps, with high IC
weights localized to a relatively small cluster of voxels, and IC
weights near zero for all voxels outside this cluster. To investigate
this possibility, metrics were developed to measure maximum
intensity, largest cluster size, and average weight outside of the
largest cluster (denoted smax, Clumax, and µc, respectively) and
applied to all spatial maps across all ICA model orders. For
each metric, histograms showed a clear bimodal distribution
(Figure 5). Scatterplots of these measures separated components
into two disjoint clusters, with spatial maps corresponding to
known ICNs all associated with one cluster and spatial maps with
“spike and bump” characteristics (high smax, small Clumax, and µc

near zero) associated with the second scatterplot cluster. Based
on Figure 5, “spike and bump” components can be automatically
identified using cutoff criteria of smax > 6, Clumax < 5,000 voxels
(or 40 cm3 by volume), and µc < 0.035.

Individually, spatial maps satisfying any single one of the
above criteria may occur by chance (p = 0.00051 for smax > 6,
p = 0.951 for Clumax < 5,000 voxels, p = 0.093 for µc < 0.035).
However, the combination of all three criteria co-occurring in
a spatial map is highly unlikely (p = 4.45 × 10−5 for the
intersection of all three events). Visual inspection of spatial
maps flagged with these criteria strongly suggested non-neuronal,
artifactual sources (see Supplementary Figure 5 for examples).
All spatial maps flagged by these criteria consisted of isolated
unilateral, narrow, elongated hyperfocal spikes. Foci were rarely
more than three voxels in width, extending for approximately 10
voxels laterally, in the direction of slice acquisition. The “spikes
and bumps” characterization is thus accurate.

The overall concentrated spatial distributions of “spike and
bump” components within the brain were investigated by
calculating Voxel Inclusion Probabilities for the above criteria.
Results were then displayed as a whole-brain spatial map.
Components satisfying these criteria were largely spread diffusely
throughout all tissue types within the brain, consistent with
a non-neuronal origin (Figure 5). However, two prominent
supratentorial spatial clusters were observed, in the right
olfactory and left inferior temporal cortices. Given the
susceptibility of fMRI to magnetic field inhomogeneities in
supratentorial regions (Huettel et al., 2009), these two spatial
clusters likely represent the artifactual signal, although either
from a different origin or intermixed with the hypothesized
“spikes and bumps” overfitting-related artifacts.

Lastly, the specificity of the above cutoff guidelines was
investigated. The spatial distribution of all non-nuisance and
non-artifactual components that did not meet the above
criteria was displayed as a Voxel Inclusion Probability volume.
As expected, the remaining non-nuisance and non-artifactual
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FIGURE 4 | Relationship to Noise Sources. (a) Component spatial maps correlated with white matter (WM) and cerebrospinal fluid (CSF) tissue probability maps and
displayed with independent component analysis (ICA) model order K. Almost all correlations were near zero and unrelated to K. (b). Voxel Inclusion Probability
Volumes (see Equation 3) for spatial maps with either correlation coefficient | rWM | or | rCSF | greater than 0.2. Spatial maps exceeding this cutoff were predominantly
located in WM or CSF, minimally overlapping with gray matter.

FIGURE 5 | (A) Histograms and Scatterplots of Maximum Intensity (smax ), Largest Cluster Size (Clumax ), and Average independent component analysis (ICA)
Component (IC) Weight Outside of the Largest Cluster (µc) for all components. Histograms of all three measures showed bimodal distributions. Scatterplots
demonstrated that components cluster into two disjoint clusters. Components matching known Intrinsic Connectivity Networks [ICNs (Yeo et al., 2011)] were all
located within one cluster (blue stars), while components with overfitting “spike and bump” characteristics (high smax , small Clumax , and µc near zero) were located in
the other scatterplot cluster (blue circle). (B) Voxel Inclusion Probability Volume (see Equation 3) showing the spatial distribution of artifactual spatial maps (blue
square on left). Components resulting from artifactual overfitting were largely spread diffusely throughout all tissue types within the brain, consistent with a
non-neuronal origin. Two prominent supratentorial spatial clusters were observed in the right olfactory and left inferior temporal cortices.

signals were almost exclusively located within the gray matter,
encompassing the entirety of the cortex and subcortical regions
(Supplementary Figure 6).

