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Abstract: Conventional chemotherapy remains an integral part of lung cancer therapy, regardless
of its toxicity and drug resistance. Consequently, the discovery of an alternative to conventional
chemotherapy is critical. Artemisia santolinifolia ethanol extract (AS) was assessed for its chemosen-
sitizer ability when combined with the conventional anticancer drug, docetaxel (DTX), against
non-small cell lung cancer (NSCLC). SRB assay was used to determine cell viability for A549 and
H23 cell lines. The potential for this combination was examined by the combination index (CI).
Further cell death, analyses with Annexin V/7AAD double staining, and corresponding protein
expressions were analyzed. Surprisingly, AS synergistically enhanced the cytotoxic effect of DTX
by inducing apoptosis in H23 cells through the caspase-dependent pathway, whereas selectively
increased necrotic cell population in A549 cells, following the decline in GPX4 level and reactive oxy-
gen species (ROS) activation with the highest rate in the combination treatment group. Furthermore,
our results highlight the chemosensitization ability of AS when combined with DTX. It was closely
associated with synergistic inhibition of oncogenesis signaling molecule STAT3 in both cell lines
and concurrently downregulating prosurvival protein Survivin. Conclusively, AS could enhance
DTX-induced cancer cells apoptosis by abrogating substantial prosurvival proteins’ expressions
and triggering two distinct cell death pathways. Our data also highlight that AS might serve as an
adjunctive therapeutic option along with a conventional chemotherapeutic agent in the management
of NSCLC patients.

Keywords: Artemisia santolinifolia; docetaxel; STAT3/survivin

1. Introduction

It is estimated that more than two million new lung cancer cases are diagnosed
in the world annually. Most of them are non-small cell lung cancer (NSCLC, 80%) [1].
Increasing knowledge of the underlying mechanisms and signaling pathways, particularly
the invention of targeted therapy in NSCLC practice and outcomes from clinical trials,
changed the chemotherapeutic strategy algorithm and shifted it to more personalized and
selective treatment [2]. Although lung cancer incidence declines twice in men in prevalence
of women, the 5-year relative survival rate is still low, as patients diagnosed in late stage [3].
Almost 77% of patients are not diagnosed until the disease has spread beyond the primary
site. Thus, chemotherapy remains the foundation form of their treatment, regardless of its
toxicity and resistance [4–6].

Traditional medicine has been used since ancient times and has gained increasing
attention as a remarkable source for finding new drugs with few side effects [7]. The bene-
fits of combinational treatment of traditional medicine with conventional chemotherapy
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are not only restricted by synergistically boosting treatment performance, minimizing the
evidence of drug resistance, and also exerting chemoprotective actions [8]. Nowadays,
scientists believe that identifying the bioactive components is vital to modernizing herbal
extracts for clinical use. However, there will be a loss of synergetic action of the phar-
maceutical ingredients without the appropriate approaches. Exploring the mechanism of
synergistic action for combining herbal extracts with conventional chemo drugs will help
researchers discover both new phytomedicines and new drug combinations [9]. Conse-
quently, combinations of natural products with chemo drugs have been used in several
clinical trials against various malignancies, including lung cancer (especially non-small-cell
lung cancer) since 2006. The chemotherapeutic agents used for these trials are, in most
cases, platinum-based drugs, such as cisplatin and oxaliplatin, in addition to docetaxel,
even though these drugs could cause severe side effects [10].

Docetaxel (DTX), an antimicrotubule taxane binding to the β-tubulin subunit of
microtubulin, is a standard regimen for both first- and second-line treatment in advanced
NSCLC [11,12]. Although survival rates after docetaxel monotherapy in chemotherapy-
naive patients were similar to those platinum-based standard regimens in NSCLC patients,
docetaxel is limited in use by its severe side effects and drug resistance [13].

