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Vascular calcification, a common pathological phenomenon in atherosclerosis, diabetes,

hypertension, and other diseases, increases the incidence andmortality of cardiovascular

diseases. Therefore, the prevention and detection of vascular calcification play an

important role. At present, various techniques have been applied to the analysis of

vascular calcification, but clinical examination mainly depends on non-invasive and

invasive imaging methods to detect and quantify. Computed tomography (CT), as a

commonly used clinical examination method, can analyze vascular calcification. In recent

years, with the development of technology, in addition to traditional CT, some emerging

types of CT, such as dual-energy CT and micro CT, have emerged for vascular imaging

and providing anatomical information for calcification. This review focuses on the latest

application of various CT techniques in vascular calcification.
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INTRODUCTION

In hypertension, diabetes, atherosclerosis, and other diseases, vascular calcification, which severely
affects human health, must not be ignored (1). Currently, there are many quantitative methods to
calculate a vascular calcification level score. The most commonly used process is the Agatston (2),
in which lesions with CT value ≥130 Hu and area ≥1 mm2 (3) are defined as calcification. It is
worth noting that the Agatston score is for the assessment of calcification in the coronary artery. As
a clinically accessible imaging technique, CT is the most advanced non-invasive tool for detecting
coronary calcification (4). CT can quickly and easily image and analyze the calcification. Bradley
et al. (5) divided calcification into three characteristics: perimeter, length, and morphology, and
the score accorded each feature. Multiple studies (6) have verified the accuracy and importance of
calcification score derived by CT. In this review, recent development in various CT techniques
in evaluating vascular calcification is stated. Moreover, we discuss the application and future
development of CT in vascular calcification.

THE SIGNIFICANCE OF VASCULAR CALCIFICATION ASSESSED
BY CT, ESPECIALLY IN THE CORONARY ARTERY

CT is a non-invasive imaging method for evaluating and analyzing vascular calcification. It is
considered the gold standard for analyzing and quantifying vascular calcification (7, 8). Many
studies have shown that the coronary calcium score is an essential and reliable predictor as levels of
calcium increase with the morbidity and mortality of cardiovascular disease in patients (9–11). In
a feasibility study, patients with a calcium score over 400 had a high risk of cardiovascular disease,
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while those who scored 1 to 400 were at twice the risk
of cardiovascular disease as those with a zero score (12).
Rennenberg et al. analyzed the results of 30 different studies.
They found a three to four times higher risk of incidence
and mortality of cardiovascular disease in patients with
vascular calcification (13).

Coronary calcium scoring is useful for a wide range of
factors such as age and risk. It can assist risk stratification for
clinical cardiovascular events (14, 15). Furthermore, the coronary
artery calcium score (CACS) helps improve risk prediction in
intermediate-risk groups when combined with other traditional
clinical risk classification methods (16). This was confirmed
by Tamar et al. (17). They found a greater redistribution
of risk for middle-grade patients. This suggests that middle-
risk patients may be more appropriate for coronary calcium
scores. CACS was verified as optimizing the risk classification of
cardiovascular events. It has significantly improved the accuracy
of cardiovascular risk stratification. More importantly, CACS can
help some patients at risk of cardiovascular disease be treated
with statins at a secondary prevention level (18).

As a relatively inexpensive non-invasive imaging method (19),
coronary computed tomography (CCTA) has become a vital
examination method of patients with coronary disease in the
clinical diagnosis and treatment plans due to its advantages
of high spatial resolution, high sensitivity (95–99%), and high
negative predictive value (97–99%) (20). The resolution of
currently available CCTA is 0.5–1mm, and CCTA is widely
used to prevent and examine coronary heart disease (21). As
a non-invasive examination method, compared with invasive
coronary angiography, the visualization of blood vessels is
the main advantage of CCTA (22). It provides information
about coronary arteries’ structure and information about the
shape and composition of vascular plaques. Furthermore, the
severity of coronary plaques estimated by imaging is consistent
with intravascular ultrasound (IVUS) (23). However, it cannot
detect minute elements such as macrophage accumulation and
prominent plaque characteristics (24).