Summarizing the above results, nuisance and artifactual
signals were identified from ICA spatial maps using a set of
simple criteria: (1) a correlation magnitude with a nuisance tissue
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probability map > 0.2 and (2) a maximum IC weight > 6,
and a maximum cluster size > 5,000 voxels with isotropic
2-mm sides, corresponding to 40 cm3 total volume, and
an average of IC weights of all voxels outside the largest
cluster < 0.035. In the current analysis, criterion 1 was
used to identify WM and CSF components, while criterion
2 was used to identify overfitting artifacts, with all likely
overfitting spatial maps required to satisfy all three individual
conditions. After discarding components meeting these exclusion
criteria, the remaining components should largely represent
non-artifactual sources that capture signals located within
the gray matter.

Bootstrap Stability Across Independent
Component Analysis Model Orders
Bootstrap resampling is a powerful method of estimating
reproducibility by recalculating a statistic using a subset of
subjects and comparing the distribution of the resampled statistic
to the statistic calculated using the full set of subjects (Shao,
2003). In ICA, bootstrap resampling of component spatial maps
is known as ICASSO (Himberg et al., 2004) and the component
stability index measure is denoted Iq. When applied to fMRI, an
Iq averaged over all components in a single ICAK greater than
0.9 is generally considered an acceptable level of reproducibility.
Previous applications of ICASSO, using data sets with fewer
subjects and shorter scan lengths, have suggested an ICA model
order of ICA70 or less for general use (Kiviniemi et al., 2009;
Abou−Elseoud et al., 2010).

The large number of subjects (n > 1,000) and time points
(t = 1,200) in the HCP database may facilitate higher-order
ICA models with an average Iq greater than 0.9 for a given
model order K. To investigate this possibility, Iq was compared
to the full range of K in the current investigation, from 2 to
300. Furthermore, since statistics such as sample average may
be influenced by atypical outliers, and thus not reflective of the
stability of most components, sample quantiles for each K were
used as a summary statistic.

All Iq values for all ICs across all model orders were statistically
significant (p < 0.001, FWE-corrected). Surprisingly, median Iq
and the upper sample quantiles remained virtually unchanged
even as model order increased to ICA300 (Figure 6; median
Iq > 0.95 for K = 2, 10,. . .,300). Even at ultra-high-dimensional
ICA, defined as ICA200 or greater, the majority of components
were highly stable under bootstrap resampling. Also unexpected
was the appearance of unstable components with K as low as
ICA30 (minimum Iq = 0.66). Thus, even low-order ICA on a
large, high-quality dataset may include unstable components in
the analysis. A slow and gradual decrease in the lower quantiles
of Iq was notable, beginning at approximately ICA100. When
averaged across all components in a given model, mean Iq was
above 0.9 up until ICA270 and remained at or above 0.88 until
at least ICA300. These results suggest that unstable components
are likely unavoidable, even at the low ICA model orders
commonly used in fMRI. Furthermore, and despite this, these
results also suggest that the majority of components in ultra-high-
dimensional ICA, with a model order up to 300, are highly stable

and that the average Iq remains very near the accepted standard
of reproducibility.

Bootstrap Stability and Network
Subdividing
Network subdividing refers to when a canonical ICN, such
as the FPCN, appears as a single network at lower K and
subsequently subdivides into subnetworks, such as the LECN and
RECN in the case of the FPCN, as K increases. This concept
is equivalent to hierarchical modularity in graph theory, where
smaller submodules are nested inside larger networks across
multiple scales (Meunier et al., 2009). Although this phenomenon
argues against the perhaps more intuitive view of ICNs as
indivisible fundamental processing entities within the brain, it
is a commonly observed feature in network analyses and may
represent a fundamental topology of complex networks in general
and neurobiology specifically (Churchland and Sejnowski, 1988;
Meunier et al., 2009).

Network subdividing is dependent upon data quality,
including the number of subjects. The lowest bootstrap stability
indices for a given K in Figure 6A may thus represent
components that are on the verge of being subdivided into
subnetworks. In this case, both the larger network and its
subnetworks appear in the bootstrap replicates of a spatial map,
thus obfuscating their similarity and decreasing the measured
bootstrap stability index for a single ICAK . To investigate this
possibility, weighted average bootstrap stability indices Iq were
calculated for all components in all model orders. For each
spatial map, the likely incidence of this component in the
previous and subsequent models was determined based on the
highest correlation values. Iq is then the weighted average of
the associated bootstrap stability indices for the incidence of
the same components, weighted by the correlation coefficients.
Components likely resulting from overfitting (see above) were
excluded from the calculation.

