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Abstract

Background and Objectives: Deferral of blood donors due to low haemoglobin

(Hb) is demotivating to donors, can be a sign for developing anaemia and incurs costs

for blood establishments. The prediction of Hb deferral has been shown to be feasi-

ble in a number of studies based on demographic, Hb measurement and donation his-

tory data. The aim of this paper is to evaluate how state-of-the-art computational

prediction tools can facilitate nationwide personalized donation intervals.

Materials and Methods: Using donation history data from the last 20 years in

Finland, FinDonor blood donor cohort data and blood service Biobank genotyping

data, we built linear and non-linear predictors of Hb deferral. Based on financial data

from the Finnish Red Cross Blood Service, we then estimated the economic impacts

of deploying such predictors.

Results: We discovered that while linear predictors generally predict Hb relatively well,

they have difficulties in predicting low Hb values. Overall, we found that non-linear or

linear predictors with or without genetic data performed only slightly better than a

simple cutoff based on previous Hb. However, if any of our deferral prediction

methods are used to assign temporary prolongations of donation intervals for females,

then our calculations indicate cost savings while maintaining the blood supply.

Conclusion: We find that even though the prediction accuracy is not very high, the

actual use of any of our predictors in blood collection is still likely to bring benefits to

blood donors and blood establishments alike.
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Highlights

• More refined prediction models, even using genetic data, have only slightly better accuracy

than a simple baseline model.

• In our models, the effect of the donation interval on the haemoglobin level was too small to

make donor-specific donation intervals possible. However, assigning a temporary fixed-term

prolongation of the donation interval when deferral is predicted is likely to bring positive

health effects in the vulnerable group of female donors under age 30.

• All prediction models we implemented lead to cost savings when used to determine a tempo-

rary fixed-term prolongation of donation interval for females.
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INTRODUCTION

Deferring a person from donating due to low haemoglobin (Hb) can be

demotivating for the donor, incurs extra costs to blood establishment and

may indicate that a donor has donated blood too frequently causing nega-

tive health effects such as anaemia [1]. To mitigate these negative effects,

it is beneficial to be able to predict the donor’s Hb value at a given date

or directly predict whether the Hb will be below the deferral limit.

Previously, Baart et al. used logistic regression with non-linear

predictors to predict low Hb deferrals [2,3]. Subsequently,

Nasserinejad [4] and Fokkinga [5] used Bayesian linear mixed models

(LMMs) to predict Hb.

In this study, we aim to develop prediction methods for

Hb/deferral to improve donor health and reduce costs due to defer-

rals without damaging the blood supply. We essentially reimplement

the methods of Nasserinejad and Fokkinga and run them on our larger

datasets with additional variables. To our knowledge, we are the first

to use genetic information as explanatory variables and to estimate

the blood supply and economic effects of deploying a low-Hb deferral

model. We also publish our model implementations to make it easier

to build future research on our results.

MATERIALS AND METHODS

The blood donation and blood product information of the Finnish Red

Cross Blood Service (FRCBS) until 2020 was collected in the eProgesa

database (MAKSYSTEM, Paris, France). Here, the eProgesa dataset

contains the donation histories of Finnish blood donors from the last

20 years: 6,414,193 donation attempts from 940,831 donors. These

data are collected at every blood donation event, and they contain

information about the Hb value (pre-donation point-of-care capillary

finger-prick sample) [6], time of day, donation location, type of dona-

tion and amount of blood collected.

We pre-processed the raw eProgesa data (Figure 1) to obtain a

clean dataset for building models. Outliers, missing values and other

problematic cases were handled by dropping instead of imputing them

(Figure S2). We also derived several new variables from the raw vari-

ables (Figure 1c). After pre-processing, we were left with 2,157,733

donations and 449,008 donors .