Using the traditional CT scanner, coronary artery calcium
(CAC) is defined as (3) a lesion above the threshold of 130
sound field units with an area ≥1 mm2. Studies have shown that
(25) for lesions with calcification score ≥400, the sensitivity and
specificity of conventional CT in the diagnosis of coronary heart
disease are lower than those of CCTA technology. Furthermore,
as CCTA provides less information when the calcification score
is high, severely calcified plaques cause beam hardening and
blooming artifacts, resulting in inaccurate diagnoses of coronary
artery stenosis (26). Skinner et al. (27) recommended invasive
coronary angiography for patients with a CAC score >400. It
has been proved that (28) adding the transluminal attenuation
gradient of a transverse optical lumen to CCTA can improve
the diagnostic accuracy of CCTA. Experiments show that (29)
a higher heart rate will affect the repeatability of CCTA plaque
measurement. Higher heart rates will produce motion artifacts,
leading to poor plaque image quality. Some strategies have been
developed to improve CCTA diagnostic performance in calcified
plaque recognition (30, 31). These methods include using
image post-processing methods and iterative reconstruction (IR)

algorithms to suppress the influence of severe calcification on
coronary artery lumen evaluation. Li et al. (32) found that
the blooming removal algorithm significantly reduced blooming
artifacts caused by calcified plaque, reduced the occurrence
of false-positive coronary artery lesions, and improved CCTA
diagnostic accuracy. It is worth noting that a study found that
(33) the relationship between calcium volume and density and
subsequent clinical diseases varies. Coronary artery calcification
volume is positively correlated with both coronary heart disease
and cardiovascular disease, while calcification density is inversely
proportional to both. Several other studies have supported this
view, concluding that stabilization has a greater density of
calcification plaques than acute coronary heart disease (34–37).
These results suggest that the density of calcification plaques
may be protective and that high densities of calcification plaques
are associated with stability. The mechanism by which this
phenomenon occurs is currently unknown (38), and further
investigation is needed.

CAC degree is closely associated with age, sex, and other
factors, and the extent and prevalence of calcification increase
with age (39). CCTA can detect CAC before patient symptoms
appear, thus shortening hospital stay and saving costs (40).
However, its main disadvantages are the need for iodized contrast
media and radiation exposure, and consequently, there may be a
potential risk of radiation-related malignant tumors (41).

WHAT ARE THE INADEQUACIES AND
WEAK POINTS OF CALCIFICATION
DETECTION BY EXISTING CT?

Depending on the vessel site involved, vascular calcification
can be classified into medial and intimal calcification (42). As
the spatial resolution of normal CT is not ideal, distinguishing
between intimal and medial calcification is challenging.
Normal CT does not detect microcalcification effectively
(8). Additionally, with the widespread use of CT in vascular
calcification imaging, radiation exposure is a significant concern.
Consequently, reducing radiation exposure while maintaining
image quality has become the focus of subsequent technical
improvements (43). Currently, four techniques are used to
optimize the radiation dose in multi-slice spiral CT (MSCT)
arterial imaging: an ECG control tube technique, automatic
exposure technique, tube voltage adjustment, and extensive pitch
selection technique. It has also been proved that (44) 640-slice
CT technology can reduce the radiation dose using wide-area
detector technology. However, the expensive CT equipment and
high detection cost also limit its wider use (45).

Imaging by CT, high-risk plaques include napkin ring
signs, spot calcification, low attenuation plaques, and positive
remodeling. The density of the napkin ring sign area is
characterized by a high outer and low inner density (46),
spot calcification of <3mm (47), low attenuation feature
patches <150 HU (48), and positive remodeling RI>1.1 (47).
If two of these are satisfied, it is defined as high-risk plaque
(47). High-risk plaques are undesirable characteristics and
can significantly increase the risk of cardiovascular disease.
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Contrastingly, significant calcification can stabilizes the plaque
and rarely rupture, reflecting the disease stability (49).

