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Abstract

Original Article

IntRoductIon

Alzheimer’s disease (AD) is the most common form of 
dementia affecting elderly people and presents with decline 
in memory and cognition.[1] Hence, it is important to identify 
patients at high risk of AD in the prodromal stage known as 
mild cognitive impairment (MCI), which is considered as a 
continuum between normal aging and dementia. However, the 
annual conversion rate of MCI to AD has been found to be 
approximately 10%–15%, with longitudinal trends in cognitive 
performances fluctuating between relative stability over time 
to decline.[2,3] Stable amnestic MCI has certain structural 
volumetric signatures.[4]

Several modalities of biomarkers have been proven to 
be sensitive for diagnosis of AD and MCI due to AD 

including brain atrophy measured by magnetic resonance 
imaging (MRI),[4,5] hypometabolism measured by positron 
emission tomography (PET),[6] and quantification of specific 
proteins measured through cerebrospinal fluid (CSF).[7,8] 
However, the nonavailability of the ligand C11-Pittsburgh 
compound B (PiB) and CSF amyloid beta (Aβ) or tau 
analysis in many centers across the world renders importance 
to other novel imaging biomarkers. In this study, we have 
used a combination of structural MRI analysis methods 
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using voxel-based morphometry (VBM), diffusion tensor 
imaging (DTI), and proton magnetic resonance spectroscopy 
(1H MRS) to measure volumetric changes, diffusion anisotropy 
of water molecules, and ratio of metabolites, respectively, in 
cognitively stable amnestic MCI compared to converters to 
early AD and healthy controls. We hypothesize that multiple 
MRI markers of underlying neuronal dysfunction can help 
improve the ability to identify patients with MCI as a distinctive 
entity, rather than using a single MRI marker. Furthermore, in 
the absence of expensive established biomarkers for AD such 
as PiB-PET, CSF Amyloid beta (Aβ)-42:Aβ-40 and CSF tau 
analysis that are not available at most centers in the developing 
countries, the MRI markers could be useful in diagnosis.. 
We also evaluate the relative sensitivity and specificity of 
multimodal MRI markers to enable objective phenotyping in 
MCI diagnosed using a standard array of neuropsychological 
tests.

methods

Subjects
The study was designed as a cross-sectional observational 
study from a prospectively maintained database at a Memory 
and Neurobehavioral Disorders Clinic of a tertiary care hospital 
situated in the South Indian state of Kerala. The study had 
the approval from the Institutional Ethics Committee of our 
institute. Sixty-eight participants were recruited into the current 
study. These included 20controls; 33 amnestic MCI and 15 AD 
patients. Healthy controls were required to have a Mini–Mental 
State Examination (MMSE) score between 28 and 30, a clinical 
dementia rating (CDR) score of 0 with formal education 
of >8 years and no history of subjective memory complaints, 
and with no major neurological/psychiatric disorders were 
included in the study. The early AD patients were selected 
from a cohort of converters from amnestic MCI according 
to standard NINCDS–ADRDA diagnostic criteria with CDR 
of <2, to serve as diseased controls.[9] The MCI patients 
were diagnosed according to modified Petersen’s criteria[2] 
with CDR of ≤0.5 and MMSE score between 24 and 29. 
Longitudinal cognitive stability without progression to overt 
dementia was required for a minimum period of 2 years before 

inclusion into the study for the MCI patients. The participants 
underwent cognitive screening by the vernacular adaptation 
of Addenbrooke’s Cognitive Examination battery (ACE) and 
other domain-specific neuropsychological tests as detailed 
previously.[10,11]

