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by bioincompatible materials during hemodialysis impact the

prognosis of patients. Despite multiple advances in hemodialysis

dialyzers, the prognosis of hemodialysis patients with complica�

tions deeply related to oxidative stress, such as diabetes mellitus,

remains poor. Thus, we re�evaluated the effects of hemodialysis

on multiple reactive oxygen species using electron spin resonance�

based methods for further improvement of biocompatibility in

hemodialysis. We enrolled 31 patients in a stable condition

undergoing hemodialysis using high�flux polysulfone dialyzers.

The effects of hemodialysis on reactive oxygen species were

evaluated by two methods: MULTIS, which evaluates serum

scavenging activities against multiple hydrophilic reactive oxygen

species, and i�STrap, which detects lipophilic carbon�center

radicals. Similar to previous studies, we found that serum

hydroxyl radical scavenging activity significantly improved after

hemodialysis. Unlike previous studies, we discovered that

scavenging activity against alkoxyl radical was significantly

reduced after hemodialysis. Moreover, patients with diabetes

mellitus showed a decrease in serum scavenging activity against

alkyl peroxyl radicals and an increase in lipophilic carbon�center

radicals after hemodialysis. These results suggest that despite

extensive improvements in dialyzer membranes, the forms of

reactive oxygen species that can be eliminated during dialysis are

limited, and multiple reactive oxygen species still remain at

increased levels during hemodialysis.

Key Words: hemodialysis, biocompatibility, alkyl peroxyl radical, 

electron spin resonance, MULTIS, i�STrap

IntroductionChronic kidney disease (CKD) is known to be associated with
high oxidative stress.(1–4) Accumulation of uremic toxins

with pro-oxidative properties leading to microinflammation
caused by the elevation of pro-inflammatory cytokines is the key
feature of CKD pathophysiology.(5–7) Hemodialysis (HD), a widely
conducted renal replacement therapy, acts as a double-edged
sword to reduce oxidative stress in patients with CKD. Activation
of polymorphonuclear leukocytes, due to contact with the
membrane or other artificial surfaces in HD circuits, is the main
cause of oxidative stress induced by HD.(8–11) Conversely, the
removal of pro-oxidative uremic toxins, especially low-molecular
weight hydrophilic compounds such as trimethylamine-N-oxide
or guanidino compounds, may improve the antioxidative nature

of HD, leading to long-term improvement of survival rate and
quality of life in patients with CKD.(12,13) In addition, correction of
acidosis leading to re-activation of antioxidative enzymes and
reduction of volume overload leading to prevention of cardio-
vascular complications are antioxidative mechanisms.(14) Thus, it
is necessary for HD materials to minimize leukocyte activation and
maximize antioxidative effects. In order to overcome this problem,
antioxidative and biocompatible HD materials exemplified by the
vitamin E-coated dialyzer have been developed.(15–17) However,
despite the numerous advances in HD dialyzers, the prognosis of
HD patients remains unsatisfactory, especially those with diabetes
mellitus (DM), a disease that promotes a highly oxidative state.(18)

These concerns are partly due to the fact that the details of
widely varied and complexed in vivo oxidative stress-related
reactions have not been sufficiently analyzed. Thus, this study
aimed to clarify the effect of HD on reactive oxygen species
(ROS) dynamics, as the upstream events of oxidative stress reac-
tions, based on the concept that each target site of oxidative and
antioxidant reactions in the body needs to be biochemically
described in a specific time and space. One explanation for this is
a lack of detailed analysis of the upstream side of oxidative stress-
related reactions that stimulates these cellular reactions. The
identification of ROS that act as stimulators of oxidative stress
reactions or interactions among ROS to generate oxidative stimu-
lators is difficult due to the high reaction rates and complex
reaction chains. Since ROS are not uniform and individual ROS
have specific characteristics during in vivo reactions, an analysis
of multiple ROS is required.(19–21) Thus, to improve biocompati-
bility based on the use of antioxidative and biocompatible HD
materials, one must understand the changes in ROS dynamics
caused by HD.