CURRENT CLINICALLY AVAILABLE CT
TECHNIQUES

MSCT
With the development of medical technology, MSCT has been
constantly updated and improved, expanding from its previous
16-slice system to 128-, 256-, 320-, and 640-slice, or more
(21). The development of multilayer spiral CT significantly
reduces the patient’s breath-holding time. At the same time,
the improvement in temporal resolution reduces cardiac motion
artifacts (50). After long-term clinical application, MSCT is
a non-invasive, highly safe, operationally simple technique
that can analyze coronary artery calcification and accurately
assess the severity of coronary artery stenosis and plaque
composition (21). This provides a variety of information for
follow-up treatments.

With the gradual improvement in spatial resolution, MSCT
allows the complete imaging analysis of minute calcification,
and repeated examinations can be performed (21). MSCT is
not only fast, simple, and non-invasive with high diagnostic
accuracy but also uses many post-processing technologies
(51), including volume rendering (VR), maximum intensity
projection (MIP), multiplanar reconstruction (MPR), and curved
planar reconstruction (CPR). However, these post-processing
techniques also have their shortcomings. The role of each post-
processing technique is different; for example, VR is beneficial
to the observation of the overall arterial anatomy, while CPR
is useful in plaque estimation (51). Many post-processing
techniques are often used in combination to avoid misdiagnosis
or no diagnosis at all.

Over the past decade, MSCT techniques can accurately detect
and quantify the degree of arterial calcification. It has been used
to monitor the progress of vascular calcification and evaluate and
compare the effectiveness of various treatment regimens (45),
including assessing the role of vitamin D in CAC (52). Medical
staff can integrate CT into the decision-making process and
improve work efficiency. Importantly, MSCT has been used to
examine vascular calcification, distinguish between patients with
different cardiovascular disease incidences and mortality risks,

and conduct timely clinical interventions to improve patient
disease management and improve patient care.

The dual-source CT (DSCT) is a new technology developed
based on 64-slice spiral CT. DSCT with two x-ray tubes and two
detectors and the systems can work simultaneously (53). DSCT
improves temporal resolution compared to single-source CT,
which allows for imaging at higher heart rates. Table 1 compares
the main parameters of the first-, second-, and third-generation
DSCT (54, 55). With the introduction of third-generation DSCT,
its focus is smaller than that of previous generations. Even
small anatomy can be displayed with a superior image quality,
compared to the previous CT (56). Recently, it was found that
the third-generation DSCT can be combined with tin filtering to
reduce the radiation dose during calcification image acquisition
(57, 58). In another study, Manta et al. (59) used the third-
generation DSCT to image calcification inmice, and the scanning
time was only 40 s. The total calcium content of detected calcified
aortic plaques was as low as 0.71 µg Ca2+/mg, proving the
feasibility of imaging human-calcified plaques using the CT
system.Moreover, the experimental results of Philip et al. showed
that the radiation dose during CCTA, using third-generation
DSCT, was reduced, and image quality was better than with the
second-generation DSCT. They propose that the latest third-
generation DSCT CCTA can be performed on patients with a
radiation dose of <1 mSv (60).

Dual-Energy CT
Dual-energy CT (DECT), also called (61) spectral CT, can image
the exact location using two different kVp so that two other
datasets are obtained (62). Presently, DECT uses six methods and
techniques (63), namely, dual-source DECT, single-source helical
DECT, single-source twin-beam DECT, single-source sequential
DECT, single-source rapid switching DECT, and dual-layer
DECT. Dual-source DECT has a two-source CT system. Each
X-ray tube produces a different X-ray energy spectrum. Single-
source helical DECT is performed with two spiral scans under
different kVp conditions, and single-source twin-beam DECT
features the use of split-filter technology. Single-source sequential
DECT data are obtained twice with two different kVp, single-
source rapid switching DECT features an immediate change in
the tube voltage between 80 and 140 kVp, and dual-layer DECT
has a unique dual-layer energy-resolving detector (63).

TABLE 1 | Comparison of first-, second-, and third-generation dual-source CT.