Magnetic resonance imaging data acquisition
Only participants who had undergone structural MRI, DTI, 
and spectroscopic data were included in the study. All 
MRI scans were acquired on a 1.5T Siemens Magnetom 
Avanto scanner. Structural MR images were acquired 
using a FLASH sequence with TR/TE = 11/4.95 ms, slice 
thickness = 1 mm, flip angle = 15°, matrix size = 256 × 256, 
and voxel size = 1 mm × 1 mm × 1 mm. For DTI, we used 
a single-shot spin-echo echo-planar sequence with diffusion 
gradients along 30 noncollinear directions with parameters 
TR/TE = 6000/88 ms, slice thickness = 3 mm with 1.5 mm 
gap averaged twice a b value of 0 and 1000 s/mm2. We also 
performed 1H MRS acquisitions using PRESS sequence 
with water suppression by means of CHESS sequence. The 
two-dimensional chemical shift (2D CSI) multivoxel sequence 
with a TR/TE = 1590/30 ms, NEX = 3, bandwidth = 10 kHz, 
and data points = 2048 was used for the examinations. 
1H MRS voxels of 1.6 cm × 1.6 cm × 2.5 cm were placed 
over the posterior cingulate gyri on the midsagittal slice 
covering posterior cingulate gyri and inferior precunei 
bilaterally [Supplementary Figure 1].

Image analysis
The volumetric structural data were processed using voxel-based 
morphometry (VBM 8) toolbox in SPM8 (statistical parametric 
mapping software, Wellcome Trust Centre for Neuroimaging, 
London, UK; http://www.fil.ion.ucl.ac.uk/spm). First, 
the images were registered into the MNI space using 
high-dimensional DARTEL normalization algorithm. Then, 
the images were segmented into three different tissues: 
gray matter (GM), white matter (WM), and CSF [Figure 1]. 
After segmentation, the GM images were smoothed with 
a Gaussian kernel of 8 mm full width half maximum. The 
smoothed images were then multiplied with the binary masks 
of 11 region of interests (ROIs) bilaterally (including temporal 

Figure 1: Segmented gray matter density maps in (a) controls (b) mild cognitive impairment and (c) Alzheimer’s disease
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neocortex, precuneus, and posterior cingulate) chosen priori 
from automated anatomic labeling atlas.[12] We computed the 
volume of each of the ROI region using MATLAB scripting. 
Postprocessing of DTI data was performed using a dedicated 
software package implemented in Siemens Leonardo 
workstation (Neuro 3D card). The system used an automatic 
correction of imaging distortions by scaling, de-skewing, 
and translational alignment of each of the image with the 
reference image (b = 0) to minimize the mismatch between 
the diffusion images and reference image. The offline tensor 
images and color maps were generated using the inbuilt “DTI 
task card.” The anatomical images were overlaid on the DTI 
data and measured the fractional anisotropy (FA) and mean 
diffusivity (MD) at different locations using ROI-based 
analysis. The ROIs were placed on the specific anatomic 
locations by an experienced neuroradiologist (C. K) who was 
blinded to the clinical diagnosis. All data were analyzed by 
placing seven circular ROIs bilaterally with 5 mm pixels in 
temporal WM adjacent to temporal horn (TWM), genu and 
splenium of corpus callosum (CC), anterior and posterior 
subcortical WM (ASC and PSC), and anterior and posterior 
periventricular WM (APV and PPV) [Supplementary Figure 2]. 
The spectroscopic data were processed in the Leonardo 
workstation (Neuro3Dsoftware, Siemens) and the major peaks 
of N-acetyl aspartate (NAA), Creatine (Cr), Choline (Cho), 
and myoinositol (mI) were identified to evaluate the possible 
alterations in the posterior cingulate. Then, the ratios of NAA/
Cr, Cho/Cr, mI/Cr, and NAA/mI were analyzed.

Statistical analysis
The demographic, neuropsychological, and radiological 
measures were compared across the three groups 
(MCI, AD, and NC) using univariate analysis of variance with 
post hoc Bonferroni correction. As there was significant age 
differences, age-adjusted comparisons were performed using 
general linear model. ROC curve analysis was carried out to 

classify MCI from controls and AD from MCI. For the ROC 
analysis, we used the mean GM density of the cortical regions, 
mean FA of the periventricular region, and mean metabolite 
ratios of NAA/mI and mI/Cr that differed in comparisons of 
MCI and controls and MCI and AD.

Furthermore, we computed a logistic regression that generated 
a probabilistic likelihood of MCI or AD diagnosis in each 
patient, and a score was derived as a linear combination of the 
regression coefficients and the imaging variables (T1-weighted 
MRI, DTI, and MRS). The obtained score was used to 
discriminate MCI from controls or AD. A cutoff point was 
arrived based on an ROC analysis. Results were considered 
significant, if P < 0.05.