The Biobank dataset contains genome-wide SNP genotyping data

obtained from the Blood Service Biobank and height, weight and

smoking variables from the Biobank enrolment questionnaire of

20,222 donors. The FinDonor [7] dataset contains more information

about donation events such as blood counts, iron indices and ques-

tionnaire data. This dataset is much smaller than the eProgesa data,

having a total of 7994 donation events from 2580 donors.

The variables from the eProgesa, Biobank and FinDonor datasets

used for training our models are described in Tables S1–S3, respec-

tively. Later in this paper, we refer to the combinations of eProgesa

with the Biobank and FinDonor datasets with just Biobank and

FinDonor, respectively. Further discussion about the variables used

and pre-processing can be found in Section S1.

As the donation history is a longitudinal dataset, we can apply

LMMs (where some parameters can be stochastic instead of being

fixed, as in normal linear models) to predict Hb. Our model has the

form yit = xit β + ci ϕ + bi + εit, where i refers to a donor and t to a

donation time. The donation and donor-specific variables are stored in

matrices xit and ci, respectively. The donor-specific intercept bi is the

only random effect, and it allows deviation between donors caused by

unobserved variables. If the previous Hb is among the predictors, then

the model is called a dynamic linear mixed model (DLMM). Stan [8] is

used to train these models in a Bayesian setting with weakly informa-

tive conjugate priors. To estimate the linear models’ capability to pre-

dict deferral, the predicted Hb is dichotomized with the deferral limits

used in Finland (135 g/L for men and 125 g/L for women).

To test whether the dependence of Hb is non-linear with respect to

the predictors, we use a random forest (RF) model [9]. Because deferrals

are rare in Finnish donation history (approximately 3.2% of donations), in

the RF algorithm, we oversample the deferrals so that the trees are cre-

ated from samples where 50% of the donors have deferral as their last

donation to make it easier to train a classifier for deferral. As an RF cannot

directly model time series, we add to each donation event information

about the previous Hb and the number of lifetime donations. We use

randomForest [10] to train an RF whose hyperparameters were optimized

with caret [11] using four-fold cross-validation. Details about the linear

and RF models and their implementations can be found in Section S2.

We measured the accuracy of Hb prediction with root mean

square error (RMSE) and mean absolute error (MAE) and the perfor-

mance of the binary classifier of deferral with area under the receiver

operating characteristic curve (AUROC), area under the precision-

recall curve (AUPR) and F-score (F1) metrics. More details of the per-

formance measures used can be found in Section S2.4.

Personalized donation intervals can be applied either by estimating

a truly personal donation interval for each donor or by creating pre-

determined donation interval categories and assigning donors to them.

In either case, the total adjustment atot in the population of returning

donors is given by the mean of adjustments ai. If we extend the dona-

tion interval of donor i by 10%, for example, then ai = 1.1. This adjust-

ment has a direct inverse effect on the flow of returning donors, which

we find by subtracting the influx of new donors from the total influx of

donors. Thus, the total influx after adjustments is given by

Fadj ¼ F�Fnewð Þ=atotþFnew:

If donor recruitment efforts are not simultaneously increased, then

the lowered influx is directly proportional to the supply level, for

example, halving the total influx means halving the supply level, on

average. Assuming that the supply level is held at the optimum before

adjustments, the negative effects from donation interval personaliza-

tion need to be compensated.

While marketing efficacy is not constant over long periods and while

the cost of recruitment might increase with the size of the compensa-

tion, we can calculate estimates for the costs of this compensation for

small enough adjustments by assuming a direct inverse relationship

between the lowered influx of donors and the marketing efforts/budget:
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Mnew ¼ F=Fadj M:

In addition to increased donor recruitment costs, we need to consider

the savings from avoided deferrals after personalizing donation inter-

vals, as deferring a donor may negatively impact donor retention.

Avoiding deferrals decreases the negative impact on donor retention,

which we otherwise would have had to compensate in marketing. The

full marketing-related economic effects of interval personalization can

then be summarized as

EM ¼ F=Fadj –1� 1�Fnewð Þdq rloss,

where we signify the negative impact of deferral on donor retention

with rloss, the rate of avoided deferrals with q and the population

deferral rate with d.