Main parameter First generation Second generation Third generation

Minimum frame rotation time (s) 0.33 0.28 0.25

Time resolution (ms) 83 75 66

Max scan speed (cm/s) 20.0 45.8 73.7

Maximum number of image layers (layer) 64 128 96

Optional kV value (KV) 80.100.120.140 70.80.100.120.140 70.80.100.120.140.150

Imaging vision (cm) 26 33 50

Ball tube max. power (kW) 2 × 80 2 × 100 2 × 120

Maximum collimation beam width (mm) 19.2 34.8 52.5
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DECT features two different grades of images which can be
obtained by one scan and can distinguish between the calcified
and non-calcified plaque as well as show the stenosis degree
of coronary artery lumen (64). Another advantage of DECT
(65) is that it simplifies the workflow. Its data apply to all
imaged patients; there is no need to select patients before
scanning. DECT can remove artifacts and clearly show the
components that produce artifacts such as coronary calcification
and metals (66). DECT application technology (67) includes
virtual monochromatic imaging (VMI) and virtual non-contrast
(VNC) reconstruction. VMI is the synthetic image at a specific
single energy level from two spectral x-ray projections, and VNC
removes some imaging components (68). Using VMI to reduce
the contrast agent dose is considered one of the most promising
DECT applications (67). Additionally, VMI has the advantages
of improving image contrast (69) and reducing artifacts (70),
consequently improving the overall image quality and diagnostic
performance. However, VMI has several limitations in reducing
artifacts (71); the effect is best at high keV, but this also suppresses
the iodine contrast. In addition, the removal of metal artifacts
at high keV depends on the properties of the metal itself. VNC
can be used to obtain the calcium score of coronary arteries
(72). Compared with using calcium score acquisition alone,
the radiation dose was reduced, but the displayed calcification
was smaller than the actual calcification (73). Therefore, further
research is still needed to determine the specific deviation of the
VNC from reality (68). In a phantom study, researchers used a
plaque similar to human vascular calcification and demonstrated
strong agreement between the calcium integration calculated
by DECT and the conventional mono-energy CT (74). It takes
some time to use these techniques in fast-paced clinical work,
which makes it challenging to get the maximum advantages
of DECT (75).

DECT uses material decomposition to reduce the calcified
components of plaque, thereby improving the visualization of
the optical cavity (68). It also enhances plaque visualization to
enable the accurate assessment of high-risk plaque features (76).
DECT achieves a high-pitch spiral acquisition protocol of 3.0 and
higher, shortens the scanning time, and thus reduces the effective
radiation dose (77). DECT has a unique acquisition method
called high-pitch spiral acquisition. It has a pair of dual-energy
detectors. It only uses a quarter of the rotation time to obtain an
image, thus providing a higher time resolution (78). According
to a study (79), the imaging of ultrasmall superparamagnetic
iron oxide by DECT may be helpful to visualize and quantify
the accumulation of macrophages in plaque. It is expected that
this technique will become a new technique in coronary plaque
imaging. Ultrasmall superparamagnetic iron oxide is a negatively
charged contrast agent that can stay in the circulatory system for
a long time (80).

Logically, the total radiation dose of DECT is twice that
of traditional scanning because it needs to obtain data at two
different energy levels. However, DECT uses some methods
to divide the total radiation dose into high- and low-energy
components so that the total dose is no higher than in
conventional scanning (81, 82). DECT can subtract calcified
plaques from the images, which may improve the assessment

of the vascular system, especially with severely calcified plaques
(71). Similarly, Domenic et al. (83) evaluated the DECT scanning
calcium subtraction algorithm and its influence on the intracavity
visualization of patients with severely calcified coronary arteries.
They found that compared with the standard linear mixed non-
subtraction image, the image with calcium subtraction provided
better visibility of the coronary artery lumen and improved
the reliability of diagnosis without affecting image quality and
contrast noise. However, Michael et al. (84) found that DECT is
not effective in evaluating the integrity of blood vessels and the
plaque subtraction results are biased. Consequently, additional
research is also needed to assess the role of this technique under
specific clinical conditions.

In conclusion, further research is still needed in using
DECT to identify coronary plaque and evaluate its diagnostic
performance and potential clinical value.