ResuLts

Demographic and neuropsychological results
Table 1 depicts demographics and neuropsychological test 
scores in patients and controls. The neuropsychological 
assessment results are listed in Table 1. Patients with MCI 
and AD were significantly impaired on ACE total, RAVLT 
total, and RAVLT recall after 20 min compared to controls. 
As neuropsychology test scores formed the objective basis for 
classification, the table is reflective of classification accuracy 
into each subgroup.

Gray matter density results
Patients with MCI had significantly reduced GM volume 
relative to controls in the right thalamus (P = 0.02) and posterior 
cingulate cortex (PCC; P = 0.03) [Supplementary Table 1]. 
Patients with AD compared to controls demonstrated significant 
volumetric differences in bilateral hippocampus (P < 0.001 
for right and P = 0.03 for left), parahippocampus (P = 0.03 
for right and P = 0.04 for left), and superior temporal 
gyrus (P = 0.01 for right and P = 0.001 for left), along 

Figure 2: Receiver operator characteristic curves for classification of (a) mild cognitive impairment and controls and (b) mild cognitive impairment and 
Alzheimer’s disease based on the optimal measure from each domain alone, and multimodal combination of gray matter density, fractional anisotropy, 
and metabolite ratios
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with right amygdala (P = 0.002), thalamus (P = 0.02), and 
PCC (P = 0.006). A direct comparison between AD and MCI 
also revealed volume loss in hippocampus (P = 0.001 for right 
and P = 0.045 for left), inferior temporal gyrus (P = 0.004 for 
right and P = 0.026 for left), superior temporal pole (P = 0.001 
for right and P = 0.03 for left) bilaterally, and right 
parahippocampus, middle temporal pole (P = 0.02), and 
superior temporal gyrus (P = 0.034) in AD.

Diffusion tensor imaging findings
Patients with MCI demonstrated significantly reduced FA 
in the left APV (P = 0.03) and increased MD in genu of 
CC (P = 0.04) relative to controls. Abbreviations elaborated in 
Supplementary Table 2. Patients with AD relative to controls 
had significantly reduced FA in bilateral APV (P = 0.014 
for left and P = 0.007 for right) and splenium (P = 0.001), 
with a corresponding increase in MD values over bilateral 
APV (P = 0.02), left TWM genu (P = 0.007), and 
splenium (P < 0.001). A direct comparison of patients 
revealed significantly reduced FA in bilateral PPV (P = 0.001) 
and APV (P = 0.04 for left and P = 0.05 for right) as well as 
increased MD in bilateral APV (P = 0.02 for left and P = 0.04 
for right), splenium (P = 0.03), and right hippocampus (0.048) 
in AD relative to MCI.
1H MR spectroscopic findings
P a t i e n t s  w i t h  M C I  h a v e  s i g n i f i c a n t l y  l o w e r 
NAA/mI (P = 0.005) and higher Cho/Cr (P = 0.045) ratios 

than controls [Supplementary Table 3]. Patients with AD 
showed significantly lower NAA/mI (P < 0.001) along with 
higher mI/Cr (P = 0.002) and Cho/Cr (P = 0.014) ratios. 
Comparison between patients with MCI and those with AD 
revealed significantly lower NAA/mI (P = 0.002) and higher 
mI/Cr (P < 0.001) in AD relative to MCI.

Multimodal classification based on T1‑weighted magnetic 
resonance imaging, diffusion tensor imaging, and Proton 
magnetic resonance spectroscopy
We tested the performance of our multimodal classification 
method in the identification of MCI from AD and healthy 
controls. Table 2 summarizes the classification accuracy 
of our multimodal combination method, compared with 
individual modalities. ROC analysis revealed that the 
combined measurements of structural MRI, DTI, and 1H 
MRS consistently achieve more accurate discrimination 
between MCI and controls and MCI and AD [Figure 2]. 
More specifically, for classifying MCI from healthy controls, 
our multimodal classifier achieved a significant area under 
the curve (AUC) (0.89, P < 0.001), with 93.9% sensitivity 
and 70% specificity. While considering an individual 
modality, the DTI provides the best classifier (AUC [0.798, 
P < 0.001]) with a sensitivity of 90.9% and specificity of 
50%. On the other hand, for classifying MCI from AD, 
our multimodal classification method revealed the highest 
overall AUC (0.926, P < 0.001), with 93% sensitivity 
and 85.6% specificity. In addition, the best AUC (0.854, 