To investigate ROS dynamics during HD, we employed two
newly developed electron spin resonance (ESR)-based methods:
the multiple hydrophilic free-radical scavenging assay (MULTIS)
and the lipophilic radical detection assay on whole blood (i-STrap).
Although research on ROS scavenging activity by ESR is not
extensive, it remains the only method available for identifying
the type and examining the dynamics of ROS. The MULTIS
method combines a high-performance liquid chromatography-
type flow system to an ESR system and employs 5-(2,2-dimethyl-
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1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide
(CYPMPO) as the spin trap. MULTIS provides higher sensitivity
and stability for the ROS scavenging measurement than conven-
tional ESR assays.(22–24) One of our co-authors has previously
reported MULTIS-measured ROS scavenging activities in
patients with stage 5 CKD. However, they did not evaluate the
effect of HD.(22) Additionally, the i-STrap method is an ESR-
based method that detects ROS in whole blood using 2-
diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide
(DPhPMPO) as its spin trap and measures ESR after an organic
extraction, thus reflecting lipophilic ROS.(25,26) In this study, we
found that the levels of several ROS were increased and not
eliminated by HD, indicating that radical chain reactions are still
not adequately controlled following HD. This may affect the
prognosis of patients with CKD.

Materials and Methods

Subjects and informed consent. All procedures conducted
on human subjects were performed after obtaining individual
written consent. The protocol that was used was approved by
the Tsukuba University of Technology Committee (Authorization
No. 201809). This is an observational study and, therefore, no
interventions were performed on the patients.

A total of 31 stable HD patients were included in the study. We
obtained and recorded clinical and demographic information for
each patient. All patients were treated with high-flux polysulfone
membrane dialyzers (Toray Medical Co., Ltd., Tokyo, Japan) with
various membrane surface areas, adapted to the body constitution
of each individual. The patients were divided into two groups
depending on the cause of their end-stage renal disease: the non-
diabetic group (non-DM group, n = 17) and the diabetic group
(DM group, n = 14).

Sample collection. Blood samples were obtained at the
onset and end of the dialysis treatment from the sampling port
located on the arterial side of the HD circuit. For MULTIS mea-
surements, sera were separated and stored in a freezer at –80°C
until the measurement was performed; for i-STrap measurements,
whole-blood samples were collected in heparin-coated tubes that
were allowed to stand for one hour before measurement.

Measurements of multiple free radical scavenging
activity in serum. Hydrophilic ROS scavenging activities were
measured with the MULTIS method using previously described
protocols with minor modifications.(22,27) Scavenging activities
against five ROS, namely hydroxyl radical (•OH), superoxide
(O2

•-), alkoxyl radical (RO•), alkyl peroxyl radical (ROO•), and
singlet oxygen (1O2), were measured. An X-band ESR spectrometer
(RR-X1 ESR; Radical Research Inc., Tokyo, Japan) employing
100 kHz field modulation and WIN-RAD operation software
(Radical Research Inc.) was used. The ESR spin trapping reagents
used were CYPMPO for •OH, O2

•, RO•, and ROO• and 4-hydroxy-
2,2,6,6-tetramethylpiperidine (TEMP) for 1O2. The typical
spectrometer settings were as follows: field modulation width,
0.1 mT; microwave power, 10 mW; field scan width and rate,

±7.5 mT/2 min; and time constant, 0.1 s. Each ROS was generated
via in situ illumination with UV/visible light from an illuminator
(RUVF-203SR UV illuminator; Radical Research Inc.) equipped
with a 200 W medium-pressure mercury/xenon arc lamp and a
quartz light-guide, connected to the resonator cavity. The light
sources, illumination times, precursors, and photosensitizers used
to produce ROS are summarized in Table 1. The ROS scavenging
activities were calculated according to a previously described
method(22) and converted into the unit equivalent to known pure
scavengers: glutathione (GSH) for •OH and 1O2, superoxide
dismutase (SOD) for O2

•-, 6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid (Trolox) for RO•, and a-lipoic acid for ROO•.
MULTIS measurements for each ROS were performed in
triplicate.

