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Abstract

Study Design: Systematic review.

Objectives: To review the existing literature of prediction models in degenerative spinal surgery.

Methods: Review of PubMed/Medline and Embase databases was conducted to identify articles between January 1, 2000 and
March 1, 2020 that reported prediction model performance for outcomes following elective degenerative spine surgery.

Results: Thirty-one articles were included. Twenty studies were of thoracolumbar, 5 were of cervical, and 6 included all spine
patients. Five studies were externally validated. Prediction models were developed using machine learning (42%) and logistic
regression (42%) as well as other techniques. Web-based calculators were included in 45% of published articles. Various out-
comes were investigated, including complications, infection, length of stay, discharge disposition, reoperation, readmission,
disability score, back pain, leg pain, return to work, and opioid dependence.

Conclusions: Significant heterogeneity exists in methods used to develop prediction models of postoperative outcomes after
degenerative spine surgery. Most internally validate their scores, but a few have been externally validated. Areas under the curve
for most models range from 0.6 to 0.9. Techniques for development are becoming increasingly sophisticated with different
machine learning tools. With further external validation, these models can be deployed online for patient, physician, and
administrative use, and have the potential to optimize outcomes and maximize value in spine surgery.
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Introduction

Value-based care has become a manifest focus of American

health care policy and is driven by efforts to improve outcomes

while reducing costs. Hospital systems and policy makers con-

tinue to explore methods to reduce complications, improve

patient education, and increase efficiency in perioperative and

postoperative settings. Given substantial variability between

surgeons in the indications and interventions used for given

degenerative spinal pathologies, there is commensurate varia-

bility in outcomes.1-4 Randomized controlled trials (RCTs)

remain the gold standard for determining the efficacy of an

intervention and a small number have been conducted for the

management of degenerative spine pathology.5-8 However,

RCTs of surgical interventions have inherent challenges9,10 and

cannot be performed for every clinical question. Cost and com-

parative effectiveness studies have emerged as an alternative to

identify operations that are more likely to yield high value

outcomes. Another burgeoning approach is the development

and validation of clinical prediction models.

Predictive analytics in clinical medicine has been enabled

by the rapid adoption of electronic medical records, develop-

ment of national registries and prospective multicenter data-

bases, and increased awareness of machine and statistical

learning methods. Clinical prediction models have the potential

to provide patient-specific risk profiles and expected outcomes.
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With these tools, surgeons may be able to give a patient their

expected likelihood of success for a given operation, as well as

their chance for adverse outcomes and complications. On a

hospital-wide and national level, these tools can help identify

targets for quality improvement efforts and policy making.

Given the demonstrated variability in degenerative spinal

surgery practice and outcomes, the application of more robust

prediction models to this field may lead to substantial improve-

ments in patient care. However, the studies of prediction model

development for degenerative spinal surgery have been hetero-

geneous. These articles have focused on postoperative out-

comes, length of stay (LOS), discharge disposition, and

adverse events. They have also varied in terms of design, sample

size, method of validation, and mode of deployment. The goal of

this systematic review was to summarize the existing literature

on prediction models in degenerative spinal surgery. We cate-

gorized the existing degenerative spinal surgery prediction mod-

els based on their respective outcomes and design and report the

relative strengths and weaknesses of these studies to aid in inter-

pretation and consideration for clinical deployment.

Methods

We performed a search of the English language literature using

the PubMed/Medline and Embase databases to identify articles

between January 1, 2000 and March 1, 2020 that reported pre-

diction model performance for outcomes following elective

degenerative spine surgery.

Search terms included (prediction OR predictive) AND

(spine OR spinal OR “spine surgery” OR “laminectomy” OR

“interbody fusion” OR “diskectomy” OR “discectomy” OR

“spinal fusion”). We further queried the bibliographies of the

included studies to identify additional relevant articles.

Inclusion criteria were English language articles involving

adult patients who underwent elective spine surgery for a

degenerative spinal pathology. Studies involving tumor, infec-

tion, and deformity were excluded, as were nonclinical studies.

All studies were required to have a description of a model that

could facilitate inputting patient-level data to predict the out-

come of interest. Prediction model outcomes could include

functional/disability/pain scores or more objective measures

such as LOS, reoperation, readmission, and complications.

