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Abstract

Motivation: Mapping distal regulatory elements, such as enhancers, is a cornerstone for elucidating how genetic
variations may influence diseases. Previous enhancer-prediction methods have used either unsupervised
approaches or supervised methods with limited training data. Moreover, past approaches have implemented enhan-
cer discovery as a binary classification problem without accurate boundary detection, producing low-resolution
annotations with superfluous regions and reducing the statistical power for downstream analyses (e.g. causal vari-
ant mapping and functional validations). Here, we addressed these challenges via a two-step model called Deep-
learning framework for Condensing enhancers and refining boundaries with large-scale functional assays
(DECODE). First, we employed direct enhancer-activity readouts from novel functional characterization assays, such
as STARR-seq, to train a deep neural network for accurate cell-type-specific enhancer prediction. Second, to improve
the annotation resolution, we implemented a weakly supervised object detection framework for enhancer localiza-
tion with precise boundary detection (to a 10 bp resolution) using Gradient-weighted Class Activation Mapping.

Results: Our DECODE binary classifier outperformed a state-of-the-art enhancer prediction method by 24% in trans-
genic mouse validation. Furthermore, the object detection framework can condense enhancer annotations to only
13% of their original size, and these compact annotations have significantly higher conservation scores and gen-
ome-wide association study variant enrichments than the original predictions. Overall, DECODE is an effective tool
for enhancer classification and precise localization.

Availability and implementation: DECODE source code and pre-processing scripts are available at decode.
gersteinlab.org.

Contact: pi@gersteinlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcriptional regulation in eukaryotes is the most common and
fundamental form of gene regulation for maintaining cell identity
during differentiation, determining how cells or organisms respond
to intra- and extra-cellular signals, and coordinating various cellular
activities (Cramer, 2019; Sperling, 2007). It undergoes precise spa-
tial and temporal regulation via complex interactions of numerous

cis-regulatory elements, such as enhancers and promoters, transcrip-
tion factors (TFs) and chromatin remodelers (Abeel et al., 2009;
Dao and Spicuglia, 2018; Jothi et al., 2009; Klemm et al., 2019;
Lewis et al., 2019). Hence, enhancer discovery is a cornerstone for
understanding transcription control and gene regulation.

The computational methods traditionally utilized for enhancer
discovery mainly fall into two categories. First, some methods use
the combinatory patterns of various epigenetic features within a
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genomic region (e.g. 200 bp bins) to infer the existence of enhancers
with unsupervised approaches (Ernst and Kellis, 2012; Hoffman
et al., 2012; Moore et al., 2020). These methods use unlabeled data-
sets to characterize chromatin states and require human interpret-
ation of the discovered states. They are highly transferrable for
predicting enhancers in a new cell type because the epigenetic pat-
terns are preserved across cell types (Boyle et al., 2014). However,
the simple combinatory, and usually binary, epigenetic patterns may
not fully capture the complexity of transcriptional regulation.
Second, some methods employ supervised approaches to identify
target regulatory elements using hypothetical enhancer loci or a lim-
ited number of validated enhancers, which are underpowered for
training a reliable model for accurate prediction (Alipanahi et al.,
2015; Chen et al., 2018; Li et al., 2018; Lu et al., 2015; Min et al.,
2017; Tang et al., 2020). Moreover, we recently developed a linear
predictive model based on shape-matching filters from multiple epi-
genetic features trained from genome-scale STARR-seq experiments
on Drosophila (Sethi et al., 2020). However, almost all existing
methods can only make binary predictions within a given region
(>200 bp) and do not have a high enough resolution for more pre-
cise enhancer localization and boundary detection. Previous studies
have shown that enhancers can range from 50 to 1500 bp long (Dao
et al., 2017; Li and Wunderlich, 2017). Hence, current enhancer
annotations usually contain both active enhancer regions and super-
fluous non-functional regions, introducing noise and reducing statis-
tical power for downstream analyses such as casual variant mapping
and functional validation.

Distinct from previous binary classification efforts, we reformu-
late the enhancer discovery problem into a weakly supervised object
detection problem originated from computer vision by answering
two questions: (i) Is there an enhancer within a given genomic re-
gion? (ii) If yes, exactly where is it? To accomplish these tasks, we
take advantage of recent advances in functional characterization
assays and utilize direct human enhancer activity readouts from
STARR-seq experiments as fuzzy ground-truth labels (Muerdter
et al., 2015). First, we propose a deep convolutional neural network
(CNN) based on a simple but validated hypothesis—the magnitude,
shape patterns and cross-coordination of epigenetic features are im-
portant aspects in characterizing the identity of an enhancer
(Schmidhuber, 2015). Concretely, we hypothesize that the inter-
action of open chromatin and histone marks provides a platform for
TF binding, which allows epigenetic features to be predictive of
enhancers (Spitz and Furlong, 2012). Second, we add a weakly
supervised object detection module to precisely localize the target
enhancer in the input genomic region. Specifically, we use the visual
explanations created by Gradient-weighted Class Activation
Mapping (Grad-CAM) for interpreting decisions from CNNs, which
allows us to impute high-resolution enhancer coordinates that were
never exposed to the model during training from fuzzy and coarsely
labeled STARR-seq data (Selvaraju et al., 2017).