Measurement of lipophilic ROS scavenging activity in
whole blood using i�Strap. Lipophilic ROS scavenging
activity was measured using the i-STrap ESR measurement kit
(Dojin-Glocal/Dojindo, Kumamoto, Japan) based on the manufac-
ture’s protocol and a previous report.(25) This method is based
on the competitive reaction between antioxidants in whole blood
and DPhPMPO with the tert-butyl hydroperoxide (BuOOH)
radical. Whole blood samples were incubated with DPhPMPO
(10 mM) and tert-BuOOH (10 mM) for 30 min at room tempera-
ture. After incubation, the spin adducts in the organic phase
were extracted using chloroform and methanol solutions; ESR
measurements were conducted using these organic samples. The
ESR measuring conditions were the same as for the MULTIS
measurement, except for the field scan width and rate, set at
±5.0 mT/2 min. There were no specific antioxidants for i-STrap
measurement; therefore, scavenging activity was expressed as an
I0/I-1 value, where “I0” denotes the signal intensity without a
sample and “I” denotes the signal intensity with a sample.(28)

Reagents. CYPMPO was obtained from RR INC. (Tokyo,
Japan); riboflavin, 2,2'-azobis (2-amidinopropane) dihydrochloride
(AAPH), tert-BuOOH, dimethyl sulfoxide (DMSO), and rose
bengal were purchased from Sigma-Aldrich Japan (Tokyo, Japan);
and TEMP was purchased from Tokyo Chemical Industry (Tokyo,
Japan). Hydrogen peroxide and buffers were obtained from Wako
Chemical Co. (Osaka, Japan).

Statistical analysis. Statistical analysis was performed using
Prism 6 for Mac OS X computer software (GraphPad Software
Inc., La Jolla, CA). Data were tested using Student’s paired t test.
Data were expressed as mean values with 95% confidence interval
(95% CI).

Results

Profile of the patients group. Clinical demographic infor-
mation on the patients are summarized in Table 2. There were no
significant differences in age, male/female ratio, and duration of
renal replacement therapy between the two groups.

Estimation of ESR spectra in MULTIS and i�STrap. The 
ESR spectra of the •OH, O2

•-, RO•, ROO•, and 1O2 adducts of
the spin-trapping agent observed in the process of the MULTIS

Table 1. Photolytic ROS production methods used in MULTIS measurements

ROS, reactive oxygen species; MULTIS, multiple hydrophilic free�radical scavenging assay; UV, ultraviolet (300–400 nm); VL,
visual light (500–600 nm); AAPH, 2,2'�azobis�2�methyl�propanimidamide, dihydrochloride; tBHP, tert�butyl hydroperoxide;
GSH, glutathione; SOD, superoxide dismutase; CYPMPO, 5�(2,2�dimethyl�1,3�propoxy cyclophosphoryl)�5�methyl�1�pyrroline
N�oxide; TEMP, 4�hydroxy�2,2,6,6�tetramethylpiperidine.

Free radical Spin trap Precursor/Sensitizer UV/VL Irradiation period Antioxidant equivalent
•OH CYPMPO H2O2 10 mM UV 5 s GSH

O2
•- CYPMPO Riboflavin 20 mM VL 60 s SOD

RO• CYPMPO AAPH 10 mM UV 5 s Trolox

ROO• CYPMPO tBHP 10 mM UV 5 s a�lipoic acid
1O2 TEMP Rose bengal 200 mM VL 30 s GSH
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and the i-STrap measurements were in concordance with the
previously reported spectra of the corresponding radical adducts,
confirmed by hyperfine coupling constants (Supplemental
Fig. 1*).(23,27) The ESR spectra obtained from the i-STrap measure-
ments were also in agreement with the data from a previous
report.(25) In both methods, the signal intensity increased with an
increase in the concentration of the relevant spin trapping reagent
and decreased with the addition of sera, suggesting that these
methods are based on competitive reactions of antioxidants in sera
or whole blood.

