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Abstract: Investigating the in vitro fumonisin biosynthesis and the genetic structure of Fusarium
verticillioides populations can provide important insights into the relationships between strains
originating from various world regions. In this study, 90 F. verticillioides strains isolated from maize in
five Mediterranean countries (Italy, Spain, Tunisia, Egypt and Iran) were analyzed to investigate their
ability to in vitro biosynthesize fumonisin B1, fumonisin B2 and fumonisin B3 and to characterize
their genetic profile. In general, 80% of the analyzed strains were able to biosynthesize fumonisins
(range 0.03–69.84 µg/g). Populations from Italy, Spain, Tunisia and Iran showed a similar percentage
of fumonisin producing strains (>90%); conversely, the Egyptian population showed a lower level
of producing strains (46%). Significant differences in fumonisin biosynthesis were detected among
strains isolated in the same country and among strains isolated from different countries. A portion of
the divergent FUM1 gene and of intergenic regions FUM6-FUM7 and FUM7-FUM8 were sequenced to
evaluate strain diversity among populations. A high level of genetic uniformity inside the populations
analyzed was detected. Apparently, neither geographical origin nor fumonisin production ability
were correlated to the genetic diversity of the strain set. However, four strains from Egypt differed
from the remaining strains.

Keywords: Fusarium; ear rot; maize; fumonisins; FUM1

1. Introduction

Fusarium verticillioides (Sacc.) Nirenberg is a member of the Gibberella fujikuroi species complex,
also called Fusarium fujikuroi species complex (FFSC), a group of 40 closely related Fusarium species
defined by morphological traits, sexual compatibility and DNA-based phylogenetic analysis [1,2].

In particular, F. verticillioides belongs to the “African” clade of the FFSC [3], and it is the main causal
agent of Fusarium ear rot of maize (Zea mays L.) [4,5]. This fungus has been reported worldwide and, in
particular, it prevails in drier and warmer climatic regions [6,7] such as those present in temperate,
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semitropical and tropical regions including European [4], Mediterranean [8], African [9] and Middle
Eastern [10] maize-growing areas. For example, F. verticillioides was the species isolated more frequently
from maize kernels harvested in Italy [11–13], Spain [14–16], Egypt [17–21] and Iran [22]. This is
also one of the species able to biosynthesize the secondary metabolites fumonisins [23]. Specifically,
F. verticillioides is considered the main fumonisin producer; therefore, this is the most important species
associated with fumonisin contamination of maize grains [24]. Fumonisins occur worldwide in maize,
including Mediterranean [4,8,24,25] farming areas, where this is one of the most widely cultivated
crops [26,27]. Fumonisin accumulation in maize grains can occur in the field, following preharvest
infections, and possibly continue during grain storage [28].

Contaminations strongly impair maize grain quality because of the negative impact on animal
and human health [29]. Fumonisin mycotoxins can be divided into four main groups, with the most
abundant fumonisins found in nature included in the B group: fumonisin B1 (FB1), fumonisin B2 (FB2)
and fumonisin B3 (FB3). Among B analogues, FB1 is the most detected fumonisin in maize as well as
the most toxicologically active [24,30]. In fact, after ingestion, fumonisins may cause a wide range of
toxic effects, especially towards liver and kidneys [31–35]. For this reason, the European Commission
has established maximum limits for the sum of FB1 and FB2 in maize for human consumption [36,37].

The amount of fumonisins found in maize kernels is also dependent on the toxigenic ability of the
F. verticillioides populations occurring in a certain cultivated field or in a specific geographic area [38]. In
fact, within the F. verticillioides species, fumonisin production commonly varies quantitatively because
of the different strain abilities to biosynthesize different levels of these mycotoxins [15,24,39–41]. The
amount of fumonisins produced may also vary in quantity depending on substrate [42], biotic and
abiotic factors [43] as well as on the relative expression of the genes involved in the biosynthetic
pathway [44]. In fact, fumonisin production in F. verticillioides is regulated by the FUM biosynthetic
gene cluster [45], and some of the differences between strains can be explained by FUM gene sequence
differences [46,47]. Thus, it is very important to determine the variations of fumonisin production
by F. verticillioides to understand the biosynthetic potential of a certain population in a specific
cultivation area.

The characterization of fumonisin biosynthesis by F. verticillioides strains isolated from different
geographic areas has been often coupled to the study of the genetic structure of these populations
to investigate the degree of genetic diversity between the different strains within the same
species [44,48–50]. This can provide an important insight on the relationships, the variations and/or
the similarities among strains originating from various regions as well as on the possible correlations
between genetic variability and different fumonisin production [38,51–54]. Analyses of fumonisin
biosynthesis and/or molecular characterization of F. verticillioides strains have been conducted in
populations from different countries such as Argentina [55], Brazil [38,41,44,49], Italy [50], Iran [22,52],
Ethiopia [53] and Nigeria [54].

A similar approach was adopted in the present work to characterize selected F. verticillioides
strains originating from five Mediterranean countries to simultaneously compare them in a wider
geographical context by evaluating their in vitro fumonisin production and genetic profile. Specifically,
the main objectives of the present study were to:

(i) investigate the abilities of selected F. verticillioides strains isolated from maize kernels in five
Mediterranean countries to in vitro biosynthesize FB1, FB2 and FB3;

(ii) characterize the genetic structure of these selected strains to assess for possible variability within
strains originating from each of the surveyed countries and between the strains originating from
different countries.
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2. Materials and Methods

2.1. Fungal Strains

A total of 90 F. verticillioides strains (Table 1) isolated from single maize kernels harvested from
different fields in five Mediterranean countries (22 from Italy, 9 from Spain, 16 from Tunisia, 28 from
Egypt and 15 from Iran) were used in this study (Figure 1). Isolation operations were carried out in the
country of origin where all strains were properly stored in fungal collections. The investigated strains
had not been extensively subcultured, thus avoiding possible alterations in fumonisin production.
Some of the Italian strains used in this work had been already investigated in a previous study [50]
and were included to further characterize them in a wider geographical context (Figure 1).