Results

We identified 1535 unique articles (Figure 1), of which 48

underwent full-text review leading to the inclusion of 31 arti-

cles in this review. Reasons for exclusion included no mention

of a prediction model (n ¼ 7), outcomes not fitting inclusion

criteria (n¼ 5), and only abstract available (n¼ 5). Of these 31
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for articles with degenerative spine
disease prediction models with 1-year outcomes after surgery.
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articles, 5 articles (16%) included external validation. Of the 31

included studies, 20 (65%) were of thoracolumbar surgeries, 5

(16%) were cervical surgeries, and 6 (19%) were inclusive of

patients undergoing any spinal surgery.

There was heterogeneity in how the prediction models were

developed. Thirteen (42%) used machine learning, 13 (42%)

used logistic regression, 2 (6%) used linear regression, 1 (3%)

used binomial regression, 1 (3%) used both logistic and linear

regression, and 1 (3%) used Cox proportional hazards regres-

sion. For internal validation, 17 (55%) used cross-validation by

splitting their cohort into a training and validation sets, 9 (29%)

used bootstrapping, 1 (3%) used random number generators,

and 4 (13%) did not specify. Web-based calculators were

included in 14 (45%) of the published articles. Various out-

comes were investigated, including overall complications,

infection, LOS, discharge disposition, reoperation, readmis-

sion, Oswestry Disability Index (ODI) score, back pain, leg

pain, return to work, and opioid dependence.

Six articles looked at complications (Table 1), which

included infection (n ¼ 3), all-inclusive complications (n ¼ 4),

pulmonary complications (n¼ 2), cardiac complications (n¼ 2),

venous thromboembolism (n ¼ 1), and neurologic complica-

tions (n ¼ 1).11-15,41 Of these, 3 were single institution stud-

ies, 1 used the American College of Surgeons National

Surgical Quality Improvement Program (ACS-NSQIP)

database, 1 used the Truven Health Analytics MarketScan

database, and 1 used both the Truven database and the Cen-

ters for Medicare and Medicaid Services (CMS) Medicare

database. One was prospective while 5 were retrospective.

Study follow-up ranged from 30 days to 2 years. Area under

the curve (AUC) ranged from 0.57 to 0.72.

Reoperation (n¼ 2) and readmission (n¼ 4) were examined

by 5 articles (Table 2).11,16-19 Three were single institution

studies and 2 used the ACS-NSQIP database. One was prospec-

tive while 4 were retrospective. Study follow-up ranged from

30 days to 1 year. AUC ranged from 0.63 to 0.91.

Nine studies examined the LOS and discharge disposition of

patients (Table 3).11,16,18,20-25 Of these, 2 examined discharge

to a rehabilitation facility, 1 examined discharge to any facility,

5 examined nonhome discharge, and 2 examined prolonged

LOS. Three were single institution, 5 used the ACS-NSQIP

database, and 1 used the NeuroPoint Quality Outcomes Data-

base (QOD) database. One was prospective while 8 were retro-

spective. AUC ranged from 0.75 to 0.89.

Eighteen articles examined functional outcomes (Table 4),

which included quality-of-life measures (n ¼ 11), opioid

dependence (n¼ 3), returning to work (n¼ 2), patient satisfac-

tion (n¼ 2), and persistent postsurgical pain (n¼ 1).11,16,17,26-40

Quality-of-life outcome measures included scores on the

following validated inventories: ODI, visual analog scale for

Table 1. Studies Evaluating Complications During/After Spine Surgery.

Author, year Institutions Design
Time
length Sample size Internal AUC Calib? Internal validation

External
validation Calc

Lee, 201412 Single Retrospective 2 years 1476 Overall: 0.76
Major: 0.81

Yes Random number
generator

Overall50: 0.71
Major: 0.85

Yes

McGirt,
201511

Single Prospective 1 year 1803 Overall: 0.72 Yes Training/validation No No

Ratliff, 201614 Multiple Retrospective 30 days 279 315 Overall: 0.70
Pulmonary:

0.72

No Training/validation Veeravagu42:0.67 Yes

Kim, 201813 Multiple Retrospective 30 days 22 629 Cardiac: 0.71
VTE: 0.57
Infection: 0.61

No Training/validation No No

Han, 201915 Multiple Retrospective 30 days 1106 234 Overall: 0.70 Yes Training/validation No No
Janssen,

201941
Single Retrospective >1 year 898 Infection: 0.72 Yes Bootstrapping No No

Abbreviations: VTE, venous thromboembolism; AUC, area under the curve; Calib?, calibration performed?; Calc, whether the authors reported that they
developed a Web-based calculator.