CURRENT AVAILABLE NON-CLINICAL
NEW CT TECHNIQUES

Micro-CT
Micro-CT has received wide attention as a newly developed
imaging method for examining vascular calcification.
Microcalcification in the fibrous cap destroys plaque stability
by promoting rupture and is not easily detected by the two-
dimensional histological method (85). A microcalcification size
of only between 5 and 65µm is sufficient to make the plaque
unstable (86). However, ordinary CT cannot effectively detect
microcalcification due to spatial resolution limitations. The
spatial resolution of micro-CT can reach 1–10µm (87), which
can distinguish and quantify microscopic and macroscopic
calcification. Moreover, micro-CT can detect microcalcifications
in blood vessels which are normally difficult to find. In animal
research, histological methods have been used for calcification
analysis, but they have some shortcomings, such as the inability
to check for complete vascular calcification. However, using
micro-CT surmounts these limitations and calcification can be
visualized and quantified three-dimensionally (88). Micro-CT
can quantify calcification volume and calcification load, and
there was no experimental deviation in the localization and
distribution of calcification (88). Calcification load has a strong
correlation with the calcification score. The volume represents
the spatial size of the calcification plaque and the unit of
calcification volume in mm3 (89). Although micro-CT is reliable
in detecting calcified plaque, it cannot effectively visualize
the calcified internal structure, limiting the imaging of small
structures such as calcified cell recesses and cell cracks (90). As
previously stated, the disadvantages of micro-CT (91) include
a long acquisition time, the need for deep anesthesia, poor soft
tissue contrast, and high radiation dose, and the radiation doses
can reach 760 mGy per scan. However, the CCTA radiation dose
is usually around 100–450 mGy (92).

Non-destructive 3D micro-CT has been used in some
studies on preclinical vascular calcification. Current CT 3D
imaging technology can completely reconstruct calcified arteries
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and provide accurate quantitative information. 3D micro-
CT can detect arterial calcification with an intact vascular
structure and accurately quantify calcification by the threshold
method (93). 3D micro-CT can be combined with histology,
immunohistochemistry, and proteomic methods and can be
used as a supplementary means of histological examination. It
provides a method of obtaining additional information about
calcification volume and load from the same artery segment
of the same animal (88). Moreover, the increasing practicality
and technological development of the 3D Micro CT also
provides a new opportunity to visualize and quantify intimal and
medial calcification.

Carbon Nanotube–Based Micro-CT
Carbon nanotube-based (CNT) micro-CT can accurately
generate microsecond transmission pulses and control
transmission rays and provide higher temporal and spatial
resolution. Compared with traditional micro-CT, the sharpness
of the CNT calcification image with micro-CT in mouse models
increased (94). This is a helpful tool for evaluating vascular
calcification in living mice. However, only a few relevant studies
have been conducted, and further research is needed to ensure
clinical availability.

Combining Micro-CT With 18F-NaF
Micro-PET/CT
18F-NaF micro-PET/CT can distinguish between
macrocalcification and microcalcification (95). 18F-NaF can
bind to the calcified surface of small blood vessels (96). It is an
essential method in measuring the calcified surface area and
metabolic activity degree of calcified plaque according to the
uptake of 18F-NaF (97). This is an area where micro-CT does
not perform well. Therefore, combining micro-CT with 18F-NaF
micro-PET/CT may become an excellent method to detect
vascular calcification. However, its use may be inhibited by the
expensive costs and the lack of standard analysis protocols in its
clinical application (98).

Nano-CT
The spatial resolution of nano-CT can be as high as 400 nm,
which exceeds micro-CT and can be imaged in the submicron
range (90). With nano-CT imaging, the non-calcified groove of
a single plaque cell can be detected, and its histopathological
correlation corresponds to chondrocyte-like cells. Currently, the
possibility of using nano-CT in the body is remote, as it requires
inhibiting human physiological activity. Hence, the technology is
likely to be used as an imaging method for in vitro analysis (90).