In the following sections, we describe our weakly supervised
Deep-learning framework for Condensing enhancers and refining
boundaries with large-scale functional assays (DECODE) imple-
mented in Python with TensorFlow. We performed extensive bench-
marking using cell-line and transgenic mouse tissue validation data,
and demonstrate that DECODE outperforms the state-of-the-art en-
hancer discovery models. We also validated the regulatory impact of
our refined enhancer annotations using phylogenic conservation
scoring, rare single-nucleotide polymorphism (SNP) enrichment and
genome-wide association study (GWAS) variant enrichment via
stratified linkage disequilibrium score regression (LDSC).

2 Materials and methods

We structured the task of cell-type-specific enhancer discovery as a
weakly supervised object detection problem with two modules.
First, we constructed a CNN binary classifier to predict the exist-
ence of enhancers. The model takes a matrix of high-resolution epi-
genetic features over a large genomic window as input. Second, we
developed an object detection module to locate the enhancer boun-
daries in the positive genomic windows based on the most

informative subset of epigenetic features indicated by Grad-CAM.
With a trained model, we can carry out cell-type-specific enhancer
discovery in a novel cell type with common epigenetic profiles and
obtain high-resolution core enhancer coordinates. We benchmarked
and validated our framework using various internal and external
evaluation metrics. By evaluating through different biological per-
spectives, we demonstrate DECODE’s ability to generate high-qual-
ity cell-type-specific enhancer annotations with a strong regulatory
impact.

2.1 Training data processing
We collected STARR-seq data for five human cell lines (HepG2,
K562, A549, MCF-7, HCT116), along with chromatin accessibility
(ATAC-seq and/or DNase-seq) and ChIP-seq for H3K27ac,
H3K4me3, H3K4me1 and H3K9ac, from the ENCODE data portal
(Appendix Table A1) (ENCODE Project Consortium and others,
2004). To call STARR-seq peaks, we applied STARRpeaker, which
adjusts for GC content and RNA thermodynamic stability during
peak calling (Lee et al., 2020). STARR-seq peaks overlapping with a
chromatin peak and a peak of an active histone enhancer mark were
defined as active enhancers and were considered positive training
samples (Zhang et al., 2008). Negative regions were down-sampled
from the background at a 1:10 positive to negative ratio. The posi-
tive and negative samples were extended to 4 kb, and the signals
were aggregated over 10 bp bins.

The resolution of signal aggregation determines the precision of
boundary detection. Here, every value in the input matrix represents
the average epigenetic signal of a 10 bp bin. In the end, each input
value is assigned a Grad-CAM importance score. Hence, filtering by
the importance score obtains core enhancers at a 10 bp resolution. It
is possible to extract higher-resolution signals for higher precision,
but 10 bp was the experimentally determined optimum resolution
and the highest resolution for most ChIP-seq experiments.

For the ATAC-seq version, there were 211 097 STARR-seq
peaks and 459 321 ATAC-seq peaks for both (HepG2, K562) cell
types. Only 25 420 of the STARR-seq and ATAC-seq overlap
regions intersected with another ChIP-seq, which were selected as
the positives. For the DNase-seq version, there were 912 967
DNase-seq peaks for all five cell types. Only 73 271 of the STARR-
seq and ATAC-seq overlap regions intersected with another ChIP-
seq, which were selected as the positives. For the selected positive
regions, we observed a distinct signal shape for each assay. The peak
in chromatin accessibility and peak-trough-peak in other histone
marks validate our selection for the training regions and provide a
basis for CNN pattern recognition (Fig. 5).

2.2 Binary classifier construction
As shown in Figure 1, the model is a ResNet-inspired CNN that con-
tains convolutional layers, pooling layers and dense fully connected
layers (He et al., 2016). The input is a data matrix (of size 5�400)
containing values from the signal tracks of the five epigenetic assays
extracted from a 4 kb region by aggregating the signals over 10 bp
bins. Each value in the input matrix represents the signal of an epi-
genetic assay at a genomic location. We use only epigenetic features
because they are more generalizable compared to sequence-based
features, especially when transferring predictions to unseen cell
types (Zhou et al., 2011). Our model contains seven convolutional
layers, each of which uses its k convolutional filters to produce k ac-
tivation maps of width i and height j: Ak 2 Ri�j with weights Wk

and bias Bk from an input X in layer l.

Ak; l ¼ Wk �Xl þ Bk (1)

The first several convolutional layers extensively capture altitude
and shape-based features from either chromatin accessibility or
ChIP-seq with different convolution filters. Moreover, the filters
blend signals across different tracks to allow for combinatorial fea-
ture extraction. Then, max-pooling layers are used to reduce the
number of parameters and abstract features trained in the previous
convolutional layers. If h; w denotes the dimensions of a pooling
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operation, then max-pooling over the activation map takes the max
value of each h; w window to produce an output of size X lþ1 2
Rði=wÞ�ðj=hÞ as input for the next layer.

Xlþ1 ¼ max� poolingðAk; lÞ (2)

We hypothesize that the interaction of open chromatin states
and histone marks coordinate TF binding in enhancers (Spitz and
Furlong, 2012). Therefore, we placed chromatin accessibility in the
middle of the input data matrix to allow for maximal interaction
with other histone marks. The first few filters have a kernel size of
5�10 in order to span all five assays. With padding removed, the
features are then convoluted and down-sampled to one dimension to
represent linear genomic windows. Further convolutions on the lin-
ear feature use a one-dimensional (1D) filter of size 1�4. The pooled
layers are then fed into fully connected layers to make a sigmoid pre-
diction on the probability of enhancers being in the region.