All values of Iq for all ICs across all model orders were
statistically significant (p < 0.001, FWE-corrected). Compared
to unweighted bootstrap stability indices (Figure 6A), Iq
increases measured stability indices of the lower sample quantiles,
especially the minimum Iq, with minimal effect on upper
quantiles (Figure 6B). These results suggest that network
subdividing, occurring in specific components at select ICAK ,
contributes to measured bootstrap stability measures. However,
the continued presence of low values of Iq suggests additional
sources of instability in the ICA model, beyond the ability of this
statistic to correct for.

DISCUSSION

In the current investigation, ICA, when applied to a high-
quality dataset such as the HCP database, was found to be
capable of reliably and reproducibly identifying the full range of
network topology necessary for multi-scale processing analyses.
At the lowest model order, ICA2, results corroborated the
combined Visual/Attention and Default/Control meta-networks
observed in hierarchical clustering analyses (Meunier et al., 2009;
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FIGURE 6 | Bootstrap Stability Indices Iq and independent component analysis (ICA) Model Order K. (A) Unweighted bootstrap stability index Iq, plotted as sample
quantiles in increments of 10 (e.g., bottom lightest shade encompasses minimum to top 10th quantile of Iq at given model order), with the solid blue line showing
median Iq. Upper quantiles remained highly stable even at high K, while lower quantiles gradually decreased. Dashed line: quantiles at K = 20 (i.e., ICA20).
(B) Weighted average bootstrap stability index Iq plotted as sample quantiles and median. Compared to unweighted Iq, weighted average Iq demonstrated fewer
outliers in the lowest quantiles resulting from network subdividing. Dashed line: quantiles at ICA20.

Doucet et al., 2011; Gotts et al., 2020). These large-scale networks
are a combination of two canonical ICNs (Yeo et al., 2011):
the Visual and Dorsal Attention Networks and the DMN and
FPCN. They represent the organization of connectivity within
the brain at the largest known scales and have not previously
been reported using ICA. Consistent with the task-positive
meta-network in hierarchical clustering, the Visual/Attention
Network in ICA was a direct combination of the major features
of both Visual and Dorsal Attention Networks. However, the
Default/Control Network in ICA differed in minor respects from
previous results. In hierarchical clustering analyses, the task-
negative meta-network is a direct combination of the major
features of its constituent subnetworks, encompassing both to an
equal extent. However, in the current ICA, this network appeared
to be largely an executive control network with atypical features,
such as clusters in the precuneus and posterior cingulate cortex,
more strongly associated with the DMN.

Artifactual and nuisance sources were still present in
some ICA models, despite denoising with ICA-FIX (Smith
et al., 2013). This finding is consistent with previously
observed limitations of current fMRI denoising strategies
(Parkes et al., 2018). Application of ICA-FIX reduced, but
did not eliminate, these sources in the data. At all model
orders investigated, artifactual and nuisance components
comprised a minority of ICA components. Importantly, the
overfitting artifacts identified by the criteria given above are
distinct from the focal, locally compact gray matter ICNs
resulting in ultra-high-dimensional ICA (Iraji et al., 2019).
The identification criteria detailed above can be used to
automatically identify and potentially remove these non-
neuronal sources, without requiring manually-intensive
visual inspection of all components at high-dimensional and
ultra-high-dimensional ICA. These criteria are likely overly

conservative when used to identify noise and artifactual
components but are specific to non-neuronal signals and are
unlikely to inadvertently misclassify gray matter sources as
artifactual or noise signals.

Lastly, the reproducibility of all ICA models was high, even
at ultrahigh dimensionality, as demonstrated by the bootstrap
stability indices. Indeed, the very high and unchanging median
bootstrap stability across all model orders was unexpected. In
contrast to ICA, in clustering algorithms, bootstrap instability
was evident at a very low model order of K = 4 and rapidly
increased thereafter (Yeo et al., 2011). Network subdividing likely
decreased measured bootstrap stability indices of lower quantiles,
as shown by the comparison of unweighted and weighted average
stability indices (Figures 6A,B, respectively). However, this likely
reflected the instability of the exact ICAK where the subdivision
occurred, rather than instability in the resulting spatial maps or
underlying biology.

Network subdividing is arguably an inevitable consequence of
multi-scale processing, perhaps even its cardinal feature (Simon,
1962; Meunier et al., 2009). Under this network topology, the
resulting covariance structure within the brain will vary across
multiple scales, resulting in a varying network structure detected
by ICA. In this view, the apparent instability of reported ICA
networks, commonly resulting from analyzing a single ICAK ,
reflects the inadequacy of any single ICA model to fully capture
the richness of processing occurring within the brain.

