Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Benzyl(phenyl)phosphinic acid

Robert A. Burrow* and Rubia M. Sigueira da Silva

Laboratório de Materiais Inorgânicos, Universidade Federal de Santa Maria, Av. Roraima, 1000 Camobi, 97105-900 Santa Maria, RS, Brazil Correspondence e-mail: rburrow@ewald.base.ufsm.br

Received 13 January 2011: accepted 3 March 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.108; data-to-parameter ratio = 23.3.

The title compound, C13H13O2P, crystallized as enantiomerically pure crystals; for the crystal measured, the P atom has R stereochemistry. The crystal structure displays O-H···O hydrogen bonding, which links individual molecules related by a 21 screw axis parallel to the crystallographic *a*-axis direction into continuous chains.

Related literature

For background to phosphinic acids, see: Beckmann et al. (2009); Burrow et al. (2000); Chen & Suslick (1993); Siqueira et al. (2006); Vioux et al. (2004). For a description of the Cambridge Structural Database, see: Allen (2002). Geometrical analysis was performed with Mogul (Bruno et al., 2004).

Experimental

Crystal data

C13H13O2P $M_{\rm r} = 232.20$ Orthorhombic, P212121 a = 5.7326 (2) Å b = 12.3430 (3) Å c = 16.7794 (4) Å

Data collection

Bruker X8 Kappa APEXII diffractometer Absorption correction: gaussian (SADABS; Bruker, 2009) $T_{\min} = 0.880, \ T_{\max} = 0.964$

V = 1187.27 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^{-1}$ T = 295 K $0.65 \times 0.34 \times 0.22 \text{ mm}$

14337 measured reflections 3451 independent reflections 3119 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$

Refinement

-	
$R[F^2 > 2\sigma(F^2)] = 0.039$	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.108$	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
S = 1.05	Absolute structure: Flack (1983),
3451 reflections	1447 Friedel pairs
148 parameters	Flack parameter: 0.00 (11)
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$	
$O1 - H1 \cdots O2^i$	0.93 (3)	1.58 (3)	2.4838 (18)	163 (3)	
Symmetry code: (i) $r + \frac{1}{2} - v + \frac{1}{2} - z + 1$					

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Financial support from the Conselho Nacional de Desenvolvimento Científico (CNPq, Brazil; grants 485245/2007-8 and 479747/2009-1) and the Fundação de Amparo à Pesquisa (FAPERGS, Rio Grande do Sul) is gratefully acknowledged, as are fellowships from CNPq (RAB) and the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES, Brazil; RMSS). The diffractometer was funded by a CT-INFRA grant from the Financiadora de Estrutos e Projetos (FINEP, Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2011).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Beckmann, J., Duthie, A., Rüttinger, R. & Schwich, T. (2009). Z. Anorg. Allg. Chem. 635, 1412-1419.
- Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.
- Burrow, R. A., Farrar, D. H., Lough, A. J., Siqueira, M. R. & Squizani, F. (2000). Acta Cryst. C56, e357-e358.
- Chen, C.-T. & Suslick, K. S. (1993). Coord. Chem. Rev. 128, 293-322.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. & Burrow, R. A. (2006). Inorg. Chem. Commun. 9, 536-540.
- Vioux, A., Le Bideau, J., Hubert Mutin, P. & Leclerq, D. (2004). Top. Curr. Chem. 232, 145-174.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o1045 [doi:10.1107/S1600536811008245]

Benzyl(phenyl)phosphinic acid

R. A. Burrow and R. M. Siqueira da Silva

Comment

Phosphinic acids have found use for the construction of coordination polymers [Siqueira *et al.*, 2006; Beckmann *et al.*, 2009] for a wide range of applications [Vioux *et al.*, 2004; Chen & Suslick, 1993]. Continuing our research on phosphinic acids [Burrow *et al.*, 2000], we report the synthesis and crystal structure of the title compound, (I).

The crystal structure of (I) is from an enantiomerically pure crystal (Flack parameter = 0.00 (11); 1447 Friedel pairs; Flack & Bernardinelli, 2000] with the P atom possessing *R* stereochemistry. An analysis of the geometry of (I) by *Mogul* [Bruno *et al.*, 2004] using the CSD. [Allen, 2002] shows no unusual features for the benzyl and phenyl groups. However, an unusually long P=O bond [P1=O2 = 1.5104 (13) Å; average in *Mogul*:1.484 (17) Å for 16 observations, |z score| = 1.568] and a wider C—P—C angle [C11—P1—C21 angle = $109.493 (9)^\circ$; average in *Mogul*: $106.9(2.0)^\circ$, |z score| = 1.281] are found.