Synchrotron Radiation CT
The essence of a synchrotron is a circulating particle accelerator,
and the X-rays generated by the synchrotron can be used to
create 3D images with resolution up to 1µm (99). Synchrotron
radiation CT is an imaging technology belonging to phase-
contrast computed tomography (PCCT), combining phase
contrast with micron resolution, promoting superior spatial
resolution. Differential phase-contrast imaging, a newly
developed synchrotron imaging technology, allows the

evaluation of large structures and microscopic details of mouse
atherosclerotic plaques and is a detailed three-dimensional
morphological evaluation. The three-dimensional characteristics
of imaging technology also allow detailed evaluation from
different angles (100).

PCCT has high spatial resolution and soft-tissue contrast,
which can accurately estimate the constituent and shape of
plaque, and reliably classify it, and the results are consistent
with histopathology (101). Some studies have shown that (102)
phase-contrast CT can accurately identify lipid-rich, fibrous, or
calcified plaques and has high diagnostic accuracy (sensitivity
≥0.95; specificity ≥0.94). Pfeiffer et al. (103) used phase-contrast
CT to examine coronary arteries. The images showed densely
calcified plaques and various narrow areas, which were difficult
to identify with conventional CT examination (104). However,
this technology has not been applied in humans, only in vitro or
animal research (105).

Future micro-CT studies are needed if its use can be
extended to clinical practice. Suppose micro-CT can suitably
integrate three-dimensional data of vascular calcification with a
manageable and analyzable platform. In that case, it can be more
widely applied and is expected to become a conventional method
for vascular calcification analysis in the future.

Ultra-High Resolution CT
The recently developed ultra-high resolution CT (106) allows
images with a slice thickness of 0.25mm, with a higher spatial
resolution than traditional CT, and improves the diagnostic
accuracy of CCTA in coronary heart disease and the evaluation of
coronary stenosis. However, it has the disadvantage of increasing
image noise, and the radiation dose is higher than in CT with
the latest wide-coverage detector. A recent study shows that
(107) material density imaging based on iodine and calcium
improves the diagnostic ability of calcified coronary artery
disease in patients with a high calcification score. In recent
years, subtraction technology has been combined with CCTA.
By removing the interference of artifacts caused by calcified
plaque and metal stents, subtraction CCTA can improve the
accuracy and efficiency of assessing the stenosis of diseased
coronary artery segments (108). Recently, pieces of literature
have reported that compared with traditional CCTA, subtraction
CCTA can significantly improve the imaging quality of coronary
artery calcification.

3D virtual intravascular endoscopy is a less invasive tool,
which can be used to analyze the morphology of calcified
coronary plaque and improve the assessment of coronary stenosis
by CCTA (109).

CONCLUSION AND PROSPECT

With the development of science and society, imaging inspection
equipment, such as CT technology, has been continuously
developing since its advent. Different types of CT have their
advantages and disadvantages in evaluating vascular calcification
(Table 2). Vascular calcification is related to many diseases
which seriously affect human health and life. Therefore,
early detection and treatment of calcification are of great
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TABLE 2 | Comparison of different CT technologies.

CT type Advantages Disadvantages Macrocalcification Microcalcification

Dual energy CT Ability to eliminate artifacts

Reduce radiation dose (limited)

Improve image quality and contrast

Less contrast dose

Simplify the workflow

Assess poor vascular integrity

Proof of VNC images in calcification

less evidence of role

YES NO

Multi-layer spiral CT Some post-processing technologies

Non-invasive; Simple; fast high

diagnostic accuracy

Radiation exposure

Increasing odds of associated cancer

YES NO

Micro-CT High spatial resolution

Microcalcification can be detected

Long acquisition time

Need deep anesthesia

Poor contrast of the soft tissue

High radiation dose

Not in clinical

YES YES

significance. KDIGO experts noted that any patient with
vascular calcification that might affect treatment decisions
might require an assessment of vascular calcification (45).
Increasingly perfect CT examination makes the diagnostic
information captured from images by doctors more accurate
and convenient. Also, the evaluation technology of vascular
calcification is gradually improving. In the future, it is hoped that
CT technology will continue to develop and eventually combine
high-definition and low radiation exposure. This will lead to a
more extensive application and consequently bring new hope
to more patients.
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