PðenhancerÞ ¼ 1=ð1þ e�XÞ (3)

Between every convolution layer are squeeze-and-excitation
blocks that calculate the residual features and act as a gate for how
much original feature is passed through (Hu et al., 2018).

2.3 Object boundary detection via weakly supervised

learning framework (Grad-CAM)
We operationalized the task of enhancer localization using a weakly
supervised object detection method in computer vision. Grad-CAM
extracts the implicit localization of the target from classification
models and obtains a high-resolution subset of the image with the
most informative content regarding the target (Selvaraju et al.,
2017). For a genomic region with a positive classification, we used
Grad-CAM to extract the implicit enhancer localization as a subset
of the original input genomic region, thereby increasing the

resolution of our core enhancer annotations (Fig. 2). Utilizing Grad-
CAM to revisit the positive predictions can refine our annotations
by finding the most salient enhancer regions. Further, our method is
much more interpretable compared to previous supervised black-
box prediction models because we can trace and visualize the pro-
cess of decision-making in our network.

During the training process, each convolutional filter learns to
extract features that are important in accurately predicting
enhancers in the genomic window and outputs an activation feature
map. Each activation feature map highlights genomic regions that
contain important features for enhancer prediction. Superimposing
all activation feature maps sums together all the highlighted regions
and forms a silhouette of locations, with respect to the original in-
put, that activated the greatest number of neurons in our neural net-
work, thereby extracting the implicit localization information
underlying a classification task.

In detail, we produce a scalar importance score for each activa-
tion map using the global-average-pooled gradient of the positive
class with respect to the feature map activation (Equation 4).

Fig. 1. DECODE Model Schematics: DECODE has three major components. First, the model uses epigenetic features and low-resolution STARR-seq peaks as training data.

Second, it uses the epigenetic profiles to predict the presence of enhancers with a CNN. The architecture is composed of two sets of convolution-pooling layers followed by

two dense layers. The input consists of a matrix of signals from five epigenetic experiments. The output is a sigmoid probability of the 4 kb input region containing enhancers.

Third, feature-wise and position-wise Grad-CAM scores are calculated for interpretability and boundary detection. Position-wise Grad-CAM scores are used to extract the

refined enhancer regions

Fig. 2. Grad-CAM for Enhancer Localization: After a positive prediction, we can

use Grad-CAM to extract epigenetic features and genomic locations that were im-

portant in making the positive prediction. By superimposing activation maps (Ak; l)

weighted by an importance score (ak), Grad-CAM maps highlight the most salient

features in making a final output, which we used to generate high resolution core en-

hancer annotations
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(4)

We use the scalar importance scores as weights for the linear
combination of all k activation feature maps. We then multiply each
importance score with its respective activation feature map and sum
element-wise over all activation feature maps in the layer. Next, we
apply RELU to filter for only positive values, and interpolate to ob-
tain a Grad-CAM score map of size i� j, the same size as the input
of the convolutional layers (Equation 5).

Lc¼1
Grad�CAM ¼ ReLU

X
k

ac
kAk; l

� �
(5)

Grad-CAM maps can be generated for different convolutional
layers in our architecture. Concisely, the Grad-CAM map from the
last 1D convolutional layer is a 1D map, or a position-wise score,
describing the highest-level feature importance of each 10 bp bin in
the genomic window. To refine our predictions, we use the position-
wise score to select a subset of the input region (or a subset of the
10 bp bins) that corresponds to a high Grad-CAM score. Here, our
cutoff is set as the average Grad-CAM score over all positive genom-
ic positions; hence, the filtering is performed after all predictions
have been processed by Grad-CAM. Furthermore, Grad-CAM maps
can also be generated using gradients from the first few convolution-
al layers to observe how much each epigenetic assay contributes to a
positive prediction, or a feature-wise score. We constructed our cus-
tom CNN such that the high- and low-level Grad-CAM maps cor-
respond to position-wise or feature-wise biological interpretations,
respectively. This enables us to study the epigenetic features of
enhancers by visualizing and interpreting the process of decision-
making of our model.

2.4 Model training configurations
We used the Adam optimizer at a learning rate of 5e-5 and added
dropout layers to prevent overfitting. The model is set to train for
100 epochs, but we included early stopping with monitoring of val-
idation loss to prevent overfitting. The data was split 80–20 for
training and validation. We also added class weights to address the
1:10 positive and negative sample imbalance in our dataset.
Training and model prediction were accelerated using NVIDIA
Tesla K80 GPUs.

2.5 Enhancer challenge data for benchmarking against

the state-of-the-art model
We used transgenic mouse enhancer data from the VISTA enhancer
database to benchmark against the state-of-the-art method (Visel
et al., 2007). Hypothesized enhancers were cloned into a plasmid
with a promoter and lacZ reporter gene, which were injected into
mouse embryos. After reimplantation with surrogate mothers, the
transgenic embryos were collected at e11.5 to score for enhancer ac-
tivity. Target regions were considered positive for enhancers if at
least three transgenic embryos had reporter-gene expression across
three sample tissues and were considered negative if we observed no
reproducible pattern across at least five samples. Tissue-specific
enhancers were pooled from all six tissues (forebrain, heart, hind-
brain, limb, midbrain, neural tube). In order to mediate cross-species
effects, DECODE was trained with all available human cell line
data, and then fine-tuned with out-of-sample mouse enhancers.