Table 2. Prediction Models for Reoperation and Readmission After Spine Surgery.

Author, year Institutions Design Time length Sample size Internal AUC Calib? Internal validation External validation Calc

McGirt, 201511 Single Prospective 30 days 1803 Readmit 0.74 Yes Training/validation No No
Lubelski, 201717 Single Retrospective 90 days 952 Reop 0.91

Readmit 0.78
Yes Bootstrapping No Yes

Goyal, 201918 Multi Retrospective 30 days 59 145 Readmit 0.66 No Training/validation No No
Hopkins, 201919 Multi Retrospective 30 days 23 264 Readmit 0.81 No Training/validation No No
Siccoli, 201916 Single Retrospective 1 year 635 Reop 0.63 Yes Training/validation No No

Abbreviations: Reop, reoperation; Readmit, readmission; AUC, area under the curve; Calib?, calibration performed?; Calc whether the authors reported that they
developed a Web-based calculator.
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leg and lower back pain, EuroQol 5-dimensions (EQ-5D),

Patient Health Questionnaire-9 (PHQ-9), Pain and Disability

Questionnaire (PDQ), Short Form 6-dimensions (SF-6D), and

the modified Japanese Orthopedic Association (mJOA). Seven

were single institution studies, 5 used the QOD database, and 6

were multi-institutional. Four were prospective while 14 were

retrospective. Follow-up ranged from 90 days to 2 years. AUC

ranged from 0.64 to 0.81. Specifically, AUC ranged from 0.64

to 0.81 for quality-of-life measures, 0.70 to 0.80 for opioid

dependence, 0.71 to 0.81 for return to work, and 0.64 to 0.79

for patient satisfaction. AUC was 0.66 for persistent postsur-

gical pain.

Discussion

We identified 31 studies reporting prediction models for degen-

erative spinal surgery. These have mainly focused on predict-

ing complications, readmission, reoperation, and functional/

quality-of-life outcomes. We found that while almost all stud-

ies attempted to internally validate their model, external vali-

dation was rare. AUC values ranged from as low as 0.6 to as

high as 0.97, and only two-thirds of papers reported calibration

of their models. While most articles reported discrimination,

calibration is equally important when trying to identify patients

that will develop a given event versus those who will not. One

should not use a model where the absolute risk estimates are

not accurate. Sometimes calibration can be good in certain risk

groups, but overestimates or underestimates risk in different

populations. For this reason, better models are those that report

both these values. Furthermore, just under half the studies

reported their model in the form of a web-based calculator.

Model deployment in this format greatly enhances the ability

of a clinician to incorporate such a model into their clinical

workflow.

Complications

Models predicting complications after degenerative spine sur-

gery were the most commonly published; however, the types of

models and the datasets used to create them varied greatly. Lee

et al12 retrospectively evaluated 1476 patients undergoing

degenerative spine surgery from a single institutional surgical

registry to construct a predictive model of postoperative major

complications, minor complications, surgical site infection,

and durotomy. They reported an AUC of 0.76 for any compli-

cation and 0.81 for major complications and deployed their

model at http://depts.washington.edu/spinersk/. McGirt et al11

prospectively evaluated 1803 patients undergoing lumbar spine

surgery at a single institution to produce a model that incorpo-

rated 45 baseline variables to predict postoperative complica-

tions with an AUC of 0.72. Most recently, Janssen et al41

reported a single institution retrospective series predicting

postoperative infection with an AUC of 0.72.