Effect of HD on multiple ROS scavenging activities mea�
sured by MULTIS and i�STrap. First, we analyzed the changes
of multiple ROS scavenging activities before and after HD in the
entire patient cohort using the MULTIS method. The individual
scavenging activity values are shown in Table 3, and the graphic
depictions of changes in the pre- to post-HD values are shown in
Fig. 1A–F. The •OH scavenging activity of the HD patients before
dialysis was 6.37 mM-GSHeq (95% CI: 4.16 to 8.59), a number
consistent with the previously reported •OH scavenging activity
of patients with stage 5 CKD.(22) Scavenging activity was signifi-
cantly improved after one HD session, and the difference between
pre- and post-HD values was significant (mean difference: 6.94,
95% CI 3.96 to 9.91, p<0.0001; Fig. 1A).

In contrast, scavenging activities against RO• and ROO•

were significantly altered after one HD treatment (for RO•, mean
difference –441, 95% CI of difference –665 to –216, p<0.001;
Fig. 1B; for ROO•, mean difference –526, 95% CI of difference
–845 to –208, p = 0.002; Fig. 1C). There were no significant
differences between pre- and post- HD serum scavenging
activities against O2

•- (mean difference 0.698, 95% CI of differ-
ence –0.202 to 1.60, p = 0.124; Fig. 1D) and 1O2 (mean difference
–3.98, 95% CI of difference –23.2 to 25.2, p = 0.675; Fig. 1E).
The lipophilic scavenging activity showed no significant
difference during the HD session (mean difference 0.0106, 95%
CI of difference –0.00988 to 0.0310, p = 0.300; Fig. 1F).

Differences in the effect of hemodialysis on ROS
scavenging activities depending on the presence or absence
of diabetes. Since diabetes considerably contributes to the
pathophysiological status of HD patients, we examined the impact
of diabetes on the ROS scavenging activities. An increase in •OH

scavenging activity was observed in both the non-DM and DM
groups (mean difference 5.48, 95% CI 1.72 to 9.23, p = 0.007 for
the non-DM group; mean difference 9.08, 95% CI 3.79 to 14.40,
p = 0.003 for the DM group; Fig. 2A). Concurrently, a decrease in
RO• scavenging activity was observed in both the non-DM and
DM groups (mean difference –579, 95% CI –927 to –231,
p = 0.003 for the non-DM group; mean difference –245, 95% CI
–488 to –1.85, p = 0.043 for the DM group; Fig. 2B).

Conversely, a significant decrease in ROO• was only observed
in the DM group (mean difference –642, 95% CI –1113 to –170,
p = 0.012 for the DM group; mean difference –433, 95% CI –911
to 45.1, p = 0.073 for the non-DM group; Fig. 2C). This tendency
was the same for the lipophilic carbon-centered radical (displayed
as the I0/I-1 value), and the scavenging activity was significantly
reduced in only the DM group (mean difference 0.034, 95% CI
0.002 to 0.065, p = 0.039 for the DM group; mean difference
–0.005, 95% CI –0.031 to 0.021, p = 0.671 for the non-DM group;
Fig. 2F). There were no significant differences between pre-
and post- HD serum scavenging activities against O2

•- (mean
difference 0.621, 95% CI of difference –0.506 to 1.750, p = 0.260
for the non-DM group; mean difference 0.792, 95% CI of differ-
ence –0.838 to 2.421, p = 0.313 for the DM group; Fig. 2D) and
1O2 (mean difference 11.2, 95% CI of difference –32.9 to 10.5,
p = 0.291 for the non-DM group; mean difference 8.98, 95% CI of
difference –32.2 to 50.2, p = 0.641 for the DM group; Fig. 2E).
The individual scavenging activity values are shown in Table 4.
To clarify the redox effect of hemodialysis, a radar chart
summarizing the changes in ROS scavenging activities caused by
one HD session is shown in Fig. 3.