By finding the costs for marketing (per successful donation) and

deferrals, we can expand this formulation into an equation that

outputs the operational cost of deploying a type of personalization

model in units of cost per donation:

E¼PM F=Fadj –1� 1�Fnewð Þdq rloss
� ��PD dq,

where PM represents the estimated marketing cost of a single suc-

cessful donation, and PD is the cost of a deferred donor. The bound-

ary for financial gain is then at E = 0, with E < 0 indicating savings

and E > 0 costs incurred. The parameter values that apply to the

FRCBS are listed in Table 1. Our economic effect formulation allows

us to adjust for the model performance via the terms atot and q.

A good model needs to extend the total donor influx only by

very little to avoid most of the possible deferrals in the population

(so atot = 1 + ε, 0 ≤ ε � 1). If we let atot and q vary between chosen

value ranges, then we can calculate the cost surface between these

axes. Figure S38 presents the cost surface for the FRCBS drawn

using values given in Table 1.

(a) (b) (c)

Haemoglobin

Leucocyte

919,003 5,886,377

497,05819,248

F I GU R E 1 The intersections of the three datasets. (a) The number of donors and (b) the number of donations. The eProgesa dataset is shown
in the raw form, before any pre-processing was done. (c) The variables of each dataset

T AB L E 1 The description of parameters in the cost effect formula and the parameter values specific to Finnish Red Cross Blood Service

Variable Explanation Value Comment

q Rate of avoided deferrals [0,1] From none to all.

d Rate of deferrals in the population 0.032 From donor history data between 2018 and 2020.

atot Total adjustment effect due to interval extension >1

PM Estimated marketing cost of a successful donation 2.287 Euros. An approximation based on the price of

targeted and untargeted marketing per donation

and response rates to targeted marketing.

PD Cost of a deferred donor 20.342 Euros. Comprises costs of materials, marketing and

work time.

F Total influx of donors 1 As in 100%.

Fnew Influx of new donors 0.107 Currently, new donors comprise about 10% of the

donor influx.

rloss Impact of deferral on donor retention 0.167 Low Hb deferrals are currently estimated to have

approximately 16.7% negative impact on donor

retention. This analysis is detailed in Section S3.3.1.
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RESULTS

To determine, which subset of full data are best suited as the input

for fitting LMMs, we performed three experiments: effect of time

series length, effect of amount of data and effect of the imbalance of

the division of the donations into accepted and deferred classes on

Hb prediction. In addition, to determine whether the rules for

selecting the input subset generalize, we divided the data into two

equal-sized halves: an exploration part and a final model fitting and

testing part. The three experiments described below were all per-

formed on the exploration part of the data.

The distribution of time-series length of female donors in

eProgesa data is shown in Figure S8. The number of donors decreases

exponentially as a function of the time-series length. To model the data

and predict the last donation of each time series, the minimum theoreti-

cal time series length is three. This requirement already dropped 50% of

the donors from further consideration. To test the effect of the time-

series length on Hb prediction, we partitioned the female eProgesa data

Regression coefficient Importance

−0.2 0.0 0.2 0.4 0.6 0 50 100 150 200

Sex

First Hb

Life time donations

RNF43

First year

Recent donations

First hour

Hour

Warm season

Height

Recent deferrals

Year

Smoking

First warm season

Consecutive deferrals

Days to previous full blood donation

First age

Polygenic score

Previous donation deferred

Age

Weight

Previous Hb

Sex Male Female Both

F I GU R E 2 The effect sizes and importance of variables in haemoglobin and deferral prediction. On the left panel, the regression coefficients
of the DLMM when predicting haemoglobin on variables of the combined eProgesa and Biobank data. The dots and the lines denote the
posterior means and the 95% highest posterior density intervals (HPDIs), respectively, for each variable and sex. In order to make the regression
coefficients comparable, we left the binary variables as they are but scaled other variables by 2 SD. Hence, the units of the regression
coefficients are two times the standard deviation. On the right, the importance of variables, when predicting deferral using a random forest model
on eProgesa data, are marked with dots. With the random forest model, we did not train separate models for the male and female subsets but
instead used sex as a predictor. Note that for both DLMM and random forest (RF) models the previous haemoglobin was clearly the most
important variable. The difference of effect size between sexes seems to be mostly small, the age being a notable exception
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into subsets based on time-series length, with each subset having