Artemisia santolinifolia is a “wormwood” semi-shrub with three-pinnatisect leaves,
widely distributed in Central Asia to Eastern Europe, ranging between 400 and 500 different
species [14]. A. santolinifolia belongs to the large and diverse genus of Artemisia, that have
been introduced as a common widespread species. However, little is known about its
biological activity [15]. The chemical constituents of A. santolinifolia, such as terpenoids,
polyacetylenes, coumarins, glycosides, sterols, and flavonoids, were documented in several
studies [16–18]. Furthermore, previous studies have reported in vitro and in vivo cytotoxic
and antitumor effects of various Artemisia species and the related molecular pathways,
such as activation of caspase, modulation of Bax/Bcl-2 ratio and generation of ROS level,
subsequent cell cycle arrest at S, G2/M phase, as well as inhibition of specific target
molecules—notch 1, β-catenin, and MMP9 [19–21]. However, the anticancer activity of
A. santolinifolia combined with conventional chemotherapeutic docetaxel (DTX) has not yet
been investigated.

In this study, we utilized two NSCLC cell lines (A549 and H23) to explore the synergiz-
ing effect and the possible mechanism of action of AS when combined with conventional
chemotherapeutic agent DTX. A remarkable finding in this study was that the expres-
sion of survivin in both cell lines was markedly reduced by STAT3 inhibition, despite
showing different patterns of cell death in the flow cytometry analysis. Additionally, AS
showed the selective mode of enhancement of DTX-induced cell death. In A549 cells,
AS synergistically decreased cell viability, depleted GPX4 protein levels, and increased
ROS generation, suggesting the predominant contribution of ferroptosis. In contrast, AS
increases DTX-responsive apoptosis-related proteins in the H23 cell line as a different mode
of cell death. Our study demonstrated that AS can be a promising chemosensitizer with
the combination of conventional chemotherapeutic agent DTX for NSCLC.

2. Results
2.1. AS Combined with DTX Synergistically Inhibits A549 and H23 Cells Proliferation

Using natural product-based alternative treatment approaches and conventional cyto-
toxic drugs could facilitate chemosensitization in cancer cells, primarily due to biological
activity in a multitargeted manner, thereby influencing multiple regulatory pathways to
improve the overall chemotherapeutic response in various cancers [22]. Therefore, we
hypothesized that co-treatment of AS with DTX would allow a lower dose of anticancer
drug to minimize undesired harmful side effects. Firstly, A549 and H23 cells were treated
with series doses of AS and DTX solely to determine an initial dose–response. The ob-
tained data indicated that IC50 of DTX and AS for A549 were 3.6 nM and 238 µg/mL,
while for H23, they were 3.8 nM and 266.7 µg/mL after 48 h (Figure 1A,B). Further, to
analyze whether the combination of AS and DTX could possess a synergistic anticancer
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effect, cells were concurrently treated with AS at concentrations of 100 and 200 µg/mL in
combination with DTX at concentrations of 0.5, 1 and 2.5 nM for 48 h. The combination
indexes (CIs) were calculated using CompuSyn software (Table 1). In general, synergism
(CI < 1) was observed at high inhibition levels in concurrent treatment with a low dose
of DTX, while additivity to antagonism (CI = 1, CI > 1) was observed at the high dose of
DTX. Among the three regimens, co-treatment groups in both cell lines with AS and chemo
drug markedly enhanced the growth inhibitory effect of 0.5 nM DTX (CI 0.68 for A549, CI
0.78 for H23), compared with that of 2.5 nM DTX alone. Furthermore, especially for A549
cells, combination regimens of DTX at concentration 0.5 nM and AS co-treatment resulted
in more significant cytotoxicity effects with statistical significance than the individual
agents alone after 24 h, 48 h, 72 h (p < 0.01, Figure 1C). Hence, for further experiments,
we selected a low dose of DTX (0.5 nM), which reduction in cell proliferation is limited to
20%, and a fixed concentration of AS (100 and 200 µg/mL) to investigate the mechanism of
synergistic action.
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Figure 1. Effect of AS and/or DTX on NSCLC cells viability. Cell viability was assessed by SRB assay. Preliminary dose–

response study on A549 and H23 cells treated with series of AS concentrations (A) and DTX for 48 h (B). (C) Inhibitory 
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for 24 h, 48 h, and 72 h. Data are the mean ±SE; * p < 0.05, ** p < 0.01 vs. corresponding control. 