Discussion

Previous reports investigating the effects of HD treatment on
the antioxidative status have yielded controversial results. Among
these reports, few studies have investigated ROS involvement in
the upstream oxidative stress-related reactions that occur during
HD. Most reports investigating ROS studied non-specific radicals,
and only few reports identified the type of ROS in detail. More-
over, most of these studies were limited to •OH and O2

•-.(10,11,29,30)

Previous reports evaluated •OH and O2
•- scavenging activities

Table 2. Clinical profile of the patients

Cause of CKD in non�DM patients: chronic glomerulonephritis 8, nephrosclerosis 5, lupus
nephritis 1, myeloma kidney 1, and unknown 2. All patients were treated with polysulfone
dialyzers with various surface areas. DM, diabetes mellitus; HD, hemodialysis; 95% CI, 95%
confidence interval.

Total Non�DM DM

Number 31 17 14

Age (95% CI, years) 68.1 (63.7–72.5) 67.7 (60.8–72.5) 68.6 (62.6–74.6)

Male/Female 17/14 9/8 8/6

HD Duration (mo.) 53.0 (33.8–72.2) 52.6 (22.7–82.6) 53.5 (26.0–81.0)

Table 3. Serum scavenging activities against multiple ROS, before and after HD

The scavenging activities are converted to the equivalent unit of the specific scavenger against each ROS. The
scavenging activity against the lipophilic carbon�centered radical is expressed as I0/I-1 value (see Materials and
Methods). HD, hemodialysis; ROS, reactive oxygen species; 95% CI, 95% confidence interval; GSH, glutathione;
aLA, a�lipoic acid; TROLOX, 6�hydroxy�2,5,7,8�tetramethylchroman�2�carboxylic acid; SOD, superoxide dismutase;
LCCR, lipophilic carbon�centered radical.

ROS Pre�HD Mean (95% CI) Post�HD Mean (95% CI) p
•OH mM�GSHeq 6.37 (4.16–8.59) 13.3 (9.41–17.2) <0.001

RO•
µM�TROLOXeq 1,180 (948–1,412) 752 (586–919) <0.001

ROO•
µM�aLA eq 1,417 (1,057–1,777) 934 (644–1,223) 0.002

O2
•- U/ml�SODeq 5.97 (4.94–7.01) 6.67 (5.79–7.55) 0.124

1O2 µM�GSHeq 47.4 (33.1–61.7) 43.4 (25.4–61.4) 0.675

LCCR I0/I−1 1.96 (1.75–2.16) 1.89 (1.67–2.10) 0.301

*See online. https://doi.org/10.3164/jcbn.20�141
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using the ESR spin-trapping technique.(22,31)

Consistent with our current result, we have previously reported
that serum •OH scavenging activity is reduced in HD patients
and that a single HD session can restore this activity to the level
equivalent to that seen in a healthy human.(31) Although contra-
dictory results have been reported on the effect of HD on •OH
scavenging activity, previous studies using ESR have shown an
increase in the scavenging activity, regardless of the generation
method of the hydroxyl radicals.(32–36) Thus, we strongly suggest
that the •OH scavenging activity may be restored by HD.

The effect of HD on O2
•- dynamics remains controversial.

Several previous studies found an increased production of O2
•-

in patients after HD.(37,38) A previous report from our co-author
revealed that O2

•- scavenging activity was enhanced in the sera of
HD patients.(22) Conversely, the O2

•- scavenging activity of HD
patients, analyzed by direct scavenging measurements or the O2

•-

dismutase (SOD) enzyme assay, is reportedly higher in patients
with CKD than in healthy individuals.(22,38,39) Consistent with these

reports, our results did not show remarkable changes in O2
•-

scavenging activity after a single session of HD. Moreover,
long-term usage of the vitamin E-coated dialyzer, which directly
scavenges intradialyzer O2

•-, has enhanced O2
•- scavenging

activity.(15) Since the uremic condition itself is a highly oxidative
state,(15) we suggest that the constant improvement against uremic
oxidative stress is more influential than the O2

•- production
brought about by a single HD process.(1–3,4,40)

The influences of RO• and ROO• in kidney diseases have rarely
been investigated,(41–43) and no study has analyzed their association
with HD. Our results showed that both ROO• and RO• scavenging
activities deteriorated after a single HD session, suggesting an
uncontrolled production of both radicals during HD. Although
limited studies have investigated the pathophysiological role of
ROO• in diseases, established reports have indicated their
strong cytotoxicity, leading to carcinogenesis and cardiovascular
damage.(41,44,45) ROO• are generated in a reaction between heme
iron and lipid peroxide produced by spontaneous oxidation of