The other studies that published models of complications

used multi-institutional data. Ratliff et al14 retrospectively

evaluated 279 315 patients from a longitudinal national claims

database to construct a predictive model of complications after

surgery. They produced a model with an AUC of 0.70 and

deployed the algorithm in a freely available smartphone appli-

cation (http://itunes.apple.com/app/ratool/id1087663216). The

authors also externally validated this model using data from a

single-institution prospective patient series (N ¼ 246).42

Kim et al13 retrospectively evaluated 22,629 patients using

the cross-sectional NSQIP database to develop machine learn-

ing models to identify risk factors for complications after pos-

terior lumbar spine fusion. AUCs for logistic regression and

artificial neural network models both outperformed benchmark

American Society of Anesthesiologists (ASA) class for predict-

ing complications. In their logistic regression model, the AUC

for predicting cardiac complications was 0.66, for predicting

venous thromboembolism was 0.59, for predicting wound

infection was 0.61, and for predicting mortality was 0.7. Of

note, several authors including Sebastian et al43 attempted to

validate the previously developed NSQIP Surgical risk calcu-

lator (riskcalculator.facs.org). They found that the calculator

generally had relatively poor predictive performance across all

outcomes measured, including an AUC of 0.56 for reoperation,

0.61 for any complication, 0.61 for serious complications, and

0.63 for surgical site infection.

Table 3. Prediction Models for Length of Stay and Discharge of Patients Undergoing Spine Surgery.

Author, year Institutions Design Sample size Internal AUC Calib? Internal validation External validation Calc

McGirt, 201511 Single Prospective 1803 Rehab: 0.84 Yes Training/validation No No
Guan, 201825 Multi Retrospective 217 Nonhome disch: 0.80 Yes N/A No No
Karhade, 201822 Multi Retrospective 26 364 Nonhome disch: 0.82 Yes Training/validation Stopa45:0.89 Yes
Goyal, 201918 Multi Retrospective 59 145 Nonhome disch: 0.87 No Training/validation No No
Ogink, 201923 Multi Retrospective 9338 Nonhome disch: 0.75 Yes Training/validation No Yes
Ogink, 201924 Multi Retrospective 28 600 Nonhome disch: 0.75 Yes Training/validation No Yes
Siccoli, 201916 Single Retrospective 635 Prolonged LOS: 0.77 Yes Training/validation No No
Harada, 202021 Multi Retrospective 10 453 Facility disch: 0.75 Yes Training/validation Harada21: 0.77 No
Lubelski, 202020 Single Retrospective 257 Rehab: 0.89

Prolonged LOS: 0.89
No Bootstrapping No Yes

Abbreviations: Disch, discharge; Rehab, inpatient rehabilitation; AUC, area under the curve; Calib?, calibration performed;? Calc, whether the authors reported
that they developed a Web-based calculator.
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Han et al15 retrospectively evaluated 1 106 234 patients from

the Truven MarketScan, Commercial database, the Truven

MarketScan Medicare Databases, and the CMS Medicare data-

base to develop predictive models of adverse events 30 days

after spine surgery. The predictors identified included patient

demographics, medical comorbidities, surgical indication, and

operative characteristics and the resultant model had an AUC

of 0.70 for predicting overall adverse events.

Reoperation and Readmission

Prediction models of readmission and reoperation are particu-

larly apt for current CMS hospital quality metrics. The articles

that have looked at this have been primarily retrospective, with

the exception of the article by McGirt and colleagues,11 who

prospectively evaluated 1803 patients at a single institution to

develop multiple predictive models, including one for readmis-

sion. Using 45 baseline variables, their model yielded an AUC

of 0.74. They did not have external validation and the large

number of baseline variables as compared with overall number

of readmission events (N ¼ 108), may potentially increase the

risk of overfitting and thereby limit generalizability.

Of the models derived from retrospective analyses, Siccoli

et al16 evaluated 635 patients from a prospective registry using

machine learning algorithms to predict need for reoperation

and patient outcomes at 12 months. Their model for reoperation

had an AUC of 0.63, which is on the lower end of the spectrum.

Lubelski et al17 retrospectively evaluated 952 patients from a

single institution who underwent anterior or posterior cervical

decompression/fusion and found that predictors of clinical out-

comes included race, median income, body mass index, med-

ical comorbidities, presenting symptoms, surgical indication,

surgery type, and number of operated levels. They validated

their cohort using bootstrapping and found an AUC of 0.91 for

90-day reoperation, 0.63 for 30-day emergency department

visits, and 0.78 for 30-day readmission. A web-based calculator

was deployed at https://riskcalc.org/PatientsEligibleforCervi

calSpineSurgery/.