donors with the same number of donations. We fitted a DLMM on each

of these datasets and predicted the Hb of the last donation of the time

series. The results are shown in Table S6. On the one hand, the results

seemed to improve as the time-series length increased. On the other

hand, the data were scarcer with longer time series. As a compromise,

we decided to use the data from donors with at least seven donations

in our later analyses of eProgesa and Biobank data.

We also experimented with the effect of the amount of data on

the prediction. We randomly took three samples from female

€/donation, 6 months deferral €/donation, 12 months deferral Threshold

AUROC AUPR F1

–0.2 –0.1 0.0 0.1 0.2–0.2 –0.1 0.0 0.1 0.2 0.25 0.50 0.75 1.00

0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 –0.1 0.0 0.1 0.2 0.3 0.4

eProgesa

eProgesa

eProgesa

eProgesa

FinDonor

FinDonor

Biobank

Biobank

eProgesa

eProgesa

eProgesa

eProgesa

eProgesa

eProgesa

eProgesa

eProgesa

FinDonor

FinDonor

Biobank

Biobank

eProgesa

eProgesa

eProgesa

eProgesa

Value

D
a
ta

 a
n
d
 m

o
d
e
l

Sex

Male

Female

Both

Model

Linear mixed model

Dynamic linear mixed model

Decision tree

Random forest

Baseline

Deferral length

Six months

Twelve months

F I GU R E 3 Performance metrics and economic effects for the models. The AUROC, AUPR and F1 are standard metrics measuring the
performance of a binary classifier. We also show the economic effect of assigning either a 6- or 12-month donation interval to donors who are
predicted to be deferred. A negative effect means savings in units of euro per donation. From the Hb prediction of the Bayesian linear mixed
models, we calculate the probability of deferral based on Finnish deferral limits, while the random forest model outputs probabilities of deferrals
directly. To calculate economic effects, these probabilities of deferrals need to be dichotomized into a deferral status by a cutoff value. The
threshold panel shows, which cutoff for the probability of deferral, applied to a given model, gave the optimal savings (shown on the economic
effect panels), where the candidates for cutoffs were 0.02, 0.04, …, 0.98. For all the panels except the threshold panel, 95% confidence intervals
computed using bootstrapping are shown. Most of the savings come from avoiding female deferrals
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eProgesa data with 10,000, 30,000 and 50,000 donors. The amount

of data did not show any clear effect on the prediction results (see

Table S7).

Next, we considered the imbalance between accepted and

deferred donation classes. In the pre-processed eProgesa data, only

12% of the donors had at least one deferral and the number of donors

with more deferrals decreased rapidly, as shown in Figure S9. Since

we want to be able to accurately predict Hb values that are below the

accepted threshold, it is vital that there are enough examples of low

Hb donations in the training data. We tried to artificially enrich the

fraction of deferrals by dropping out donors with no deferrals. This

resulted in a subset of female eProgesa data with the fraction of

donors with at least one deferral being 50%. We fitted a DLMM on

these data, and the prediction results are shown in Table S8. The

results worsened after the enrichment.