The individual molecules of (I) related by a 2_1 screw axis parallel to the crystallographic *a* direction are joined by hydrogen bonding of the type OH···O=P—OH···O=P to form continuous chains. The short P—O···O=P distance of 2.4838 (18) Å indicates a strong hydrogen bond. This is slightly shorter than the average O···O interaction distance in the CSD. [2.51 (5) Å, 45 observations] for other phosphinic acids.

Experimental

To a solution of phenylphosphinic acid (2.0 g, 14.1 mmol) in dichloromethane, 30 ml diisopropylethylamine (5.16 ml, 29.6 mmol) and trimethylsilyl chloride (3.74 ml, 29.6 mmol) were separately added at 0 °C under argon. The reaction mixture was stirred at room temperature for 2–3 h, cooled to 0 °C and 1-(bromomethyl)benzene (1.84 ml, 15.5 mmol) was added. After further stirring at room temperature for 48 h, the solvent was removed under vacuum. The residue was suspended in hydrochloric acid (2 *M*, 20 ml) and filtered on a glass frit. The white solid was washed with acetone and dried giving a yield of 1.70 g (65%) of pure product. IR: 1494 (*m*), 1439 (*s*), 1242 (*m*), 1132 (*versus*), 1069 (*s*), 969 (*versus*), 845 (*s*), 787 (*s*), 751 (*s*), 734 (*s*), 701 (*s*), 585 (*m*), 524 (*s*), 477 (*s*), 466 (*m*) cm⁻¹. TGA: 310–361 °C: 99% loss. DTA: 181–193 °C & 310–361 °C endothermic peaks. Crystals suitable for single-crystal X-ray analysis were grown from an acetone solution in a desiccator with silical gel.

Refinement

The H atom on O1 was found in the difference Fourier map and its position was allowed to refine freely while its isotropic displacement factor was set to 1.5 times that of O1. The H atoms were positioned geometretically and allowed to ride on their parent atoms, with C—H bond lengths of 0.93 Å (aromatic CH) and 0.97 Å (methylene CH₂) and isotropic displacement parameters equal to 1.2 times U_{eq} of the parent atom.

Figures

Fig. 1. The molecular of (I) structure of the title compound, showing 30% probability ellipsoids.

Fig. 2. The packing diagram of (I) in the crystallographic *a* direction with the crystallographic *b* axis pointing up. The O—H…O intermolecular hydrogen bond is shown dashed.

Benzyl(phenyl)phosphinic acid

Crystal data

C₁₃H₁₃O₂P $M_r = 232.20$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.7326 (2) Å b = 12.3430 (3) Å c = 16.7794 (4) Å V = 1187.27 (6) Å³ Z = 4F(000) = 488

Data collection

Bruker X8 Kappa APEXII diffractometer	3451
Radiation source: fine-focus sealed tube	3119
graphite	$R_{\rm int} =$
Detector resolution: 0.0833 pixels mm ⁻¹	θ _{max} =
ϕ and ω scans	h = -3
Absorption correction: gaussian (<i>SADABS</i> ; Bruker, 2009)	k = -
$T_{\min} = 0.880, \ T_{\max} = 0.964$	l = -2
14337 measured reflections	

Refinement

Refinement on F^2

 $D_x = 1.299 \text{ Mg m}^{-3}$ Melting point = 454–456 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4929 reflections $\theta = 3.3-28.0^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.65 \times 0.34 \times 0.22 \text{ mm}$

3451 independent reflections
3119 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.028$
$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$
$h = -8 \rightarrow 8$
$k = -17 \rightarrow 17$
$l = -20 \rightarrow 23$

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.108$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0579P)^{2} + 0.2054P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
3451 reflections	$\Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3}$
148 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack & Bernardinelli (2000), 1447 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.00 (11)

Special details

Experimental. SADABS (Bruker, 2009) was used to perform the numeric absorption correction based on the crystal dimensions determined by face indexing.