Table 1. Strain ID, country of origin and fumonisin B1, fumonisin B2 and fumonisin B3 production (µg/g)
with standard errors (±SE) by Fusarium verticillioides strains isolated from maize kernels harvested in
five Mediterranean countries and analyzed in this study.

Strain ID Origin Fumonisin Production (µg/g) *

Fumonisin B1 Fumonisin B2 Fumonisin B3 Total Fumonisins **,§

PG 21C Italy nd † - nd - nd - nd - -
PG 39B Italy nd - nd - nd - nd - -

ITEM 9313 Italy 0.03 (±0.01) nd - nd - 0.03 (±0.01) a
ITEM 9319 Italy 0.16 (±0.08) 0.03 (±0.01) 0.05 (±0.02) 0.24 (±0.11) ab
PG 60A1 Italy 0.20 (±0.02) 0.04 (±0.01) 0.05 (±0.01) 0.29 (±0.02) b

ITEM 9330 Italy 0.30 (±0.08) 0.05 (±0.01) 0.06 (±0.01) 0.41 (±0.09) ab
ITEM 9320 Italy 0.63 (±0.60) 0.10 (±0.10) 0.08 (±0.07) 0.81 (±0.77) ab
ITEM 9300 Italy 0.65 (±0.37) 0.11 (±0.06) 0.11 (±0.05) 0.87 (±0.48) ab

PG 28A Italy 1.01 (±0.40) 0.22 (±0.10) 0.25 (±0.08) 1.49 (±0.58) ab
ITEM 9318 Italy 1.03 (±0.68) 0.22 (±0.15) 0.35 (±0.24) 1.59 (±1.07) ab

PG 22A Italy 1.67 (±1.52) 0.24 (±0.23) 0.25 (±0.22) 2.16 (±1.97) ab
PG 20A Italy 2.81 (±1.50) 0.66 (±0.35) 0.40 (±0.16) 3.87 (±2) abc

ITEM 9310 Italy 6.56 (±3.09) 2.46 (±1.19) 0.68 (±0.29) 9.69 (±4.56) abcd
PG 5A Italy 6.99 (±0.89) 2.35 (±0.37) 0.85 (±0.06) 10.19 (±1.27) cd

ITEM 9309 Italy 7.70 (±3.45) 2.23 (±1) 0.80 (±0.30) 10.74 (±4.74) abcd
PG 76A1 Italy 8.78 (±4.50) 2.32 (±1.29) 1.24 (±0.60) 12.34 (±6.39) abcde
PG 30B Italy 10.36 (±1.25) 2.95 (±0.45) 1.26 (±0.26) 14.57 (±1.92) d

ITEM 9329 Italy 10.71 (±2.32) 3.04 (±0.71) 0.84 (±0.16) 14.59 (±3.16) cd
PG 35A Italy 13.30 (±6.96) 4.39 (±2.26) 1.78 (±0.80) 19.47 (±10) abcde
PG 58A1 Italy 19.39 (±5.28) 7.51 (±1.73) 2.16 (±0.15) 29.07 (±7.05) abcde

ITEM 10027 Italy 23.64 (±1.57) 7.22 (±0.44) 2.49 (±0.05) 33.35 (±1.99) e
PG 36B Italy 23.87 (±0.44) 5.63 (±1.56) 4.23 (±0.19) 33.73 (±1.49) e

03-2/A Spain 0.24 (±0.17) nd - nd - 0.24 (±0.17)
FVMM 3-2 Spain 0.78 (±0.29) 0.03 (±0.03) 0.01 (±0.01) 0.82 (±0.33) a
C1-2 SEV Spain 2.24 (±1.19) 0.53 (±0.42) 0.01 - 2.77 (±1.61) ab

FVMM 2-1 Spain 2.60 (±1.60) 0.55 (±0.46) 0.24 (±0.13) 3.38 (±2.17) ab
FVMM AD 2-4 Spain 6.38 (±3.28) 1.61 (±0.91) 0.20 (±0.05) 8.19 (±4.19) ab

03-5/B SEV.1 Spain 6.63 (±1.08) 1.31 (±0.31) 0.31 (±0.05) 8.24 (±1.43) b
03-5/B SEV Spain 7.70 (±3.57) 1.81 (±0.92) 1.06 (±0.66) 10.57 (±5.01) ab
FVMM 1-1 Spain 15.63 (±4.19) 4.68 (±1.25) 1.77 (±0.33) 22.08 (±5.74) ab
0-C-1-3 2/2 Spain 56.12 (±5.31) 10.67 (±1.35) 3.04 (±0.21) 69.84 (±6.57) c