  

A549

24H 48H 72H

C
yt

o
to

xi
ci

ty
 (

%
)

0

20

40

60

80
DTX

AS100+DTX

AS200+DTX

* * 

** 

Figure 1. Effect of AS and/or DTX on NSCLC cells viability. Cell viability was assessed by SRB assay. Preliminary
dose–response study on A549 and H23 cells treated with series of AS concentrations (A) and DTX for 48 h (B). (C) Inhibitory
effects of AS (100, 200 µg/mL) combined with a sub-optimal dose of DTX (0.5 nM) on the proliferation of A549, H23 cells
for 24 h, 48 h and 72 h. Data are the mean ±SE; * p < 0.05, ** p < 0.01 vs. corresponding control.
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Table 1. Combination index (CI) of concurrent treatment of AS and DTX after 48, whereas CI < 1
indicated synergistic effect; CI = 1 additivity, while CI > 1 indicated antagonism.

Cell Line AS
(µg/mL) DTX 0.0 nM DTX 0.5 nM DTX 1 nM DTX 2.5 nM

A549
0.0 8.8 ± 6.5 23.7 ± 2.7 47.1 ± 1.9
100 18.4 ± 3.4 30.9 ± 1.9 (0.96) 40.2 ± 1.1 (0.97) 45.7 ± 3.5(1.09)
200 37.3 ± 1.4 58.7 ± 3.5 (0.68) 59.3 ± 1.5 (0.81) 65.4 ± 0.5 (1.04)

H23
0.0 20.8 ± 4.4 36.1 ± 5.7 42.2 ± 5.8
100 14.8 ± 3.3 37.2 ± 3.0 (0.74) 42.1 ± 1.7 (0.82) 49.3 ± 4.4 (1.01)
200 31.2 ± 2.7 47.2 ± 2.8 (0.78) 53.1 ± 2.2 (0.74) 54.4 ± 1.4 (1.02)

2.2. Enhancement of DTX-Induced Cytotoxicity Effect through Distinct Cell Death Modalities

To study the synergistic effect of AS and DTX, Annexin V/7-amino-actinomycin D (7-
AAD) double staining was performed on cell cytotoxicity toward A549, H23 cell lines. Our
results showed co-administration of AS and DTX has an apparent synergistic effect after
48 h on both cell lines in the induction of apoptosis with statistical significance, especially
in H23 cells (p < 0.05, Figure 2C). However, the results showed a higher necrotic population
(AnnexinV−/7-AAD+), specifically in the A549 cell line, when treated with AS alone and
in the combined treatment group (p < 0.05, Figure 2A). As shown in Figure 2B, AS, alone or
merged with DTX, induced less necrosis but more apoptotic death in the H23 cell line.