2.6 Cell-line case study evaluation
We utilized a variety of methods to evaluate the accuracy of our
supervised model and the regulatory impact of our core enhancer
annotations. As a case study, we predicted enhancers in neural pro-
genitor cells (NPCs), which lack STARR-seq data. These cells play
an important role in psychiatric disorders.

The NPC signal tracks for DNase-seq and four active histone
marks (H3K27ac, H3K4me3, H3K9ac, H3K4me1) were down-
loaded from the ENCODE portal. We created sliding windows of
size 4 kb with 500 bp steps across the whole genome. For DECODE

classifier input, the average signal was extracted for 10 bp bins in
each genomic window. After classification, the positive 4 kb genom-
ic windows made up the original annotation. We then applied Grad-
CAM to refine each positive 4 kb window to define our core enhan-
cer annotation.

GWAS LDSC Enrichment: We characterized the disease-variant
impact of our NPC annotations by calculating stratified LDSC en-
richment from GWAS (Bulik-Sullivan et al., 2015). LDSC regresses
the chi-square statistics ðX2Þ with the linkage disequilibrium (LD,
r2) to estimate the heritability in a disease-specific manner. This
method calculates the partitioned heritability of certain regions or
annotations using GWAS summary statistics. We utilized LD scores
from the 1000 Genomes Project and GWAS summary statistics from
Bulik-Sullivan et al. and the Psychiatric Genomic Consortium (Siva,
2008; Turley et al., 2018).

Conservation Score Analysis: We measured inter- and intra-spe-
cie conservation by 100-way PhastCons and rare derived allele fre-
quency (DAF) SNP enrichment, respectively. The PhastCons score is
a phylogenetic hidden Markov model trained on genetic sequences
across 100 different species and quantifies the conservation of a
given genetic annotation (Yang, 1995). We calculated the ratio of
DAF (<0.5%) SNP enrichment using SNPs from the Genome
Aggregation Database (gnomAD) and Pan-Cancer Analysis of
Whole Genomes (PCAWG) resources (Campbell et al., 2020;
Karczewski et al., 2020).

3 Results

In contrast to traditional enhancer classification methods, we refor-
mulated enhancer discovery into a two-step weakly supervised ob-
ject detection problem. Specifically, we first utilized the direct
enhancer activity readout from novel functional characterization
assays to train a deep neural network. Sections 3.1 and 3.2 demon-
strate the ability of our deep learning binary classifier to make ac-
curate predictions. Then, for the object detection module, we used
Grad-CAM to define high-resolution enhancer boundaries; Sections
3.3–3.6 describe our results for enhancer localization. In short, we
applied our two-step DECODE model to various real-world datasets
for comprehensive performance benchmarking and demonstrate its
benefits in constructing compact genome annotations to facilitate
variant interpretations.

3.1 The DECODE binary classifier is a transferrable

model for accurate cell-type-specific enhancer

prediction
A trained binary classifier can predict enhancers on sliding windows
across the genome. We merged and shuffled positive- and negative-
labeled data from all cell types to train a binary classifier for predict-
ing the existence of enhancers in any given 4 kb genomic region
using cell-type-matched epigenetic features (details in Section 2.4).
To verify our results, we performed fivefold cross-validation by par-
titioning the merged data into fivefolds and iteratively using each
fold as the out-of-sample validation set. High out-of-sample area
under the receiver operating characteristic curve (auROC; ATAC-
seq: 0.999, DNase-seq: 0.998) and area under the precision-recall
curve (auPRC; ATAC-seq: 0.972, DNase-seq: 0.989) metrics dem-
onstrate that the binary classifier module in DECODE can accurate-
ly predict enhancers using combinatory epigenetic features. In
addition, we did not observe any divergence between training and
validation loss during backpropagation. Moreover, the validation
metrics remained high across all folds (>0.95), suggesting that there
was no overfitting under our training configurations.

In real-world scenarios, a model would predict enhancers in cell
types that it has not yet seen during training. Therefore, we further
tested the robustness of the DECODE binary classifier in transfer-
ring the learned features to new cell types. We also performed leave-
one-chromosome-out cross-validation to evaluate the process by
which DECODE generalizes to new genomic loci (Schreiber et al.,
2020). By leaving out one cell type or chromosome for validation,
we trained the model using the rest of the cell types (for both
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ATAC-seq and DNase-seq) or chromosomes (for DNase-seq only)
and evaluated it using the out-of-sample cell type or chromosome.
Similar to the validation performance from merged data, we
observed consistently high cross-cell-type and cross-chromosome
validation metrics, demonstrating our model’s ability to transfer its
predictions across cell types and genomic loci (Fig. 3). For instance,
our DECODE model trained on DNase-seq and four other ChIP-seq
datasets achieved consistently high validation auROC (0.996–
0.999) and auPRC (0.954–0.998) scores. Cross cell-line perform-
ance remained high even when using ATAC-seq for chromatin ac-
cessibility. Therefore, our DECODE model can accurately predict
enhancers and robustly transfer the predictions onto novel, unex-
plored cell lines and loci.