M16 Tunisia nd - nd - nd - nd - -
M11 Tunisia 0.29 (±0.07) 0.04 (±0.02) nd - 0.33 (±0.09) a
M19 Tunisia 0.30 (±0.07) 0.03 (±0.02) 0.11 (±0.03) 0.45 (±0.11) a
M12 Tunisia 0.56 (±0.23) 0.12 (±0.05) 0.06 (±0.02) 0.74 (±0.30) ab
M15 Tunisia 0.47 (±0.17) 0.06 (±0.02) 0.27 (±0.08) 0.80 (±0.28) ab
M20 Tunisia 0.92 (±0.13) nd - 0.01 - 0.93 (±0.13) b
M17 Tunisia 0.91 (±0.21) 0.12 (±0.03) 0.55 (±0.12) 1.58 (±0.36) ab
M5 Tunisia 2.55 (±1.43) 0.27 (±0.26) nd - 2.83 (±1.69) ab
M2 Tunisia 3.21 (±1.32) 0.61 (±0.31) 0.01 - 3.82 (±1.63) ab
M8 Tunisia 3.53 (±1.80) 1.01 (±0.58) 0.01 - 4.55 (±2.39) abc
M7 Tunisia 3.80 (±3.05) 0.77 (±0.75) 0.40 (±0.32) 4.97 (±4.11) abc
M22 Tunisia 6.85 (±3.59) 1.15 (±0.40) 2.07 (±0.47) 10.07 (±4.45) abc
M21 Tunisia 7.10 (±4.93) 1.47 (±1.24) 1.72 (±1.09) 10.29 (±7.24) abc
M1 Tunisia 8.82 (±1.28) 2.16 (±0.35) 0.68 (±0.23) 11.66 (±1.81) c

M14 Tunisia 10.50 (±0.10) 1.72 (±0.12) 1.07 (±0.10) 13.28 (±0.18) c
M10 Tunisia 11.07 (±1.71) 2.48 (±0.55) 0.04 (±0.03) 13.59 (±2.23) c
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Table 1. Cont.

Strain ID Origin Fumonisin Production (µg/g) *

Fumonisin B1 Fumonisin B2 Fumonisin B3 Total Fumonisins **,§

F2 Egypt nd - nd - nd - nd - -
F6 Egypt nd - nd - nd - nd - -
F7 Egypt nd - nd - nd - nd - -

F10 Egypt nd - nd - nd - nd - -
F12 Egypt nd - nd - nd - nd - -
F19 Egypt nd - nd - nd - nd - -
F22 Egypt nd - nd - nd - nd - -
F23 Egypt nd - nd - nd - nd - -
F25 Egypt nd - nd - nd - nd - -
F26 Egypt nd - nd - nd - nd - -
F27 Egypt nd - nd - nd - nd - -
F30 Egypt nd - nd - nd - nd - -
F36 Egypt nd - nd - nd - nd - -
F38 Egypt nd - nd - nd - nd - -
F41 Egypt nd - nd - nd - nd - -
F39 Egypt 0.22 (±0.02) nd - nd - 0.22 (±0.02) a
F29 Egypt 0.81 (±0.05) 0.19 (±0.04) 0.12 (±0.03) 1.12 (±0.11) b
F8 Egypt 0.96 (±0.90) 0.34 (±0.33) nd - 1.29 (±1.23) ab
F4 Egypt 1.18 (±0.08) 0.10 (±0.02) 0.08 - 1.35 (±0.11) b

F28 Egypt 1.08 (±0.69) 0.21 (±0.13) 0.09 (±0.05) 1.38 (±0.87) ab
F9 Egypt 1.14 (±0.79) 0.15 (±0.13) 0.32 (±0.25) 1.61 (±1.17) ab

F32 Egypt 1.11 (±0.34) 0.72 (±0.27) 0.38 (±0.20) 2.21 (±0.80) ab
F5 Egypt 4.10 (±2.16) 0.70 (±0.40) 0.05 (±0.03) 4.85 (±2.60) abc
F11 Egypt 3.56 (±1.88) 0.70 (±0.44) 0.58 (±0.37) 4.85 (±2.68) abc
F17 Egypt 4.35 (±3.24) 2.03 (±1.57) nd - 6.38 (±4.81) abc
F13 Egypt 6.02 (±1.45) 0.88 (±0.11) 0.33 (±0.12) 7.23 (±1.67) abc
F15 Egypt 6.32 (±4.25) 1.29 (±0.98) 0.38 (±0.22) 7.99 (±5.45) abc
F3 Egypt 7.52 (±0.08) 1.95 (±0.15) 1.75 (±0.15) 11.23 (±0.32) c

35 Iran nd - nd - nd - nd - -
4 Iran 0.03 (±0.02) nd - nd - 0.03 (±0.02) a

25 Iran 0.10 (±0.02) nd - nd - 0.10 (±0.02) b
2 Iran 0.27 (±0.08) nd - nd - 0.27 (±0.08) ab
9 Iran 0.47 (±0.37) nd - nd - 0.47 (±0.37) ab

18 Iran 1.21 (±0.25) 0.10 (±0.05) 0.09 (±0.04) 1.40 (±0.35) abc
39 Iran 1.65 (±0.45) 0.19 (±0.18) 0.42 (±0.12) 2.26 (±0.73) abc
56 Iran 2.21 (±1.12) 0.34 (±0.18) 0.30 (±0.16) 2.85 (±1.42) abc
1 Iran 3.94 (±0.76) 0.56 (±0.18) 0.22 (±0.07) 4.72 (±1) c
3 Iran 4.48 (±1.22) 0.76 (±0.22) 0.47 (±0.16) 5.71 (±1.59) abc