Table 1: Comparison of demographic and neuropsychological measures between subjects

NC MCI AD Bonferroni corrected P value

MCI versus NC AD versus NC AD versus MCI
Demographic

n 20 33 15
Sex (male/female) 10/10 23/10 9/6 0.225 0.325 1.00

Mean age (mean±SD in years) 62.27±7.52 69.13±6.00 69.45±5.48 <0.001 0.011 1.00
Education (years) 12.80±3.68 11.29±3.25 12.85±3.64 0.95 0.253 0.08

Cognitive
ACE 89.32±8.96 81.23±7.67 68.64±9.26 0.009 <0.001 <0.001
RAVLT cumulative learning score 52.80±8.12 37.89±10.1 25.36±7.15 <0.001 <0.001 <0.001
RAVLT 20 min recall score 12.29±1.76 6.54±3.49 2.00±1.73 <0.001 <0.001 <0.001
NC=Normal control, MCI=Mild cognitive impairment, AD=Alzheimer’s disease, ACE=Addenbrooke’s cognitive examination, RAVLT=Rey Auditory 
Verbal Learning Test, SD=Standard deviation

Table 2: Receiver operating characteristic results for the performance comparison of voxel‑based morphometry, diffusion 
tensor imaging and proton magnetic resonance spectroscopy, and multimodal combination of these neuroimaging 
methods

MCI versus controls MCI versus AD

Modality AUC Sensitivity (%) Specificity (%) AUC Sensitivity (%) Specificity (%)
T1 weighted MRI 0.775 78.8 70.0 0.829 90.9 60.6
DTI 0.798 90.9 50.0 0.854 72.7 87.9
1H MRS 0.787 87.9 60.1 0.836 81.8 75.8
Multimodal 0.890 93.9 70.0 0.926 93 85.6
AUC=Area under the curve, DTI=Diffusion tensor imaging, 1H MRS=Proton magnetic resonance spectroscopy, MCI=Mild cognitive impairment, 
MRI=Magnetic resonance imaging, AD=Alzheimer’s disease
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P < 0.001) on individual modality is obtained for DTI, with 
sensitivity of 72.7% and high specificity of 87.9%.

Logistic regression revealed that a combination of GM, 
WM, and 1HMRS provides the best overall fit for predicting 
the diagnosis of MCI. Our best fit classifier included each 
variable from each modality with maximum AUC for 
classifying MCI. The score was derived from regression 
coefficient weighted sum of three modalities for predicting 
MCI from controls (7.0* [volume of PCC]-9.9* [MD value 
of Genu] +0.7* [NAA/mI value of PCC]) and MCI from 
AD (2.7* [volume of HP] +19* [FA value of PPVL] +1.2* 
[NAA/mI value of PCC]). The combined approach for 
MCI control classification achieved an AUC (AUC = 0.88; 
P < 0.001) [Figure 3a] with a cutoff score of 3.12, with 
82% sensitivity and 90% specificity: 27 out of 33 MCI 
patients were correctly classified as MCI and 18 out 20 
controls were correctly classified as controls. The combined 
classifier for MCI-AD achieved a highest AUC (AUC = 0.93; 
P < 0.001) [Figure 3b] with a cutoff score of 23.6, with 88% 
sensitivity and 91% specificity in which 30 out of 33 MCI 
patients were correctly classified as MCI and 13 out of 15 AD 
patients were correctly classified as AD.