3.2 Decode outperforms an existing state-of-the-art

method on experimentally validated mouse enhancers
In addition to making accurate predictions for internal evaluations,
we further compared the efficacy of our model with existing meth-
ods on an external experimentally validated dataset. To do so, we
applied the DECODE binary classifier on 3244 experimentally vali-
dated regions from six mouse tissues, which were also used in the of-
ficial ENCODE enhancer challenge. Specifically, we downloaded
the signal tracks for the five epigenetic features from the ENCODE
portal, extracted the signals for each given region as input, and pre-
dicted for the existence of enhancers using our trained model. We
compared our predictions with Matched-Filter, a leading method in
the ENCODE enhancer challenge (Sethi et al., 2020).

As shown in Figure 4, our DECODE model obtained an average
auPRC of 0.46, which was 24% higher than the auPRC of
Matched-Filter on the same dataset (Fig. 4a). It is also worth point-
ing out that DECODE outperformed Matched-Filter in all six tissues
with a decent margin. Specifically, our model demonstrated higher
auROC scores ranging from 0.82 to 0.85 in all six tissues (versus
0.76–0.85 for Matched-Filter) and noticeably improved auPRC
scores (0.39–0.57 in DECODE versus 0.27–0.43 in Matched-Filter)
with an average margin ranging from 0.02 to 0.18.

Two main reasons could explain DECODE’s improvement in
performance over existing methods. First, we used genome-wide
large-scale training data from direct human enhancer readouts of
five cell types compared to the Drosophila data used for the training
of Matched-Filter. This allows our model to recognize more compli-
cated features that are important for enhancer predictions. Second,
we believe the interactions among epigenetic features guarantee ac-
tive regulatory activity in functional enhancer regions, which has

been demonstrated in previous literature (Spitz and Furlong, 2012).
As a result, we designed the convolutional filters in our deep learn-
ing framework to span multiple epigenetic marks to model non-lin-
ear epigenetic interactions. In contrast, Matched-Filter considers
epigenetic marks independently with its linear support vector ma-
chine-based methods. The capacity of DECODE to learn complex
combinations of features provides the basis for achieving better per-
formance than the current state-of-the-art method (Supplementary
Figs S4 and S5).

3.3 DECODE’s object detection module generates

interpretable visual explanations for enhancer

boundary refinements
After demonstrating the efficacy of DECODE’s binary classifier for
accurate enhancer predictions, we seek to uncover more information
regarding the basis of neural network decisions through our weakly
supervised framework. The DECODE object detection module
extracts interpretable feature-wise and position-wise importance
scores as a visual explanation. Here, we examine the benefits of fea-
ture-wise importance scores generated by Grad-CAM from the
lower-level convolutional layers.

Grad-CAM uses gradients to identify input locations that acti-
vate the greatest number of neurons in a given layer. We extracted
the feature-wise Grad-CAM scores from the positive training sam-
ples to assess the basis of model predictions. A high feature-wise
Grad-CAM score corresponds to higher importance placed on that
epigenetic feature. Grad-CAM scores peak at the center of the 4 kb
windows for each epigenetic assay (Fig. 5), which corresponds to the
greatest amount of regulatory activity as indicated by the original
signal. This result shows that DECODE predicts the presence of
enhancers using highly active regulatory regions.

Next, we compared the Grad-CAM scores across different epi-
genetic features to show that our model prioritizes key features for
enhancer prediction. As shown in Figure 5, DNase-seq and
H3K27ac ChIP-seq demonstrate the highest Grad-CAM scores
(mean at center >0.35) as compared to other features (mean at cen-
ter <0.25), indicating their important role in defining enhancers in
the genome. Our findings recapitulate known biology, as these fea-
tures were also used in the official ENCODE3 encyclopedia annota-
tion (Moore et al., 2020). In contrast, H3K4me1 exhibited the
lowest feature-wise Grad-CAM score (mean from 0.05 to 0.2),

Fig. 3. DECODE training and testing performance: Out-of-sample validation per-

formance metrics for each cell type (for ATAC-seq and DNase-seq) and chromo-

some (for DNase-seq only)
Fig. 4. Benchmarking Against Matched-Filter-Based Model: We benchmarked our

trained model against the state-of-the-art model using transgenic mouse enhancers.

DECODE produced validation metrics (a, auROC; b, auPRC) that outperformed

the state-of-the-art model in all tissue types
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which implies that it played a relatively less important role in our
model decision.

3.4 DECODE provides high-resolution enhancer

boundary localization
Position-wise Grad-CAM importance scores from DECODE’s ob-
ject detection module can be used to interpolate high-resolution cell-
type-specific enhancer coordinates and condense the annotation of
an enhancer to its core functional regions. In contrast, this feature is
missing in most existing methods.

To demonstrate this function, we utilized DECODE to predict
compact enhancers in NPCs, which play important roles in neurode-
velopment and have been implicated in a wide variety of psychiatric
disorders (Castrén, 2014; Das et al., 2020). Specifically, we utilized
the five epigenetic marks on NPCs to predict enhancers using our
DECODE framework trained on all available data (see details in
Section 2.4). We divided the genome into 4 kb windows with 500 bp
steps between each window. The corresponding epigenetic signals
were extracted at a 10 bp resolution from each window as inputs to
our model. Windows with a binary classifier output greater than 0.5
were identified as positive predictions. In total, we identified
1 515 431 overlapping windows across the genome, and 1.1%
(17 622) among them showed predicted enhancer activities. We
merged the positive predictions to create the original prediction set,
which contained 16 522 elements with a mean length of 4188 bp.