22 Iran 4.61 (±1.38) 1.65 (±0.53) nd - 6.26 (±1.91) abc
16 Iran 4.66 (±1.63) 1.48 (±0.58) 0.40 (±0.18) 6.55 (±2.39) abc
5 Iran 9.92 (±5.52) 2.15 (±1.35) 1.17 (±0.71) 13.25 (±7.59) abcd
7 Iran 13.65 (±4.74) 3.23 (±1.15) 1.45 (±0.50) 18.33 (±6.40) abcd

89 Iran 30.81 (±4.39) 7.23 (±1.01) 1.75 (±0.28) 39.79 (±5.25) d

* values represent the average (±SE) of three biological replicates. ** sum of fumonisin B1, fumonisin B2 and
fumonisin B3. † nd: not detected (<0.002 µg/g for fumonisin B1 and <0.001 µg/g for fumonisin B2 and fumonisin B3).
§ within the same country of origin, means followed by different letters are significantly different (p < 0.05).
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2.2. Confirmation of F. verticillioides Identity by PCR Assays

To preliminarily confirm the identity of the 90 F. verticillioides strains used in this study,
species-specific PCR assays were conducted. All strains were grown on Potato Dextrose Agar
(PDA (Biolife Italiana, Milan, Italy)) at 22 ◦C for 14 d in the dark. DNA was extracted as
described by Beccari et al. [56,57]. PCR assays were carried out with the specific primers VERT1
(GTCAGAATCCATGCCAGAACG) and VERT2 (CACCCGCAGCAATCCATCAG) [58]. A single PCR
protocol was optimized using a total reaction of 20 µL. Each reaction contained 9.2 µL of sterile water
for molecular biology (5prime, Hilden, Germany), 1.5 µL of cresol red (Sigma-Aldrich, Saint Louis,
MO, USA), 2 µL of 10X PCR buffer (Microtech, Pozzuoli, Naples, Italy), 1.2 µL of magnesium chloride
(Microtech), 2 µL of 10 mM DNTP mix (Microtech), 1 µL of 10 µM forward and reverse primers, 0.1
µL of 5 U/µL Taq polymerase (Microtech) and 2 µL of template DNA. The PCR cycle consisted of an
initial denaturation step at 94 ◦C for 2 min, followed by 30 cycles of denaturation (94 ◦C for 35 s),
annealing (60 ◦C for 30 s), extension (72 ◦C for 2 min) and a final extension at 72 ◦C for 5 min. PCR
assays contained a positive control (template DNA of F. verticillioides) and a negative control with no
DNA added. The amplification was performed in a T-100 thermal cycler (Bio Rad, Hercules, CA, USA).
All PCR fragments were separated by electrophoresis by applying a tension of 110 V for about 1 h.
Electrophoretic runs were visualized using an UV Image analyzer (Euroclone, Pero, Milan, Italy).

2.3. Determiantion of Fumonisin Biosynthesis by F. verticillioides In Vitro

2.3.1. F. verticillioides Cultures

To determine in vitro fumonisin biosynthesis, cultures of F. verticillioides strains were obtained
following the protocol indicated by Covarelli et al. [50] with slight modifications. In brief, 15 g of
finely ground maize grains and 15 mL of deionized sterile water were added into 100 mL glass flasks
(Duran, Mainz, Germany) to obtain the right moisture for allowing fungal development and then
autoclaved three times at alternate days. Three flasks (replicates) for each F. verticillioides strain were
then inoculated with a mycelium plug (0.6 cm diameter) taken from the growing edge of one-week-old
pure fungal cultures of each strain developed on PDA at 22 ◦C in the dark. Three flasks (replicates)
were used as controls by adding only a PDA plug. Flasks were incubated in the dark at 22 ◦C for 4 w,
and developed cultures were then freeze-dried for 24 h using a lyophilizer instrument (Heto Powder
Dry LL3000, Thermo Fisher Scientific, Waltham, MA, USA), ground with mortar and pestle and stored
at −80 ◦C until further analysis.

2.3.2. Fumonisin Extraction and LC-MS/MS Analysis

Each fungal culture was extracted and analyzed in triplicate according to the validated and routine
procedure also described by Covarelli et al. [50] with slight modifications. In brief, 1 g of ground sample
was extracted with 5 mL of methanol/water (75:25, v/v) following 60 min shaking. The extract was
filtered through filter paper. Prior to liquid chromatography, tandem Mass Spectrometry (LC-MS/MS)
analysis, the extract was diluted by default 1:50 with a mixture of methanol/water (60:40), then filtered
through 0.45 µm syringe filter. Twenty microliters were injected into the LC-MS/MS apparatus. If
fumonisin levels were out of the calibration range, a further dilution (1:500 or 1:5000) was applied to
the raw extract and then re-analyzed.

LC-MS/MS analyses were performed on a QTrap MS/MS system, from Applied Biosystems
(Foster City, CA, USA), equipped with an Electrospray Ionization (ESI) interface and a 1100 series
micro-Liquid Chromatography system comprising a binary pump and a micro-autosampler from
Agilent Technologies (Waldbronn, Germany). The analytical column was a Gemini® C18 column (150
× 2 mm, 5 µm particles) (Phenomenex, Torrance, CA, USA), preceded by a Gemini® C18 guard column
(4 × 2 mm, 5 µm particles). The column oven was set at 40 ◦C. The flow rate of the mobile phase was
200 µL/min, and the injection volume was 20 µL.
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The column effluent was directly transferred into the ESI interface, without splitting. Eluent A was
water and eluent B was methanol, both containing 0.5% acetic acid. A gradient elution was performed
as follows. The percentage of eluent B was increased from 40% to 80% in 10 min, kept constant 3 min,
then increased to 100% in 1 min, and kept constant for 4 min. The column was re-equilibrated with
40% eluent B for 7 min. The ESI interface was used in positive ion mode with the following settings:
temperature 350 ◦C; curtain gas, nitrogen, 30 psi; nebulizer gas, air, 10 psi; heater gas, air, 30 psi;
ion spray voltage +4500 V. The mass spectrometer operated in Multiple Reaction Monitoring (MRM)
mode. Mycotoxin quantification was performed by external calibration in neat solvent. The identity of
fumonisins was confirmed by comparison with the analytical standard considering chromatography
retention time and MRM transitions (ion ratios) in agreement with the official guidelines for mycotoxin
identification by Mass Spectrometry [59]. Detection limits in maize fungal cultures were 0.002 µg/g for
FB1 and 0.001 µg/g for FB2 and FB3.