2.3. AS-Mediated Chemosensitization in H23 Is Primarily through Activation of Apoptosis, While
in A549 via Ferroptosis

In our previous study, we observed that AS alone could inhibit NSCLC growth through
distinct cell death modes depending on the cell line, with concomitant generation of cellular
ROS level, induction lipid peroxidation, and reduction in glutathione peroxidase 4 (GPX4)
expression selectively in A549, while having triggered caspase-dependent apoptosis in
H23 cells. Therefore, in the present study, we proposed to uncover the role of relative
protein expressions in the mechanism by which AS enhances the cytotoxicity while co-
treated with DTX. To this end, we first analyzed corresponding protein expressions in
both cell lines, which could be upregulated in response to exposure of DTX (0.5 nM)
alone or combined with AS (100 and 200 µg/mL) for 48 h. As shown in Figure 3A,B,
co-treatment groups showed more decrease in procaspase 3 protein in a concentration-
dependent manner and a higher increase in cleaved caspase 3 protein than those in either
AS or DTX groups alone only in H23 cells, but no significant alterations were detected in
A549 cells in all treatment groups (p < 0.01, Figure 3A,B). These results suggested that AS
could enhance DTX-induced apoptosis of NSCLC cells by primarily triggering caspase-
dependent apoptosis in H23 cells. Conversely, further validation of ferroptosis-related
specific marker GPX4 expression showed remarkable inhibition with statistical significance
in A549 cells (p < 0.001, Figure 3C,D). At the same time, there were no aberrant changes
either in procaspase 3 or cleaved caspase 3 expressions in A549, highlighting the specific
effects of AS in mediating chemosensitization through ferroptosis in A549. The degree of
ferroptosis was evaluated by testing the ROS levels. ROS levels were significantly higher in
A549 cells (p < 0.001, Figure 3E,F), either when treated with AS individually or along with
DTX, but no apparent alterations were detected in H23. Nevertheless, the combination
treatment group demonstrated a higher generation of ROS level following treatment with
AS plus DTX versus AS alone, suggesting ROS expression is among the potential vital
mechanisms contributing to the synergizing effect of AS through ferroptosis selectively
in A549.
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Figure 2. AS enhances DTX-induced apoptosis in NSCLC cells inducing different features of cell death. Analysis of
cell death in NSCLC cells following AS and/or DTX treatment was performed through FCM with Annexin V/7-AAD
staining. A549 (A) and H23 (B) cells were treated with 100 and 200 µg/mL AS and 0.5 nM DTX alone or in combination for
48 h. (C) The representative histograms and quantified results of three independent experiments are shown. Data are the
mean ± SE; * p < 0.05 vs. corresponding control.
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Figure 3. Apoptosis and ferroptosis contributed to AS-induced chemosensitization along with DTX in lung cancer cells:
(A) the cells were treated with AS (100 and 200 µg/mL) alone and/or in combination with DTX (0.5 nM) for 48 h. Western
blot results of proteins with the most significant alterations of pro-caspase 3, cleaved caspase 3 levels in A549 and H23 cells
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were validated; (B) the representative histograms quantified results of three independent experiments are shown; (C) the
expression of key ferroptosis regulators GPX4 was examined by Western blotting following treatment as indicated above;
(D) representative histograms of corresponding quantitative analyses of GPX4; (E,F) A flow cytometer analyzed the cellular
ROS level in A549 and H23 cells with representative histograms. Data are the mean ±SE; * p < 0.05, ** p < 0.01, *** p < 0.001
vs. corresponding control.

2.4. The Enhancement Functioning of AS on DTX-Induced Cell Death Associated with Inhibition
of STAT3/Survivin Signaling

To elucidate whether the additive effect of AS on DTX-induced apoptosis was me-
diated by STAT3 signal transducer and downstream prosurvival protein, we evaluated
the expression levels of STAT3, p-STAT3, and survivin in NSCLC cells after 48 h of drug
exposure. AS and DTX solely inhibited STAT3 phosphorylation, and many more in the
combined group in both cell lines with rates of approximately 80.8 ± 0.2% in A549 cells
(p < 0.001) and 78.7 ± 1.7% in H23 cells (p < 0.05) at 48 h, respectively, compared with
the internal control β-actin (Figure 4A,B). Among all three treatment groups, the most
inhibition effect downstream of the STAT3 signaling molecule, survivin, were quantified in
combined treatment groups with statistical significance and with relative rates of inhibition
of 56.3 ± 0.2 in A549 (p < 0.001) and 37.6 ± 1.0% in H23, respectively (Figure 4C). It was
intriguing to observe that survivin expression was significantly downregulated by AS
individually and in combination groups in both cell lines, whereas DTX treatment by itself
did not alter its expression, highlighting the specific effects of AS in mediating chemosensi-
tization. According to the results, either phosphorylation of STAT3 or prosurvival protein
survivin expression could be more downregulated by combined treatment groups in both
cell lines, suggesting the function of AS enhancing DTX-induced antitumor activity through
suppression of prosurvival proteins in NSCLC.