As a result of the above exploration, we decided not to enrich the

training data used for fitting LMMs. In addition, we only included

donors who had donated at least seven times. The resulting dataset

was already small enough, so fitting a model on these data was feasi-

ble in terms of time and memory required. Hence, no further

R2 � 0.34
2 �2 �

120

140

160

180

120 140 160 180

Observed

P
re

d
ic

te
d

Deferral status True positive False negative False positive True negative

F I GU R E 4 The observed and predicted Hb values given by the Biobank female DLMM are plotted with the R2 correlation value. The fitted
smooth curve (generalized additive model) and its 95% confidence intervals show the difficulty in predicting extreme Hb values. The donations
are classified into deferred (positive) and accepted (negative) classes first by comparing the observed values and the standard female threshold
125 g/L (dashed vertical line). Second, the probability of the haemoglobin deferral is compared to the 6-month deferral probability cutoff of 0.12
(found by maximizing savings, see Figure 3 panel threshold), which corresponds roughly to the predicted Hb value 135.2 g/L (dotted horizontal
line). Note that had we used the same threshold for predicted Hb as for observed Hb (125 g/L), we would have been able to predict only one
deferral correctly
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subsetting of the data was needed. The resulting final testing data had

695,658 donations (398,803 female and 296,855 male) from 47,820

donors (29,298 female and 18,522 male). This dataset was used in the

final analyses of the eProgesa data and the Biobank data. A different

scheme, explained in Section S3.2.4, was used for FinDonor data, as

that data had a very small number of donors and donations.

Figure 2 illustrates the effect sizes of variables of Biobank data in

DLMM and the importance of eProgesa variables in RF. Other models

gave similar results (Figures S10, S11, S20, S26, S31 and S34). There

were no large differences in effect sizes between men and women

except for the age-related variables. In both models, previous Hb was

clearly the most important variable. The SNP rs199598395 on gene

RNF43 had a large influence, but a polygenic score of Hb calculated

from UK Biobank data had a smaller effect size than whether the

donation was given in April–September.

The effect of the “days to previous full blood donation” was so

small that varying it and other time-dependent variables accordingly

did not affect deferral prediction enough to enable fully personal-

ized donation intervals. Hence, we analysed the effect of donation

activity by demographic group on the low Hb deferral rate for all

donations in Finland (Figure S6) and the effect of donation on the

iron deficiency rate in FinDonor data (Figure S7). Although no clear

association existed between deferral rate and donation activity, a

fixed deferral of 12 months is likely to reduce deferrals in the most

F I GU R E 5 The user interface to the prediction models works in any web browser. After the parameters are configured and the input data are
uploaded, the computation begins. The result is given as both html and pdf documents that contain plots and tables, with the possibility of
downloading the results in a raw form for further processing
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vulnerable group, that is, women younger than 30 (Figure S6). For

ferritin levels of the same group, even a 6-month deferral would

decrease the number of yearly donations by up to two or three and

hence significantly decrease the prevalence of low iron (Figure S7).

In general, a 6-month interval, possibly with supplemental iron, has

previously been shown to allow ferritin recuperation for most

donors [12, 13].

To estimate the economic effects of deferral prediction, we sub-

sequently used these two alternative donation intervals in case a

model predicted a donor to be deferred. When we temporarily

extended the donation intervals of all true and predicted deferrals to

either 6 or 12 months, we obtained a rough but concrete estimate of

the cost effect of the model performance.

The deferral prediction results and economic effects are summa-

rized in Figure 3 and Table S14. According to the AUROC metric, RF

performed better than the other models except for the male DLMM

with Biobank data. However, there were no large differences in the

performance of the LMM and RF, and each was only slightly better

than our baseline model, that is, logistic regression with previous Hb

as the only predictor.

In addition, all female models and the RF model resulted in cost

reductions when a 6-month deferral was applied for those predicted

to be deferred (Figure 3). For RF, the economic effect was �0.15 euro

per donation, that is, an economic savings of 0.15 euro per donation,

and the average interval extension was 1.1. Deployment of this model

would result in avoiding 51% of the deferrals. In the models that were

trained by stratifying by sex, the average cost effect for males was

0.02 euro per donation, whereas, for women, the effect was �0.11

euro per donation. If both male and female models were applied, then

the DLMM with FinDonor data gave the second-largest savings at

approximately 0.1 euro per donation, with the average donation inter-

val length being 1.12-fold. This model enabled us to avoid 51% of

deferrals.