Methanol (HPLC grade) and glacial acetic acid were purchased from Mallinckrodt Baker (Milan,
Italy). Ultrapure water was produced by a Millipore Milli-Q system (Millipore, Bedford, MA, USA).
Filter papers (Whatman no. 4) were obtained from Whatman International Ltd. (Maidstone, UK).
HPLC syringe filters (regenerated cellulose, 0.45 µm) were from Alltech (Deerfield, IL, USA).

2.4. Genetic Structure of Different F. verticillioides Populations

For genetic diversity assessment, all F. verticillioides strains were cultured on PDA for 7 d.
Mycelia were harvested, homogenized in liquid nitrogen, and genomic DNA was extracted using the
method already described by Stępień et al. [60]. A pre-validated FUM1-specific marker that showed
intraspecific polymorphism in F. verticillioides and F. proliferatum in previous studies [61,62] was used.
Briefly, Fum1F1 (CACATCTGTGGGCGATCC)/Fum1R2 (ATATGGCCCCAGCTGCATA) primers were
used for FUM1 gene fragment PCR-based amplification and sequencing according to Waśkiewicz et
al. [61]. Additionally, FUM6-FUM7 and FUM7-FUM8 intergenic regions were amplified using the
primers Fum6eF (AGATTTCCCAACAGTGGCAG)/Fum7bR (GTTTGCTTGGTGGAACTGGT) and
Fum7eF (ATCCGGTTGAGTTGGACAAG)/Fum8eR (GGAACAGATGCCCATACCAT) according to
Stępień et al. [47].

The BigDye Terminator kit v. 3.1 (Life Technologies, Carlsbad, CA, USA) was used for fluorescent
labeling according to the manufacturer’s instructions. DNA fragments were purified using alkaline
phosphatase and exonuclease I (Thermo Fisher Scientific)) and precipitated using ice-cold 96% ethanol
(Sigma Aldrich, St. Louis, MO, USA). Sequence reading was performed using Applied Biosystems
equipment. Sequence reads were analyzed using BioEdit software [63] and aligned using MEGA5
software package [64] using Maximum Parsimony heuristics with standard settings. Based on FUM1
sequences, the most parsimonious tree was calculated (bootstrap test with 1000 replications).

Sequences were compared to the NCBI GenBank-deposited sequence (FUM cluster NCBI
(AF155733)) and, in addition, a total of five F. verticillioides FUM1 sequences (F.v.F1.8.I.I, F.v.10I3
(Pisum sativum, Wiatrowo, Poland); F.v.KF3477, F.v.F1M1.1 (Z. mays, Poland); F.v.KF3537 (Ananas
comosus, Costa Rica)) were used as references. A total of four Fusarium proliferatum FUM1 sequences (15
F. proliferatum (Z. mays, Iran); F. proliferatum Gar3.2, Gar1 and Gar3.0 (Allium sativum, Poznan, Poland))
were used as outgroup.

2.5. Statistical Analysis

To analyze the in vitro fumonisin biosynthesis within each country of origin, total fumonisin
content was submitted to ANOVA by allowing a different standard deviation per strain to comply with
heteroscedasticity. Generalized least-squares were used for model fitting, as implemented in the gls()
function of the nlme package [65] within the R statistical environment [66]. Heteroscedastic Welch’s
t-tests were used for pairwise comparisons of strains, within country [67].
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3. Results

3.1. Identity Confirmation of F. verticillioides

DNA extracted from the 90 F. verticillioides strains was subject to PCR assays using the
species-specific primer pair VERT1/VERT2. As expected, a single fragment of 800 bp amplified
in all the samples, thus confirming their identity as F. verticillioides.

3.2. Fumonisin Biosynthesis by F. verticillioides In Vitro

Data on the in vitro biosynthesis of FB1, FB2 and FB3 with the calculation of total fumonisins (sum
of FB1, FB2 and FB3) by the 90 F. verticillioides strains are summarized in Table 1.

In general, this analysis revealed that 80% (n = 71) of the F. verticillioides strains investigated
in this study were able to produce fumonisins at variable levels, while the remaining 20% (n = 19)
showed undetectable levels (not detected; nd) of fumonisins and were considered, in this experimental
condition, as non-producing strains.