The number of Friedel pairs measured is 1447. The crystal was not cut to size as it tended to fracture.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.0173 (3)	0.51865 (12)	0.54568 (9)	0.0333 (3)
C12	0.2219 (4)	0.53887 (16)	0.58763 (12)	0.0445 (4)
H12	0.3342	0.4849	0.5926	0.053*
C13	0.2585 (4)	0.64005 (18)	0.62216 (13)	0.0530 (5)
H13	0.3935	0.6530	0.6513	0.064*
C14	0.0955 (4)	0.72087 (17)	0.61322 (14)	0.0539 (5)
H14	0.1215	0.7886	0.6359	0.065*
C15	-0.1073 (4)	0.70186 (17)	0.57065 (15)	0.0539 (5)
H15	-0.2170	0.7567	0.5646	0.065*
C16	-0.1464 (3)	0.60086 (15)	0.53698 (12)	0.0428 (4)
H16	-0.2828	0.5881	0.5085	0.051*
C21	0.1121 (4)	0.37609 (16)	0.41002 (11)	0.0463 (4)
H21A	0.2768	0.3904	0.4181	0.056*
H21B	0.0971	0.3022	0.3910	0.056*
C22	0.0212 (3)	0.45208 (15)	0.34658 (10)	0.0400 (4)

supplementary materials

0.0561 (5) 0.067*
0.067*
0.0756 (8)
0.091*
0.0769 (9)
0.092*
0.0720 (7)
0.086*
0.0535 (5)
0.064*
0.080*
0.0480 (3)
0.0444 (3)
0.03482(11)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0375 (8)	0.0272 (6)	0.0350 (7)	-0.0003 (6)	0.0014 (6)	-0.0005 (5)
C12	0.0399 (9)	0.0415 (9)	0.0520 (10)	0.0028 (8)	-0.0048 (8)	-0.0043 (8)
C13	0.0490 (11)	0.0526 (11)	0.0574 (11)	-0.0089 (9)	-0.0107 (9)	-0.0098 (9)
C14	0.0639 (14)	0.0378 (9)	0.0600 (12)	-0.0056 (9)	-0.0009 (10)	-0.0138 (9)
C15	0.0590 (13)	0.0342 (9)	0.0684 (13)	0.0105 (9)	-0.0095 (10)	-0.0101 (9)
C16	0.0420 (9)	0.0341 (8)	0.0525 (10)	0.0031 (7)	-0.0078 (8)	-0.0058 (7)
C21	0.0504 (10)	0.0418 (9)	0.0465 (9)	0.0155 (8)	0.0003 (8)	-0.0070 (8)
C22	0.0468 (10)	0.0405 (8)	0.0327 (7)	0.0060 (7)	0.0035 (7)	-0.0051 (6)
C23	0.0652 (14)	0.0509 (11)	0.0523 (11)	-0.0075 (10)	0.0080 (10)	-0.0044 (9)
C24	0.111 (2)	0.0522 (13)	0.0638 (14)	-0.0030 (16)	0.0222 (15)	0.0105 (12)
C25	0.109 (2)	0.0749 (18)	0.0464 (12)	0.0311 (18)	0.0081 (14)	0.0147 (12)
C26	0.0729 (15)	0.103 (2)	0.0404 (10)	0.0214 (15)	-0.0098 (11)	-0.0021 (12)
C27	0.0559 (12)	0.0641 (13)	0.0405 (10)	-0.0047 (10)	-0.0024 (9)	-0.0037 (9)
O1	0.0649 (10)	0.0328 (6)	0.0461 (7)	0.0112 (6)	-0.0006 (6)	0.0035 (5)
O2	0.0413 (6)	0.0326 (5)	0.0592 (8)	-0.0041 (5)	0.0011 (6)	-0.0015 (6)
P1	0.0409 (2)	0.02614 (17)	0.03746 (19)	0.00195 (14)	0.00110 (17)	-0.00116 (16)

Geometric parameters (Å, °)

C11—C12 1.391 (3) C22—C23 1.379 (3) C11—P1 1.7893 (16) C22—C27 1.386 (3) C12—C13 1.393 (3) C23—C24 1.395 (4) C12—H12 0.9300 C23—H23 0.9300 C13—C14 1.375 (3) C24—C25 1.359 (5)	
C11—P1 1.7893 (16) C22—C27 1.386 (3) C12—C13 1.393 (3) C23—C24 1.395 (4) C12—H12 0.9300 C23—H23 0.9300 C13—C14 1.375 (3) C24—C25 1.359 (5)	
C12—C13 1.393 (3) C23—C24 1.395 (4) C12—H12 0.9300 C23—H23 0.9300 C13—C14 1.375 (3) C24—C25 1.359 (5) C12—H12 0.9200 C24—H24 0.9200	
C12—H12 0.9300 C23—H23 0.9300 C13—C14 1.375 (3) C24—C25 1.359 (5 C12 H12 0.9300 C24—C25 1.359 (5	
C13—C14 1.375 (3) C24—C25 1.359 (5	
C12 U12 0.0200 C24 U24 0.0200	
C13—H13 0.9300 C24—H24 0.9300	
C14—C15 1.384 (3) C25—C26 1.365 (5	
C14—H14 0.9300 C25—H25 0.9300	
C15—C16 1.387 (3) C26—C27 1.379 (4	
C15—H15 0.9300 C26—H26 0.9300	
C16—H16 0.9300 C27—H27 0.9300	