As the baseline model predicts based on previous Hb only, the

probability thresholds that were found to provide the largest savings

correspond to specific Hb values. For 6-month deferral, these were

147 g/L for men and 135 g/L for women; and for 12-month deferral,

141 g/L for men and 122 g/L for women.

DISCUSSION

Our reimplementation of the LMMs gives equal or slightly weaker

results in terms of MAE and RMSE (Table S13) but better results in

terms of AUROC than in Fokkinga [5]. This is probably due to larger

data and more variables, but these approaches still fail to predict

lower Hb values. For example, the female DLMM on Biobank data

predicts for all but one donation where Hb is below 125 g/L higher

than 125 g/L Hb. However, if the deferral threshold that gives opti-

mal economic effects is used instead, then we can avoid 49% of the

deferrals while falsely predicting as deferred only 18% of the viable

donations (Figure 4). We expect the prediction results to be more

accurate in countries where the deferral rate is higher than in

Finland since the ratio of accepted and deferred donations is more

balanced. Although the incorporation of genetic information as pre-

dictors improves the prediction (Figure 3, Table S14), the effect

appears small in relation to the costs of genotyping. The SNP

rs199598395 in the RNF43 gene was discovered by the FinnGen

project as a lead SNP for iron deficiency anaemia (http://r4.

finngen.fi/pheno/D3_ANAEMIA_IRONDEF). Its effect size is large,

but the minor allele is only present in �2% of donors. Overall, in

Finns, it is present in �1% of people, in Europeans (non-Finnish)

�0.01% and it is not found in other populations [14]. This highlights

the possibility that further study of population-specific or rare

genetic variation could considerably increase the value of genetic

predictors.

Our RF model performs similarly to logistic regression with non-

linear predictors [3] in predicting deferral but is simpler and easier to

train. There is no apparent performance difference between the

LMMs and RF in predicting deferral. Importantly, these complicated

models seem to have little benefit over a simple one-predictor logistic

regression (baseline model).

Due to the low accuracy in Hb prediction and the fact that the

effect of the “days to previous full blood donation” variable is small,

we were unable to define completely personalized donation intervals.

However, our calculations on the blood supply and economic effects

indicate that cost reduction is still possible through a fixed deferral

(6 months) given to donors (especially female donors) predicted to be

deferred. To our knowledge, this is the first report that estimates the

blood supply and economic effects of deploying a deferral prediction

model. However, our calculations are based on two assumptions:

(1) that every euro spent on marketing will result in a proportional

number of new donors coming in and (2) that the Hb values recover

as a function of time. Although assumption (1) is certainly not univer-

sally valid, we believe that it is very likely to be valid for the small

adjustments we make here.

In conclusion, our results suggest that pre-donation Hb data could

be used much more efficiently to bring savings and health benefits.

Furthermore, savings to donors will result in saved time and travel

expenses [15], although we did not include them in our estimation. If

the pre-donation Hb value is found to be below the threshold for eco-

nomic effects but above the deferral limit, then the donor can donate

but is deferred, for example, for 6 months. We do not find that the

more complicated computational predictors could greatly improve on

this. However, more predictive data such as ferritin measurements at

every donation, more informative genetic data, or iron consumption

and menstruation data could bring significant improvements. We have

started evaluating the deployment of the threshold-based system at

the FRCBS. This includes assessing the effect of varying the cost

parameters, risk analysis and possible testing of the procedure at a

single donation site.

The source code of the model implementations is available at

GitHub (see Supporting Information for details) and Zenodo [16]. Fur-

thermore, a ready-to-use prediction application as a Docker [17] soft-

ware container is also provided. Its user interface, which runs in a web

browser, facilitates easy use for non-programmers (see Figure 5).
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These resources allow others to test our models with their data and

develop them further; see Section S2.3 for more details.
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