Total fumonisins biosynthesized by all positive strains (n = 71) varied from 0.03 to 69.84 µg/g
(average 7.88 µg/g), with FB1 being the most abundant analogue followed by FB2 and FB3. All positive
strains (100%, n = 71) produced FB1 in levels ranging from 0.03–56.12 µg/g (average 5.9 µg/g), while 64
of 71 strains (90%) produced FB2 in levels ranging from 0.03–10.67 µg/g (average 1.6 µg/g). Finally,
59 of 71 strains (83%) biosynthesized FB3 in a range from 0.01–4.23 µg/g (average 0.7 µg/g). The
average ratios of FB1:total fumonisins, FB2:total fumonisins and FB3:total fumonisins were 0.77, 0.13
and 0.05, respectively. The three fumonisin analogues analyzed in this study (FB1, FB2 and FB3) were
simultaneously produced by 81% of positive strains (n = 58), while two analogues, FB1 and FB2 as well
as FB1 and FB3, were simultaneously biosynthesized by 7% (n = 5) and 1% (n = 1) of positive strains,
respectively. Finally, 7 out of 71 strains (10%) producerd only FB1. No strains biosynthesized FB2 or
FB3 only.

In most cases, considering all producing strains (n = 71), differences in fumonisin production were
detected among the strains isolated in the same country.

In detail, 20 out of 22 strains (91%; Figure 2) isolated from maize grains in Italy and analyzed in
this study showed the ability to biosynthesize fumonisins in variable levels (Table 1). Total fumonisins
biosynthesized by the Italian positive strains (n = 20) varied from 0.03 to 33.73 µg/g (average 9.98
µg/g). All fumonisin-producing Italian strains (100%, n = 20) biosynthesized FB1 in levels ranging from
0.03–23.87 µg/g (average 5.7 µg/g), while 19 out of 20 strains (95%) produced FB2 and FB3 in levels
ranging from 0.03–5.63 µg/g (average 2.20 µg/g) and 0.05–4.23 µg/g (average 0.94 µg/g), respectively.
The average ratios of FB1:total fumonisins, FB2:total fumonisins and FB3:total fumonisins were 0.71,
0.18 and 0.10, respectively. The three fumonisin analogues (FB1, FB2 and FB3) were simultaneously
produced by 95% of positive Italian strains (n = 20), while 1 out of 20 strains (5%) produced only FB1.
Strains ITEM 10027 and PG 36B showed a significantly higher biosynthesis of total fumonisins with
respect to the other Italian strains (p < 0.02), with the exception of strains PG 58A1, PG 35A and PG
76A1 (p > 0.07).

Considering the Spanish strains analyzed in this study, all of them (100%, n = 9; Figure 2) were
able to in vitro biosynthesize different levels of fumonisins. Total fumonisins produced by these strains
ranged from 0.24 to 69.84 µg/g (average 14.01 µg/g) with FB1 being the most abundant (range 0.24–56.12
µg/g; average 10.9 µg/g), followed by FB2 (range 0.03–10.67 µg/g; average 2.4 µg/g) and FB3 (range
0.01–3.04 µg/g; average 0.7 µg/g). The average ratios of FB1:total fumonisins, FB2:total fumonisins and
FB3:total fumonisins were 0.81, 0.15 and 0.04, respectively. Eight out of 9 strains (89%) simultaneously
biosynthesized all three fumonisin analogues, while in 1 out of 9 strains (11%) only FB1 was detected.
Strain 0-C-1–3 2/2 showed a significantly higher (p < 0.008) production of total fumonisins with respect
to the other Spanish strains analyzed in this study.
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Figure 2. Fusarium verticillioides strains (%) isolated from maize kernels harvested in five Mediterranean
countries that showed in vitro production of detectable (fumonisin producers) and non-detectable
levels (fumonisin non-producers) of total fumonisins. Italy, n = 22; Spain, n = 9; Tunisia, n = 16; Egypt,
n = 28; Iran, n = 15.

Focusing on the Tunisian strains analyzed in this study, 15 out of 16 strains (94%; Figure 2)
produced detectable amounts of fumonisins in vitro. Total fumonisin levels ranged from 0.33 to 13.59
µg/g, with an average production equal to 5.36 µg/g. Twelve out of 15 strains (80%) biosynthesized all
the analogues, while 2 out of 15 strains (13%) produced FB1 and FB2, and the remaining strain (7%;
n = 1) produced FB1 and FB3. The gradient of production did not differ from that detected for the
other strains: FB1 (average 4.01 µg/g) > FB2 (average 0.86 µg/g) > FB3 (average 0.54 µg/g). The average
ratios of FB1:total fumonisins, FB2:total fumonisins and FB3:total fumonisins were 0.76, 0.13 and 0.11,
respectively. Strains M10, M14 and M1 showed significantly higher total fumonisin biosynthesis with
respect to the other Tunisian strains (p < 0.02), with the exception of strains M21, M22, M7 and M8
(p > 0.05).

The F. verticillioides population isolated from maize kernels in Egypt and analyzed in this study
showed a low percentage of fumonisin-producing strains (46%, n = 13; Figure 2) with an average
total fumonisin production of 3.98 µg/g (range 0.22–11.23 µg/g). All producing strains biosynthesized
FB1 (range 0.22–7.52 µg/g; average 2.95 µg/g), while 12 out of 13 strains (92%; average 0.77 µg/g)
and 10 out of 13 strains (77%; average 0.40 µg/g) showed the ability to biosynthesize FB2 and FB3,
respectively. In other words, 77% of producing strains were able to simultaneously produce all three
fumonisin analogues, while 15% (n = 2) and 8% (n = 1) of the Egyptian strains showed the ability
to biosynthesize FB1 and FB2 or FB1 alone, respectively. The average ratios of FB1: total fumonisins,
FB2:total fumonisins and FB3:total fumonisins were 0.76, 0.17 and 0.09, respectively. The Egyptian
strain F3 showed a significantly higher (p < 0.01) production of total fumonisins than F39, F29, F8, F4,
F28, F9 and F32 strains.