Two additional studies used the ACS-NSQIP database to

generate calculators. Hopkins et al19 retrospectively evaluated

23 264 patients who underwent posterior lumbar fusion and

found that predictors of 30-day readmission included medical

comorbidities and whether surgery was a reoperation or index

case. Despite the limitations of the NSQIP database, their

model achieved an AUC of 0.81. Though not included in the

original article, the authors did later report that this model was

adequately calibrated.44 In contrast, the more inclusive study

by Goyal et al,18 which had cervical and lumbar spinal fusion

patients, developed a model with poorer predictive discrimina-

tion. They evaluated 59 145 patients from the ACS-NSQIP

database and produced a model with an AUC of 0.66 for

unplanned admission.

The national administrative databases are readily accessible

and have very large numbers, which may increase the power for

statistical analysis. Predictive models that are calculated from

these databases, however, may be subject to significant bias

because of how the data is collected, completeness of the

included variables, and how they are categorized based on bill-

ing diagnosis and procedure codes. Models based on smaller

sample sizes may potentially be superior if the data is collected

prospectively and if the data collection is more nuanced and

accurate. Ultimately, when evaluating different prediction

models, it is important to consider how the data was collected,

sample size, number of institutions included, as well as AUC,

discrimination, calibration.

Length of Stay and Discharge

In addition to predicting adverse outcomes, predicting pro-

longed length of hospital stay and discharge disposition can

improve patient experience, reduce health-facility associated

complications, and reduce costs. Several authors have devel-

oped prediction models to determine expected length of stay as

well as the likelihood of discharge to nonhome or inpatient

rehabilitation destination.

Using their prospective data set, McGirt et al11 developed a

model with an AUC of 0.84 for predicting discharge to in-

patient rehabilitation. Lubelski et al20 retrospectively evaluated

257 patients from a single institution and published a model

that had an AUC of 0.89 for likelihood of rehabilitation dis-

charge as well as AUC of 0.89 for prolonged LOS (>7 days).

The authors deployed this model as a web-based calculator at

https://jhuspine1.shinyapps.io/RehabLOS/. Similarly, Siccoli

et al16 retrospectively evaluated a prospective registry of 635

patients undergoing lumbar decompression surgery using

machine learning algorithms to predict extended length of stay

(>28 hours) with an AUC of 0.77.

Guan and colleagues25 used the Quality Outcomes Database

(QOD), a multicenter prospective registry, to develop a predic-

tion score of discharge needs for patients undergoing lumbar

fusion. With an AUC of 0.81, their model could place a patient

into the low- or high-score category, which would determine

the likelihood of needing additional homes services or acute

rehabilitation.

The other publications on predictors of rehabilitation dis-

charge all used the ACS-NSQIP database to generate predic-

tion models. Harada et al21 evaluated 10,453 patients from the

ACS-NSQIP database who underwent open lumbar fusion

(AUC of 0.75), and then externally validated the model using

their institutional dataset (AUC of 0.77). Similarly, Karhade

et al22 evaluated 26 364 ACS-NSQIP patients who underwent

lumbar surgery for degenerative disc disorders to generate a

model with an AUC of 0.82. Their model was then externally

validated by Stopa and colleagues45 and the authors of the

original article deployed a web-based calculator at https://

sorg-apps.shinyapps.io/discdisposition/.

Ogink and colleagues23 then published an evaluation of

9338 patients in the ACS-NSQIP database who underwent sur-

gery for degenerative spondylolisthesis and found that their

model predicted nonhome discharge with an AUC of 0.75

(https://sorg-apps.shinyapps.io/spondydisposition/). Then in a

parallel publication, the same group24 evaluated 28 600 patients
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in the ACS-NSQIP database who underwent surgery for lumbar

spinal stenosis and generated a model predicting nonhome dis-

charge with an AUC of 0.75 (https://sorg-apps.shinyapps.io/

stenosisdisposition/). Last, analyzing 59 145 ACS-NSQIP

patients who underwent either cervical or lumbar spinal fusion,

Goyal et al18 produced a model predicting nonhome discharge

with an AUC of 0.87.