C21—C22	1.511 (3)	01—P1		1.5420 (14)
C21—P1	1.7962 (19)	O1—H1		0.93 (3)
C21—H21A	0.9700	O2—P1		1.5104 (13)
C16—C11—C12	119.46 (16)	C23—C22—C21		120.2 (2)
C16—C11—P1	120.38 (13)	C27—C22—C21		121.29 (19)
C12—C11—P1	120.15 (13)	C22—C23—C24		120.3 (3)
C11—C12—C13	119.89 (18)	C22—C23—H23		119.9
C11—C12—H12	120.1	C24—C23—H23		119.9
С13—С12—Н12	120.1	C25—C24—C23		120.0 (3)
C14—C13—C12	120.20 (19)	C25—C24—H24		120.0
C14—C13—H13	119.9	C23—C24—H24		120.0
C12—C13—H13	119.9	C24—C25—C26		120.3 (2)
C13—C14—C15	120.26 (18)	C24—C25—H25		119.8
C13—C14—H14	119.9	C26—C25—H25		119.8
C15—C14—H14	119.9	C25—C26—C27		120.2 (3)
C14—C15—C16	119.90 (19)	C25—C26—H26		119.9
C14—C15—H15	120.0	C27—C26—H26		119.9
C16—C15—H15	120.0	C26—C27—C22		120.6 (2)
C15-C16-C11	120.27 (18)	C26—C27—H27		119.7
C15—C16—H16	119.9	C22—C27—H27		119.7
C11—C16—H16	119.9	P1—O1—H1		120 (2)
C22—C21—P1	114.11 (12)	O2—P1—O1		114.73 (8)
C22—C21—H21A	108.7	O2—P1—C11		109.11 (8)
P1-C21-H21A	108.7	O1—P1—C11		106.16 (8)
C22—C21—H21B	108.7	O2—P1—C21		109.93 (9)
P1—C21—H21B	108.7	O1—P1—C21		107.28 (8)
H21A—C21—H21B	107.6	C11—P1—C21		109.49 (9)
C23—C22—C27	118.5 (2)			
C16-C11-C12-C13	1.6 (3)	C24—C25—C26—C27		1.1 (4)
P1-C11-C12-C13	-177.83 (16)	C25—C26—C27—C22		-1.1 (4)
C11—C12—C13—C14	-1.6 (3)	C23—C22—C27—C26		0.7 (3)
C12—C13—C14—C15	0.7 (4)	C21—C22—C27—C26		-179.8 (2)
C13—C14—C15—C16	0.1 (4)	C16—C11—P1—O2		-22.31 (17)
C14—C15—C16—C11	-0.1 (3)	C12-C11-P1-O2		157.10 (14)
C12—C11—C16—C15	-0.7 (3)	C16—C11—P1—O1		-146.45 (15)
P1-C11-C16-C15	178.69 (17)	C12-C11-P1-O1		32.96 (17)
P1-C21-C22-C23	102.5 (2)	C16-C11-P1-C21		98.04 (16)
P1-C21-C22-C27	-77.0 (2)	C12-C11-P1-C21		-82.55 (16)
C27—C22—C23—C24	-0.2 (3)	C22—C21—P1—O2		54.98 (17)
C21—C22—C23—C24	-179.8 (2)	C22—C21—P1—O1		-179.66 (14)
C22—C23—C24—C25	0.2 (4)	C22-C21-P1-C11		-64.87 (17)
C23—C24—C25—C26	-0.6 (4)			
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H…A	$D \cdots A$	D—H··· A
01—H1···O2 ⁱ	0.93 (3) 1.58 (3)	2.4838 (18)	163 (3)

Symmetry codes: (i) x+1/2, -y+1/2, -z+1.