Fig. 1. Effect of HD on radical scavenging activities in serum. Effect of HD on serum scavenging activities against: (A) •OH, (B) RO•, (C) ROO•, (D)
O2

•-, (E) 1O2, and (F) lipophilic carbon�centered radical. Scavenging activities before and after HD of all included patients are shown and converted
into the equivalent unit of the specific scavenger against each ROS, except those against the lipophilic carbon�centered radical, as I0/I-1 value
(see Materials and Methods). *p<0.05, **p<0.01, ***p<0.001. The detailed values are shown in Table 3. HD, hemodialysis; ROS, reactive oxygen
species; GSH, glutathione; TROLOX, 6�hydroxy�2,5,7,8�tetramethylchroman�2�carboxylic acid; aLA, a�lipoic acid; SOD, superoxide dismutase.
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unsaturated fatty acid.(46) In a ferric nitrilotriacetate (Fe-NTA)-
induced renal carcinoma rat model, ROO• was detected in renal
tissue.(41) Moreover, ROO• has a longer half-life in vivo than
other radicals in biological circumstances,(46) leading to further
production of carbon-centered radicals.(47) Therefore, the control
of ROO• generation may be an important strategy for improving
the survival rate of HD patients. Moreover, lipophilic carbon-
centered radicals are cytotoxic and have relatively long half-lives.
These radicals have been reported in acute lung injury and in rat
models of chronic alcohol-induced pancreatitis.(48,49) Scavenging

activities against these two ROS may serve as crucial markers
for the evaluation of biocompatibility.

There are several limitations in this study. First, our method
evaluated ROS scavenging activity but did not directly detect the
ROS themselves. Direct detection of ROS in biological samples is
difficult, and there is a certain discrepancy between the dynamics
of ROS and ROS scavenging activity. However, measurement of
scavenging activity against a specific ROS is a well-established
method and is able to serve as an evaluating tool for ROS
dynamics.(22,50–52) Thus, the evaluation of ROS scavenging activity

Fig. 2. Effect of HD on serum radical scavenging activities in non�DM and DM groups. Panels show the scavenging activities against: (A) •OH, (B)
RO•, (C) ROO•, (D) O2

•-, (E) 1O2, and (F) lipophilic carbon�centered radical. Scavenging activities before and after HD of all included patients are
presented. The scavenging activities are converted to the equivalent unit of the specific scavenger. *p<0.05, **p<0.01, ***p<0.001. The detailed
values are shown in Table 4. HD, hemodialysis; DM, diabetes mellitus; GSH, glutathione; TROLOX, 6�hydroxy�2,5,7,8�tetramethylchroman�2�
carboxylic acid; aLA, a�lipoic acid; SOD, superoxide dismutase.
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in this paper reflects the ROS dynamics in the upstream region
prior to cellular reactions against oxidative stress reactions.
Second, our sample size is limited, and we only employed

dialyzers containing polysulfone membranes. However, the
characteristics of our study population are similar to that of the
population of Japanese HD patients in terms of age, dialysis
history, and distribution of primary diseases.(53) Polysulfone
dialyzers are the most biocompatible dialyzer and are widely
used.(36,53,54) Thus, we believe that our study cohort reflects the
general population of dialysis patients. Evaluations with other
membrane materials are required in further studies.

In our results, scavenging activities against alkyl and lipophilic
carbon-centered radicals measured by i-STrap were reduced only
in the patients with DM, indicating that the deterioration of ROS
scavenging activity was more remarkable in the DM group than in
the non-DM group. Patients with DM have more unfavorable
prognoses than non-DM patients due to higher cardiovascular
complication rates. The pathophysiology of these complications is
strongly associated with oxidative stress.(55–57) Thus, our results
suggest that to improve the prognosis in HD patients with DM, the
control of ROO• radical and carbon-center radical is a promising
strategy.
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