To condense the annotation using DECODE’s object detection
module, we extracted the position-wise Grad-CAM scores from the
positive regions for each 10 bp bin (Fig. 7a). Bins with Grad-CAM
scores larger than the mean across all windows were merged to cre-
ate the refined set. This process resulted in a total of 23 505 refined
positive elements with a mean length of 371 bp.

In Figure 6, we show an example positive genomic window
(chr1:8680000–8684000) and its feature-wise and position-wise
Grad-CAM values. The example shows the process by which high-
level position-wise scores are derived from low-level feature-wise
scores, which increases interpretability by tracking neuron activa-
tion through our neural network classifier.

In addition, the true enhancer in the example is shifted to the
right of the genomic window. Due to the lack of a quantitative
boundary detection algorithm, most existing methods take the entire
input window as an enhancer region, which potentially confounds
various downstream analyses such as validation region selection and
disease causal variant mapping. In contrast, the object detection
module in our DECODE model does not rely on interpolating from
the center, but rather localizes enhancer coordinates based on the
importance of the loci using the Grad-CAM outputs. Therefore, we
are still able to rescue the shifted enhancers and discover true func-
tional regions with high regulatory impacts.

This boundary detection module can remove a significant por-
tion of the noise regions in our enhancer prediction and noticeably
condense our genome annotation. For instance, analysis on the
refined set shows that it is only 12.6% in coverage as compared to
the original set but includes a disproportionately large amount

(71%) of transcription start sites, which indicate a more enriched
transcriptional regulatory footprint (Fig. 7b). In the following sec-
tions, we demonstrate the compactness of the refined set through
conservation and GWAS variant enrichment analysis.

3.5 DECODE’s compact enhancer predictions are highly

conserved across species and populations
To test whether the object detection module accurately selects true
regulatory regions, we compared cross-species conservation scores
of the original and refined enhancer regions. If the enhancer annota-
tions serve important regulatory functions, then those annotations
should be conserved, as any negative mutations would increase the
likelihood of disadvantage phenotypes that eliminate that allele
from the gene pool. Hence, higher conservation usually indicates
higher enhancer quality (Yang, 1995).

Specifically, we downloaded the 100-way PhastCons signals and
calculated the average PhastCons conservation scores within each
original and refined region. The median PhastCons score in the
refined regions was 0.117, which is significantly higher than those in

Fig. 6. Feature-wise and Position-wise Grad-CAM Values: (a) 5-D and (b) 1-D

Grad-CAM justification of a positive prediction

Fig. 5. Feature-wise Grad-CAM score: Original signal (top row) and feature-wise Grad-CAM score (bottom row) over a 4 kb window for the five types of input epigenetic

marks
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the original regions (median 0.092, one-sided Wilcoxon test
P<0.001, Fig. 7c). The original regions also exhibited higher con-
servation compared to other existing annotations [i.e. ENCODE
NPC candidate cis-regulatory elements (cCREs), FANTOM human
enhancers and FANTOM neuronal stem cell enhancers;
Supplementary Fig. S1].

We further evaluated the quality of our compact enhancer anno-
tation from DECODE via the enrichment of rare variants with a
simple but validated assumption—key functional regions in the gen-
ome are under strong negative selection and hence are depleted in
common variants (Fu et al., 2014; Zhang et al., 2020b). Therefore,
we compared the rare variant enrichment in the refined and original
positive enhancer regions (and against ENCODE NPC cCREs,
FANTOM human enhancers, FANTOM neuronal stem cell
enhancers in Supplementary Fig. S2). Specifically, we downloaded
the entire human genetic variation set from gnomAD and PCAWG
(Campbell et al., 2020; Karczewski et al., 2020), and defined rare
variants as those with a DAF less than 0.5% over the entire popula-
tion. We calculated the percentage of rare variants within each
merged annotation set. The refined enhancer regions demonstrated
significantly higher percentages of rare variants in both the gnomAD
and PCAWG dataset. For instance, we observed a rare variant per-
centage of 0.922 and 0.857 in gnomAD and PCAWG, respectively;
this number decreased to 0.910 and 0.843 for the original positive
input regions (P < 10�322:5 for binomial test in both datasets).

Altogether, the condensed compact enhancers refined in our
model showed higher cross-species and cross-population conserva-
tions, indicating DECODE’s ability to remove noisy regions in our
enhancer predictions and provide high-quality genome annotations.

3.6 Compact enhancer annotations predicted by

DECODE can better explore GWAS variants in

neurodevelopmental and psychiatric disorders
Disease-causal variant mapping is one of the most important appli-
cations of distal regulatory element mapping. Lines of evidence have
demonstrated that accurate and compact annotations can

significantly increase the statistical power for both somatic and
germline variant mapping in disease studies (Fu et al., 2014; Zhang
et al., 2020a,b). Therefore, we further tested whether our condensed
enhancer definitions can benefit variant prioritization and
interpretations.