Importantly and reassuringly, the most widely used ICA
model order, ICA20 (Smith et al., 2009), favored very well in
the above analysis. Unlike at ICA10 or less, all major ICNs or
their known subnetworks were present in ICA20 spatial maps.
Furthermore, bootstrap stability at this model order was high
for all components, even for the minimum bootstrap stability
index. In contrast, at subsequent model orders, at least one IC
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spatial map was unstable, as indicated by the sharp decrease in
minimum Iq evident in Figure 6A starting at ICA30. However,
in the broader context of multi-scale network topology, the
above results suggest that ICA20 is one of many possible scales
at which to investigate connectivity. In this model of neural
processing, no ICA model order is inherently superior or
inferior to any other, provided care is taken to identify non-
neuronal sources, but a deeper understanding of the brain’s
network organization can be gained by focusing on more
than a single scale of inherently multi-scale network topology
(Betzel and Bassett, 2017).

The current approach can be implemented by analyzing
more than one ICA decomposition of the data. This can
be performed by systematically and sequentially increasing
ICA across a range of model orders, as in the current
study, or by analyzing multiple ICA decompositions of the
HCP dataset (Van Essen et al., 2013). The HCP S1200
release5 contains ICA decompositions with model orders of
15, 25, 50, 100, 200, and 300 components. However, this
set of ICA results is incomplete. The current approach
complemented and extended the HCP S1200 release, by
showing the meta-networks present in low-dimensional ICA
beyond those included in the S1200 ICA decompositions.
Additionally, the above results suggested that noise and nuisance
signals are present in the S1200 data in high dimensions,
even after denoising with ICA-FIX. However, these nuisance
and artifactual sources can be identified and removed by
applying the quantitative criteria outlined above to the IC
spatial maps, without inadvertently discarding signals located
within gray matter.

This analysis featured limitations. The term “multi-
scale” does not have a single definition (Betzel and Bassett,
2017). It can refer to multiple topological scales, where
network nodes are analyzed in the context of a hierarchical
topology (Doucet et al., 2011; Betzel and Bassett, 2017;
Iraji et al., 2021). This type of multi-scale organization
can be investigated with a single experimental modality
capable of investigating the levels of a hierarchy, such as
fMRI. Alternatively, multi-scale organization can refer to
the interrelated domains of cognitive neuroscience (van
den Heuvel et al., 2019). This type of multi-scale analysis
encompasses microscopic (e.g., genes and cells), mesoscopic
(cytoarchitecture), and macroscopic (connectivity, systems
neuroscience) scales. This type of multi-scale analysis is
beyond the scope of the current investigation. Importantly,
both definitions are equally valid, and both share a very
similar conceptual approach to understanding the brain
(Park and Friston, 2013).

The spatial resolution of fMRI prevents the investigation
of microscopic scales. The current analysis was limited
to features larger than a millimeter. Notably, networks
encompassed by this scale range in size from millimeters
(voxels), centimeters (specialized cortical regions), and
decimeters (large-scale networks). In addition to these relatively
large scales, neural networks exist at smaller scales. These

5https://www.humanconnectome.org/study/hcp-young-adult

include mesoscopic and microscopic scales not observable with
fMRI (van den Heuvel et al., 2019). The inclusion of network
information from these scales would generate a fuller, richer
model of network topology.

The weighted bootstrap stability index calculation in
Equation 7 assumes that an IC will subdivide into two
subnetworks, rather than three or more. Furthermore,
it only uses stability information from the immediately
preceding and subsequent ICA models. These a priori
assumptions were consistent with known examples of
network subdivision, such as the FPCN into RECN and
LECN. However, the analysis suggests that network subdividing
can result in ICNs that are temporarily absent from the
sequence of ICA models, such as the LECN. Future
investigations will extend the weighted bootstrap stability
index, including more ICs from each level and more levels
of the hierarchy.

In conclusion, ICA results were very stable even at high
and ultrahigh dimensionalities. While nuisance and artifact
sources were present even in the high-quality dataset used
here, these sources represented a small minority of all
component spatial maps at any ICA model order. They
were easily identified using relatively simple criteria calculated
from spatial maps. At very low dimensionalities, ICA resulted
in spatial maps consisting of meta-networks, such as the
Visual/Attention and Default/Control Networks. Lastly, the
above results are consistent with a multi-scale network
topology, where the brain processes information in networks
ranging from the very small to the very large. By varying
the model order, ICA may be able to reliably identify
the richness of neural processing known to occur across
multiple spatial scales.
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