dIscussIon

In this article, we have proposed a statistical classifier using 
logistic regression to discriminate patients with longitudinally 
stable amnestic MCI from healthy controls and AD. The diagnosis 
of AD and MCI in its initial stages is still challenging. Hence, 
predicting the risk of progression from MCI to AD is extremely 
relevant for future treatment trials. Although clinical and cognitive 
tests are used in practice, these are not able to identify the more 
subtle patterns of the disease process at an early stage, and clinical 
manifestations on neuropsychology are evident well into disease 
progression in prodromal dementia. Considering that around 
10%–12% of MCI progress annually to overt dementia,[13] doubts 
have been raised regarding the existence of this entity as a notional 
one[14] and we attempted to study the morphometric and metabolic 
signatures of MCI that would aid in objective characterization 
of stability versus an “at risk” state in what is considered to be a 
prodromal dementia. This assumes significance in centers where 

specific biomarkers such as 11C-PiB PET, tau PET, and CSF 
biomarkers are not readily available.

Many existing studies have used structural MRI for measuring 
GM density (in the form of voxel maps),[15] volume/shape,[16,17] 
or cortical thickness. It is well known that multivoxel 1H-MRS 
of the PCC is sensitive to the biochemical changes during the 
pathologic progression of AD before there is a significant loss of 
neuronal integrity commensurate to atrophy of the same region 
in MCI. Therefore, MRS has proven potential for predicting 
and monitoring different pathological stages in the course of 
AD.[18] Researchers have demonstrated that a combination of 
multiple biomarkers can improve the prognostic ability, but 
these have combined MRI, CSF, and PET analysis as opposed 
to multimodal MRI techniques alone.[17,19,20] Many studies 
have used only structural MRI and specifically, hippocampal 
volumetry to differentiate AD (or MCI) from controls.[21,22] 
The limited predefined ROIs considered in many studies 
constrain sampling of spatial–temporal pattern of structural and 
functional or metabolic abnormalities in their entirety, and we 
have tried to offset this limitation using whole-brain VBM and 
values from multiple areas of WM during DTI analysis. This 
is pertinent, especially in MCI, wherein accurate prediction of 
risk of conversion may not be tenable with MRI in isolation, 
especially in patients in whom hippocampal atrophy has not 
evolved,[14] and also because MCI/dementia is essentially 
clinically diagnosed. In addition, for AD classification, there 
are little differences among accuracy, sensitivity, and specificity 
for any multimodal classification method, considering the fact 
that the disease process has already been established, whereas, 
for MCI classification, the differences are relatively large, for 
example, a relatively large sensitivity, but low specificity, for 
each method.[16] This is reflected in our results as well as our 
study revealed an intermediate measurement in GM density, 
WM integrity, and metabolite ratio in MCI compared to 
controls and AD. The utility of a similar combination of MRI 
biomarkers including structural MRI, DTI, and 1HMRS has not 
been reported previously from an Indian population.

Our findings on MCI control comparison in relation to 
PCC and thalamic atrophy are in line with a recent study.[23] 
However, in contrast to previous studies,[16,24] we could not 

Figure 3: Receiver operator characteristic curves of combined classifiers for classification of (a) mild cognitive impairment from controls and (b) mild 
cognitive impairment from Alzheimer’s disease

ba



Sheelakumari, et al.: Discrimination of mild cognitive impairment using multimodal imaging biomarkers

 Annals of Indian Academy of Neurology ¦ Volume 21 ¦ Issue 2 ¦ April-June 2018138

find any hippocampal atrophy in amnestic MCI compared to 
controls, possibly reflective of relative cognitive stability in our 
MCI. A longer period of follow-up is warranted to conclude 
on their evolution into multiple domain involvement versus 
early dementia. Regarding DTI, our observations corroborate 
with Chen et al.,[24] who described DTI changes in APV, 
PPV, and genu in MCI patients. The major pathological 
process contributing to reduced anisotropy in the cortical and 
subcortical WM tracts in AD and MCI may be either due to 
the presence of subclinical ischemic changes[25] or an increased 
susceptibility of oligodendrocytes to free radical and other 
metabolic damages.[26] In addition, there may be alterations 
in microvasculature, WM rarefaction with axonal damage, 
and gliosis[27] in brains of patients with AD favoring a mixed 
pathology beyond amyloid plaques and neurofibrillary tangles. 
Our finding of reduced posterior DTI indices of WM integrity 
in MCI and early AD mirrored the GM pathology in posterior 
brain regions relative to anterior regions.[28,29] The presence 
of significant regional brain WM anisotropy changes in both 
MCI and AD groups suggests that posterior regional anisotropy 
changes in normal-appearing WM of patients with MCI may 
play a role in the progression toward AD.[30] Furthermore, the 
anisotropy changes in the splenium of the CC might because 
of Wallerian degeneration seen in AD pathology.[31,32] The 
diffusivity changes in the genu of the corpous callosum (CC) 
in MCI patients might support the retrogenesis hypothesis, 
as the genu is known to myelinate much later than other WM 
regions.[33]