Pain, Disability, and Quality of Life

Functional and quality-of-life outcomes are critical to deliver-

ing patient-centered spine care. Therefore, these outcome

metrics have also been the focus of clinical prediction models.

The ODI is a widely used and extensively validated method for

quantifying low back pain–associated disability and has been

used by multiple prediction studies as an outcome.46

McGirt et al26 prospectively evaluated a larger cohort of

7618 patients from the NeuroPoint QOD one year after elective

lumbar spine surgery and found that predictors of patient-

reported outcomes (PROs) included employment status, base-

line back pain, psychological distress, baseline ODI, level of

education, workers’ compensation status, symptom duration,

race, baseline leg pain, ASA score, age, primary symptom,

smoking status, and insurance status. Internal validation

yielded modest AUCs of 0.69 for ODI, 0.67 for numeric rating

scale (NRS) for back pain, and 0.64 for NRS for leg pain.

Siccoli et al16 achieved comparable discriminative ability for

these outcomes among patients undergoing single- or multi-

level decompression for lumbar spinal stenosis, with data col-

lected from retrospective review of a prospective registry. Khor

et al28 collected prospective, multi-institution registry data

(N ¼ 1583) for patients undergoing elective lumbar surgery

and developed predictive models that achieved AUCs of 0.73

for ODI, 0.75 for NRS back pain, and 0.75 for NRS leg pain. A

web-based calculator was deployed at https://becertain.shi-

nyapps.io/lumbar_fusion_calculator. Importantly, these mod-

els were independently, externally validated by Quddusi et al.47

An often-underestimated aspect in the development of clin-

ical prediction models is variable selection. In an effort to

address this, Rundell et al38 retrospectively evaluated 5840

patients from multiple institutions to develop prognostic mod-

els of 1-year outcomes. The key finding of this study was that

ODI at 3-months postsurgery was the strongest predictor of 12-

month outcomes.38 Future predictive studies should think care-

fully about variable selection and consider feature engineering,

a term in machine learning that describes using domain knowl-

edge to create variables that may drive improved predictive

performance.

While the majority of predictive models in degenerative

spine surgery have focused on lumbar spine surgery, early

efforts in modeling quality-of-life outcomes for cervical spine

surgery patients are emerging. In addition to predicting reo-

peration and readmission rates, Lubelski et al17 used their

single-institution cohort of patients undergoing cervical spine

surgery to develop nomograms for quality-of-life outcomes

(EuroQOL, EQ-5D; PHQ-9, PDQ). These nomograms

predicted quality-of-life outcomes to varying degrees, with

R2 values of 0.43 for EQ-5D, 0.35 for PHQ-9, and 0.47 for

PDQ.17 Asher and colleagues40 used the Neuropoint QOD to

create a model predicting patient satisfaction after 1- or 2-level

anterior cervical discectomy and fusion. Their model had an

AUC of 0.66, and found that geographical region, socioeco-

nomic status, baseline disability and symptom duration all con-

tributed to postoperative outcome. Devin et al33 also utilized

the QOD for cervical spine surgery patients and found that

predictors of returning to work within 90 days included age,

employment, occupation, workers’ compensation, baseline

Neck Disability Index score, presentation, and levels fused.

They used bootstrapping to validate their cohort and achieved

an AUC of 0.81.33 And Merali et al39 used the AOSpine pro-

spective registry to predict postoperative SF-6D and mJOA

quality-of-life outcomes in patients undergoing surgery for cer-

vical spondylotic myelopathy. Their models used machine

learning tools to predict 6-, 12-, and 24-month outcomes, and

their best performing model had an average AUC of 0.7.

A final outcome of interest is opioid use following degen-

erative spine surgery. Associations between spine surgery and

opioid use are well established.48,49 Karhade et al34-36 endea-

vored to build predictive models of sustained opioid use after

cervical and lumbar spine surgery, defined as >90 days of

uninterrupted prescription filling. Their models had AUCs

ranging from 0.7 to 0.8 and were deployed as web-based cal-

culators to potentially enable a surgeon, at the bedside, to iden-

tify an individual’s specific risk.