In the F. verticillioides population isolated from maize kernels in Iran and anlyized in this study, a
total of 14 fumonisin-producing strains were recovered (93%; Figure 2). Total fumonisins biosynthesized
by all positive strains (n = 14) varied from 0.03 to 39.79 µg/g (average 7.28 µg/g). All producing Iranian
strains (100%, n = 14) biosynthesized FB1 in levels ranging from 0.03–30.81 µg/g (average 5.57 µg/g),
while 11 out of 14 strains (71%) produced FB2 in levels ranging from 0.1–7.23 µg/g (average 0.70 µg/g),
and 10 out of 14 strains (64%) biosynthesized FB3 in levels ranging from 0.09–1.75 µg/g (average 0.70
µg/g), respectively. The average ratios of FB1:total fumonisins, FB2:total fumonisins and FB3:total
fumonisins were 0.83, 0.14 and 0.07, respectively. The three fumonisin analogues (FB1, FB2 and FB3)
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were simultaneously produced by 64% of positive Iranian strains (n = 9), while 4 out of 14 strains
(29%) produced only FB1, and 1 out of 14 strains (7%) biosynthesized FB1 and FB2. The Iranian strain
89 showed a significantly higher total fumonisin biosynthesis than the other strains from the same
country (p < 0.01), with the exception of strains 5 and 7 (p > 0.05).

Taking into account all fumonisin-producing strains of each country analyzed in this study,
differences in total fumonisin biosynthesis among countries were also detected (Figure 3). In particular,
the Spanish strains used in this study showed a significantly higher total fumonisin production (average
14.01 µg/g) than the Egyptian ones (average 3.98 µg/g) (p = 0.02). Also, the total fumonisin productions
detected for the Italian (average 9.98 µg/g), Tunisian (average 5.36 µg/g) and Iranian (average 6.79 µg/g)
strains were higher than the Egyptian ones and lower than the Spanish ones, even if no significant
differences were recorded (p > 0.46 and p > 0.47, respectively) (Figure 3).
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Figure 3. Average of total fumonisins (µg/g) biosynthesized by Fusarium verticillioides
fumonisin-producing strains isolated from maize kernels harvested in each of the five countries
analyzed in this study. Means with different letters are significantly different (p < 0.05).

3.3. Genetic Structure and Variability of F. verticillioides Populations

We sequenced a portion of a divergent FUM1 gene to evaluate the diversity among the five
populations of F. verticillioides originating from various countries. All strains amplified DNA fragments
of about 1100 bp in length. Additionally, the FUM6-FUM7 (ca. 550 bp) and FUM7-FUM8 (ca. 500 bp)
intergenic regions were sequenced using the primers described previously [47].

The sequences were aligned, the ends trimmed manually using MEGA 5 software, and
dendrograms of similarities were calculated. Interestingly, the intergenic regions did not show
polymorphisms, which was rather unexpected, since these regions normally accumulated more point
mutations than the coding regions. However, this means that the F. verticillioides strains characterized
in this study, even if originating from different countries, were basically uniform (results not shown).

Therefore, only slightly more polymorphic FUM1 sequences were analyzed and shown (Figure 4).
Apparently, neither geographical origin nor fumonisin production ability were correlated to the genetic
diversity of the strain set, as almost all of them grouped together. Only four strains from Egypt (F10,
F12, F13 and F36) were distinguished from the remaining strains at a bootstrap value of 60, including
our five reference sequences [61] and NCBI GenBank-deposited FUM cluster sequences (AF155773)
reported by Proctor et al. [45].
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Figure 4. A most parsimonious tree calculated based on the partial FUM1 sequences of 90 Fusarium
verticillioides strains isolated from Zea mays of different origins using the maximum parsimony setting,
bootstrap set to 50%, and 1000 replications were done. Five reference strains isolated from Pisum
sativum (F.v. F1.8.I.I; F.v. 10 I 3), Z. mays (F.v. KF3477; F.v. F1M1.1) and Ananas comosus (F.v. KF3537)
were added to the analysis, as well as the NCBI GenBank-deposited FUM cluster sequences (AF155773).
Four Fusarium proliferatum sequences were also included as outgroup (15; Gar3.2; Gar1; Gar3.0).
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4. Discussion

This study was aimed at investigating the different ability of selected F. verticillioides strains isolated
from maize kernels harvested in five Mediterranean countries to in vitro biosynthesize fumonisins
as well as at characterizing their genetic structure to assess possible variabilities among them. So far,
various studies have been conducted to analyze the ability of different F. verticillioides strains from
diverse geographic areas to biosynthesize fumonisins. In several investigations, a large percentage
of strains able to produce detectable amounts of these mycotoxins were usually found. However,
the presence of strains that were not able to biosynthesize measurable levels of fumonisins was also
reported. In this research, the majority of the strains isolated from maize grains in Italy, Spain, Tunisia
and Iran, analyzed in this study, produced detectable levels of fumonisins (91%, 100%, 94% and 94%
respectively; Figure 2), while the remaining part showed a lack of ability to produce measurable
amounts of these mycotoxins. Similar percentages of fumonisin-producing strains (> 80%) were also
detected in other F. verticillioides populations isolated from maize in Croatia [68], Spain [15,69], Italy [50],
Iran [22], Egypt [17], Brazil [41,44,49], Korea [70], USA [71], Argentina [55,72] and from durum wheat
in Argentina [2].