The MRS analysis revealed lower NAA/mI levels and higher 
Cho/Cr levels in the PCC in MCI. The metabolite NAA is 
a neuronal cell marker, and it can quantify neuronal loss 
or dysfunction, whereas myoinositol is a glial marker and 
its activation in MCI patients may be associated with glial 
activation and inflammation in the pathology of AD.[15]

Among the MRI biomarkers, the most sensitive measurement 
for discriminating MCI from control was DTI with high 
sensitivity and only moderate specificity. However, multimodal 
classifier using genu ADC values, posterior cingulate cortex 
volume, and NAA/mI MRS ratios produced a discernible 
improvement in diagnostic classification, with 82% sensitivity 
and 90% specificity. Considering the accuracy obtained with 
back classification of the MCI (30/33 correctly classified), 
it is evident that each modality (volumetry, DTI, and MRS) 
has its utility in achieving good combinational classification.

Expectedly, for discriminating MCI from AD, the volumetric 
findings in hippocampus, inferior temporal, and superior 
temporal pole as well as WM integrity in the periventricular 
areas showed high sensitivity. Furthermore, the neuronal 
markers of NAA/mI in the posterior cingulate region 
discriminated MCI from AD with sensitivity higher than DTI. 
The reduced NAA levels in AD have been well correlated with 
the presence of neuritic plaques and neurofibrillary tangles.[34] 
Moreover, these reductions in NAA/Cr and increases in mI/Cr 
ratios in the PCC have been demonstrated to be highly linked 

with the Braak neuropathological stages.[35] Previous 
findings indicated that NAA/mI ratio has enabled a highest 
sensitivity (82%–83%) and specificity (80%–95%) for the 
differentiation of AD from controls.[23,36] Our MRS findings 
in AD corroborate with another study which demonstrated 
correlation between reduction of regional glucose metabolism 
measured by [18F] FDG-PET and NAA/mI by MRS in the 
PCC of MCI, AD, and healthy controls.[37] A lower NAA/mI for 
the AD group compared to controls failed to reveal statistical 
significance in MCI group, unlike our results. Their findings 
suggest that brain glucose metabolism is a surrogate marker of 
synaptic activity[38] which should correlate with the measures 
of neuronal activity and density such as NAA/mI by MRS.

Overall, the utility of our combined classifier using 
hippocampal volume, FA of the posterior periventricular 
WM, and adjoining NAA/mI ratio is demonstrable on our 
back classification accuracy. The current study is limited by 
certain factors. First, the AD group sample size was small. We, 
however, primarily attempted to provide a classifier for MCI 
due to which the AD group served as a “diseased-control” 
cohort. Second, the other modalities such as CSF, PET, and 
APOE are not included in the model due to nonavailability of 
these tests at our center at the time of initiation of this study.

concLusIons

We have introduced a robust method to objectively classify MCI 
participants in comparison to early AD and cognitively normal 
healthy controls. We have proposed a new multimodal MRI 
measure combining cortical GM volume, FA, and MD at the 
voxel level and metabolite ratio at posterior cingulate region. 
The discrimination between MCI and AD patients reached 
a high sensitivity when relevant regions were selected. This 
result implies that multimodal analysis gives better results than 
unimodal analysis and hence may be a useful tool to assist in 
prognostication in MCI. Future studies utilizing our model for 
prediction on individual patients with stable and unstable MCI 
are required to gauge its utility over proven non-MRI biomarkers
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