Limitations and Future Directions

There is an increasing body of literature looking at predicting

outcomes in degenerative spine surgery. Some focus on admin-

istrative outcomes such as readmission, emergency department

visits, and reoperation, whereas others focus on patient

reported outcomes and complications. Heterogeneity also

exists in how the data is collected, how the analyses are per-

formed and models validated, and the mechanisms by which

the data is reported. To be integrated into clinical practice,

prediction models need to have the data collected in a systema-

tic way, preferably prospectively, with detailed clinical infor-

mation. Models based on the Current Procedural Terminology

and diagnosis codes of administrative databases are therefore

inherently limited. Models need to assess for discrimination

and calibration and should preferably have AUC >0.7. Details

of how the analysis is performed should be explicitly reported.

Validation should be performed with a patient population that

is different from which the model was generated, ideally at

another institution. If validation is performed on patients from

the same institution, this limits the model’s generalizability

outside of the primary hospital setting.

Future directions include the generation a grading system to

help clinicians determine the relative strengths of the different

published models. Additionally, studies are needed to deter-

mine the usefulness of such prediction models. Better under-

standing is needed whether the use of a prediction model leads
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to greater patient satisfaction, outcome, or value. Lastly, it is

important to remember that regardless of how accurate the

prediction model is, it cannot replace clinical judgment. There

are innumerable clinical and social variables that are taken into

account when helping patients decide on a treatment course.

The goal is to create prediction calculators that can help the

physician provide more accurate and individualized descrip-

tions of the risk/benefit profile for a given patient.

Conclusion

The continued emphasis on value-based care in American

health care and the variability in degenerative spine surgery

outcomes presents an important case for clinical prediction

modeling. The current body of clinical prediction for degen-

erative spine surgery is heterogeneous with regard to data sets,

outcome measures, and statistical learning methods. Impor-

tantly, external validation of proposed models must be empha-

sized and executed. While the promise of clinical prediction in

degenerative spine surgery for patients, hospitals, and health

systems is significant, further efforts are required before cur-

rent models are appropriate for clinical deployment

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of interest

with respect to the research, authorship, and/or publication of this

article: Daniel M. Sciubba is a consultant for Baxter, DePuy-

Synthes, Globus Medical, K2M, Medtronic, NuVasive, Stryker, and

receives unrelated grant support from Baxter Medical, North Amer-

ican Spine Society, and Stryker. The other authors have no disclosures

to make.

Funding

The author(s) disclosed receipt of the following financial support for

the research, authorship, and/or publication of this article: This

supplement was supported by a grant from AO Spine North America.

ORCID iD

Daniel Lubelski, MD https://orcid.org/0000-0002-9403-9509

Andrew Hersh, BA https://orcid.org/0000-0003-1755-3974

Zachary Pennington, BS https://orcid.org/0000-0001-8012-860X

Daniel M. Sciubba, MD https://orcid.org/0000-0001-7604-434X

References

1. Lubelski D, Alentado VJ, Williams SK, et al. Variability in surgical

treatment of spondylolisthesis among spine surgeons. World Neu-

rosurg. 2018;111:e564-e572. doi:10.1016/j.wneu.2017.12.108

2. Alvin MD, Lubelski D, Alam R, et al. Spine surgeon treatment

variability: the impact on costs. Global Spine J. 2018;8:498-506.

doi:10.1177/2192568217739610

3. Mroz TE, Lubelski D, Williams SK, et al. Differences in the

surgical treatment of recurrent lumbar disc herniation among

spine surgeons in the united states. Spine J. 2014;14:2334-2343.

doi:10.1016/j.spinee.2014.01.037

4. Azad TD, Vail D, O’Connell C, Han SS, Veeravagu A, Ratliff JK.

Geographic variation in the surgical management of lumbar

spondylolisthesis: characterizing practice patterns and outcomes.

Spine J. 2018;18:2232-2238. doi:10.1016/j.spinee.2018.05.008

5. Bailey CS, Rasoulinejad P, Taylor D, et al. Surgery versus con-

servative care for persistent sciatica lasting 4 to 12 months. N Engl

J Med. 2020;382:1093-1102. doi:10.1056/NEJMoa1912658

6. Ghogawala Z, Dziura J, Butler WE, et al. Laminectomy plus fusion

versus laminectomy alone for lumbar spondylolisthesis. N Engl J

Med. 2016;374:1424-1434. doi:10.1056/NEJMoa1508788
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