Here, we predicted two set of enhancers in NPCs—a coarse set
of predictions using the binary classifier (similar to existing meth-
ods) and a refined set of core predictions using the DECODE object
detection module. We extracted the summary statistics from GWAS
for around three million SNPs for nine traits. For each phenotype,
we used stratified LDSC to test whether the heritability of a GWAS
phenotype is enriched in one set of annotated genome regions in
NPCs, where a high LDSC enrichment for a GWAS trait would indi-
cate that the set of annotations has a high partitioned heritability for
the corresponding trait. Using these summary statistics, we calcu-
lated the enrichment of the original and refined set for each trait,
represented by the P-value (Fig. 7d).

We found that both annotations demonstrated significant LDSC
enrichment in three of the nine phenotypes (with log P-value ranging
from 5.28 to 12.87), but the refined set consistently showed higher
LDSC enrichment for all five neurodevelopmental and psychiatric
phenotypes. For example, the P-value enrichment of the original set
for bipolar disorder was 0.052, while the condensed enhancer set
increased the statistical power by about 10� (P-value < 0.005). Even
with only 12.6% of the coverage, the refined set improved the overall
quality of the annotations and obtained a range of 2- to 10-fold
increases in GWAS enrichment compared to the original set of anno-
tations. We observed no enrichment for cardiovascular, metabolic or
immunological phenotypes, demonstrating DECODE’s ability to dis-
cover cell-specific enhancers. Both predictions also exhibited higher
LDSC enrichment compared to other existing annotations (i.e.
ENCODE NPC cCREs, FANTOM human enhancers and FANTOM
neuronal stem cell enhancers; Supplementary Fig. S3).

We believe the compactness of our refined annotation accounts
for the increase in statistical power compared to the original set.
Because of Grad-CAM, we are able to remove regions of variable
lengths that do not contribute to the identity of an enhancer and

Fig. 7. NPC Whole Genome Prediction Validation: (a) Procedure to predict enhancer windows and generate refined regions. (b) Total nucleotide coverage and total transcrip-

tional start site overlap for the original versus refined set. (c) Conservation analysis of the PhastCons score distribution and the rare DAF SNP enrichment of the original and

refined set. (d) Stratified LDSC enrichment of psychiatric and neurodevelopmental phenotypes
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shrink the prediction to 12.6% of its original size. Therefore, the
refined annotations are more condensed and are more suitable for a
wider range of analyses because many calculations, such as function-
al validation, require compact definitions to obtain statistical
power.

4 Discussion

Here, we propose a DECODE. Our model has two distinct parts: a
binary classifier and an object detection module, both of which pro-
vide substantial benefits over previous methods.

For the binary classifier, we trained a deep learning model on
direct readouts of human enhancer data to classify enhancer win-
dows based on common epigenetic profiles. The classifier outper-
formed the state-of-the-art method in predicting cell-type-specific
enhancers by using a larger set of training data and a deep learning
model. CNNs have a larger capacity to learn non-linear, complex
feature interactions compared to previous linear methods. We also
emphasize that our deep learning-based DECODE model will bene-
fit from the rapid development of novel functional characterization
assays (e.g. MPRA and CRISPR-based screens) and the exponential
growth of training data to further improve the accuracy and per-
formance in enhancer predictions.

In addition to an improvement in prediction accuracy, our
DECODE model also has a unique boundary detection module via
Grad-CAM, which is not found in previous methods. The resultant
feature-wise importance scores increase the interpretability by visu-
alizing feature prioritization, while the position-wise importance
scores can be used to condense the coarse enhancer annotations to
the core functional regions. In particular, we show that our compact
enhancer definitions have strong regulatory impact and are essential
for disease causal variant mapping in disease studies.

In summary, we introduce a powerful tool that could be widely
deployed for enhancer discovery. With corresponding epigenetic features,
DECODE can not only accurately predict the existence of enhancers in
any given genomic region, but also pinpoint the core functional regions,
which greatly facilitates variant mapping and interpretation.

Funding

This work was supported by the NIMH [K01MH123896] and the National

Institutes of Health [1R01DA051906-01].

Conflict of Interest: none declared.

References

Abeel,T. et al. (2009) Toward a gold standard for promoter prediction evalu-

ation. Bioinformatics, 25, i313–i320.

Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA- and

RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831–838.

Boyle,A.P. et al. (2014) Comparative analysis of regulatory information and

circuits across distant species. Nature, 512, 453–456.

Bulik-Sullivan,B.K. et al.; Schizophrenia Working Group of the Psychiatric

Genomics Consortium. (2015) LD Score regression distinguishes confound-

ing from polygenicity in genome-wide association studies. Nat. Genet., 47,

291–295.

Campbell,P.J. et al. (2020) Pan-cancer analysis of whole genomes. Nature,

578, 82–93.

Castrén,E. (2014) Neurotrophins and psychiatric disorders. Neurotrophic

Factors, 461–479.

Chen,S. et al. (2018) DeepCAPE: a deep convolutional neural network for the

accurate prediction of enhancers. Genomics Proteomics Bioinformatics.

bioRxiv, 398115.

Cramer,P. (2019) Organization and regulation of gene transcription. Nature,

573, 45–54.

Dao,L.T. et al. (2017) Genome-wide characterization of mammalian pro-

moters with distal enhancer functions. Nat. Genet., 49, 1073–1081.