Conversely, in this study, only 46% of the analyzed Egyptian strains showed the ability to
biosynthesize detectable amounts of fumonisins (Figure 2). Similarly to other studies, low incidences
of producing strains were also recorded in other F. verticillioides populations such as those isolated
from maize in Croatia (55%) [73], Taiwan (66%) [74] and Spain (36%) [14].

In general, the producing strains analyzed in this study biosynthesized fumonisin analogues
following the “typical” gradient: FB1 > FB2 > FB3. A predominance of FB1 compared to the other
analyzed fumonisin analogues was recovered also in other F. verticillioides populations such as those
isolated from maize in Spain [15,75], Italy [76], Iran [22], Brazil [44,49], Argentina [55,72], Egypt [17],
South Korea and South Africa [39]. In this study, no F. verticillioides strains producing more FB2 or FB3

than FB1 were recorded. Conversely, these types of strains were observed in F. verticillioides populations
isolated from durum wheat in Argentina [2] and from maize and sorghum cultivated in the United
States [77].

As known, fumonisin production within the F. verticillioides species could quantitatively vary
due to the different biosynthetic ability of the different strains [24,40]. Also in this study, variability
of fumonisin production among strains isolated in the same country was found, highlighting that
mycotoxigenic diversity occurred within the five investigated F. verticillioides populations. Variability
among F. verticillioides strains isolated from maize in the same country was commonly detected in
many surveys in other parts of the world [2,8,15,17,22,44,49,55,73–75].

Variability in fumonisin production was also recorded among F. verticillioides strains isolated from
different countries [30,39,71]. Also in this study, differences in fumonisin production among strains of
different geographic origin were detected. In particular, the Spanish and Egyptian strains analyzed in
this study showed a high level of mycotoxigenic variability, being the populations with the highest
and the lowest fumonisin productions, respectively.

Interestingly, these two populations were also those with the highest and lowest percentages
of fumonisin-producing (Spain) and non-producing (Egypt) strains. Conversely, the other three
investigated populations of F. verticillioides (isolated from Italy, Tunisia and Iran) considered in this
study did not show a significant variability of fumonisin production. In agreement with the results
of Vogelgsang et al. [78], it is important to consider that in vitro results cannot be fully extrapolated
to in vivo conditions because there are several factors influencing Fusarium infections and secondary
metabolite production in the field. However, in vitro results could provide important information,
which may be useful to understand intra-population variability within a single country as well as
inter-population variability among different countries.

In this study, the mycotoxigenic characterization of F. verticillioides strains from different geographic
origins was coupled to the study of the genetic structure of these populations. The genetic diversity of F.
verticillioides has been studied using multiple techniques, including AFLP and RAPD methods [50,53,79].
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Recently, however, direct sequencing of specific genomic regions has become more popular because
of its high discrimination power and accuracy. The FUM1 gene has already beeeen proven to be
useful to assess species diversity inside the FFSC, serving as a source of phylogenetic and chemotypic
markers [47], showing often higher levels of polymorphisms than constitutively expressed genes [e.g.,
beta tubulin (tub2) or translation elongation factor 1α (tef-1α)].

Our previous studies suggested there might be high levels of intraspecific genetic uniformity
inside F. verticillioides populations, particularly when compared to the high diversity of the closely
related species F. proliferatum [61,62,80,81]. The use of the FUM1 gene sequence analysis allowed for
discrimination of subpopulations likely related to the host species of origin. We assumed that a similar
rule would be valid for F. verticillioides; therefore, we added some pea- and pineapple-derived strains to
the analysis (Figure 4). It was also possible that geographical differences between populations would
become visible.

However, in the present study we could not confirm this hypothesis. In fact, this was in accordance
to previous findings, which did not reveal significant differences between F. verticillioides strains from
different hosts [61]. This was also confirmed by the sequence analysis of the intergenic regions between
FUM6 and FUM7 as well as FUM7 and FUM8 genes (results not shown), which were previously used
for polymorphism screening [47]. The most likely explanation for this situation may be the endophytic
type of growth observed for this pathogen in maize, which combined with the extensive seed material
transfer between countries and continents made the population uniform across the world. Another
possibility is that FUM cluster integrity and structure undergoes much more strict selection pressure in
F. verticillioides than in F. proliferatum. This may implicate that fumonisin production by F. verticillioides
is more essential to complete its life cycle than it is for F. proliferatum. This issue was already reported
by Glenn et al. [82] but never confirmed for F. proliferatum.

The only outlier obtained in this study was a group of four strains (F10, F12, F13 and F36) isolated
from Egypt (Figure 4), which was distinct from the remaining strains. Only one of these strains (F13)
produced fumonisins in detectable amounts (Table 1). They should be further studied to explain their
genetic diversity.

5. Conclusions

In this study, we analyzed fumonisin production as well as genetic structures of five F. verticillioides
populations isolated from maize kernels in five Mediterranean countries.

The characterization of a selected number of strains per country does not allow a general conclusion
to be drawn at the country level; however, the results obtained in these experimental conditions
highlighted:

(i) the presence of an Egyptian population which differed from the others for its low percentage of
fumonisin-producing strains;

(ii) the presence of significant differences in fumonisin production within the strains isolated in
each of the surveyed countries and, in some cases, also among populations isolated from
different countries;

(iii) the high level of genetic uniformity inside the populations analyzed;
(iv) the general absence of correlation between geographical origin and/or fumonisin production

ability with the genetic diversity of the strain set;
(v) the presence of four Egyptian strains that were distinguished from the other strains at a bootstrap

value of 60.
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