Dao,L.T.M. and Spicuglia,S. (2018) Transcriptional regulation by promoters

with enhancer function. Transcription, 9, 307–314.

Das,D. et al. (2020) Modeling psychiatric disorder biology with stem cells.

Curr. Psychiatry Rep., 22, 1–23.

ENCODE Project Consortium et al. (2004) The ENCODE (ENCyclopedia of

DNA elements) project. Science, 306, 636–640.

Ernst,J. and Kellis,M. (2012) ChromHMM: automating chromatin-state dis-

covery and characterization. Nat. Methods, 9, 215–216.

Fu,Y. et al. (2014) FunSeq2: a framework for prioritizing noncoding regula-

tory variants in cancer. Genome Biol., 15, 1–15.

He,K. et al. (2016) Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 770–778.

Hoffman,M.M. et al. (2012) Unsupervised pattern discovery in human

chromatin structure through genomic segmentation. Nat. Methods, 9,

473–476.

Hu,J. et al. (2018) Squeeze-and-excitation networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 7132–7141.

Jothi,R. et al. (2009) Genomic analysis reveals a tight link between transcrip-

tion factor dynamics and regulatory network architecture. Mol. Syst. Biol.,

5, 294.

Karczewski,K.J. et al. (2020) The mutational constraint spectrum quantified

from variation in 141,456 humans. Nature, 581, 434–443.

Klemm,S.L. et al. (2019) Chromatin accessibility and the regulatory epige-

nome. Nat. Rev. Genet., 20, 207–220.

Lee,D. et al. (2020) STARRPeaker: uniform processing and accurate identifi-

cation of STARR-seq active regions. Genome Biol., 21, 1–24.

Lewis,M.W. et al. (2019) Transcriptional control by enhancers and enhancer

RNAs. Transcription, 10, 171–186.

Li,L. and Wunderlich,Z. (2017) An Enhancer’s length and composition are

shaped by its regulatory task. Front. Genet., 8, 63.

Li,Y. et al. (2018) Genome-wide prediction of cis-regulatory regions using

supervised deep learning methods. BMC Bioinformatics, 19, 14.

Lu,Y. et al. (2015) DELTA: a distal enhancer locating tool based on AdaBoost

algorithm and shape features of chromatin modifications. PLoS One, 10,

e0130622.

Min,X. et al. (2017) Predicting enhancers with deep convolutional neural net-

works. BMC Bioinformatics, 18, 478.

Moore,J.E. et al. (2020) Expanded encyclopaedias of DNA elements in the

human and mouse genomes. Nature, 583, 699–710.

Muerdter,F. et al. (2015) STARR-seq—principles and applications.

Genomics, 106, 145–150.

Schmidhuber,J. (2015) Deep learning in neural networks: an overview. Neural

Netw., 61, 85–117.

Schreiber,J. et al. (2020) A pitfall for machine learning methods aiming to pre-

dict across cell types. Genome Biol., 21, 1–6.

Selvaraju,R.R. et al. (2017) Grad-cam: visual explanations from deep net-

works via gradient-based localization. In Proceedings of the IEEE

International Conference on Computer Vision, 618–626.

Sethi,A. et al. (2020) Supervised enhancer prediction with epigenetic pattern

recognition and targeted validation. Nat. Methods, 17, 807–814.

Siva,N. (2008) 1000 Genomes project Nature Publishing Group. Nat.

Biotechnol., 26, 256.

Sperling,S. (2007) Transcriptional regulation at a glance. BMC Bioinformatics,

8, S2.

Spitz,F. and Furlong,E.E. (2012) Transcription factors: from enhancer binding

to developmental control. Nat. Rev. Genet., 13, 613–626.

Tang,L. et al. (2020) Predicting unrecognized enhancer-mediated genome top-

ology by an ensemble machine learning model. Genome Res., 30, 1835–1845.

Turley,P. et al.; 23andMe Research Team. (2018) Multi-trait analysis of

genome-wide association summary statistics using MTAG. Nat. Genet., 50,

229–237.

Visel,A. et al. (2007) VISTA Enhancer Browser—a database of tissue-specific

human enhancers. Nucleic Acids Res., 35, D88–D92.

Yang,Z. (1995) A space-time process model for the evolution of DNA sequen-

ces. Genetics, 139, 993–1005.

Zhang,J. et al. (2020a) An integrative ENCODE resource for cancer genomics.

Nat. Commun., 11, 1–11.

Zhang,J. et al. (2020b) RADAR: annotation and prioritization of variants in

the post-transcriptional regulome of RNA-binding proteins. Genome Biol.,

21, 1–13.

Zhang,Y. et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome

Biol., 9, R137–R139.

Zhou,V.W. et al. (2011) Charting histone modifications and the functional or-

ganization of mammalian genomes. Nat. Rev. Genet., 12, 7–18.

DECODE i287



Appendix A

Table A1. Data availability matrix from ENCODE. Data was available for all four histone marks across all cell types, but ATAC-seq was only

available for K562 and HepG2 cells

Cell Type STARR- ATAC- DNase- H3K27ac H3K4me3 H3K4me1 H3K9ac

seq seq seq ChlP-seq ChlP-seq ChlP-seq ChlP-seq

K562 � � � � � � �

HepG2 � � � � � � �

A549 � � � � � �

HCT116 � � � � � �

MCF-7 � � � � � �
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