2.5. LC-QTOF Analysis of Ethanol Extract of A. santolinifolia

To ascertain the possible chemical composition–function relationship, AS was an-
alyzed using LC-QTOF. The analysis of ethanol extract by LC-QTOF showed that the
non-polar chemical constituents of A. santolinifolia contained more than one class of natural
product compounds, such as steroids, terpenoids, monoterpenes, phenolic compounds,
and glycolipids. Accordingly, Table 2 summarizes the eight most abundant compounds
identified in AS with their list of reference sources that reported potential anticancer effects.

Table 2. LC-QTOF analysis ethanol extract of A. santolinifolia.

No. Compound Name Compound
Formula

Observed
RT (min)

Observed
m/z

Mass Error
(mDa) References

1. Gramisterol C29H48O 25.97 413.3777 −0.1 [23,24]
2. Momor-cerebroside I C48H93NO10 25.97 844.6872 0 [25]
3. ∆7-Stigmasterol C29H46O 22.48 411.3622 0 -
4. Trametenolic acid C30H48O3 22.49 457.3677 0.1 [26–28]
5. 24-Ethyl cholesterol C29H52O 25.98 415.3921 −1.3 [29]
6. Parkeol C30H50O 26 427.3925 −0.9 -
7. Aristolone C15H22O 25.29 219.1745 0.2 [30]
8. Siraitic acid C C29H44O5 26 441.298 −1.9 -
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3. Discussion

Combination cancer therapies reduce side effects, combat drug resistance, and im-
prove synergy, allowing the effectiveness of the combined therapeutics agents to surpass
the results of each on their own [31]. The multi-component structure of medicinal herbs
makes them particularly suitable for treating complex diseases such as cancer. However,
the mechanism of action of the whole extracts of medicinal herbs remains largely un-
clear [32]. In this study, for the first time, we aimed to investigate AS contribution toward
enhancement effect of DTX-induced cell death and elucidate the possible mechanism of
action. AS merged with DTX significantly inhibited the viability of the cell, compared with
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either agent alone in A549 and H23 cell lines. In combination therapy with a lower DTX
dose (0.5 nM) than the regular regime, the CI showed greater synergy in both cells after
48 h treatment. Interestingly, when administered alone or in combination, AS induced an
entry point marker in the apoptotic signaling pathway caspase-3 in H23 cells but not in
A549. This finding suggests that AS potentiated chemosensitization through activation
of apoptosis.

Research studies have demonstrated the efficacy of inducing newly discovered cancer
cell death through ferroptosis as a therapeutic approach for chemotherapy-resistant cancer
cells [33]. Ferroptosis may also affect the effectiveness of chemotherapy, radiotherapy,
and immunotherapy. Therefore, combinations of agents that target ferroptosis signaling
could improve the outcome of those therapies [34]. Previously, we have identified that AS
could alter the ROS generation and expression of specific ferroptosis marker protein GPX4
selectively in the A549 cell lines. In agreement with these results, despite no evidence
of synergistic cleavage of caspase-3 protein upon combination treatment in A549, the
accumulation of ROS level was significantly higher than the individual agents alone.
Moreover, AS merged with DTX significantly inhibited GPX4 expression, but no noticeable
alteration was detected in the H23 cells. Collectively, we suspect that ferroptosis may play
a predominant role in AS enhancement of cell death combined treatment with DTX in A549
cells selectively, whereas H23 cells’ chemosensitization is primarily caused via apoptosis
(Figure 5).
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It has been reported that signal transducer and activator of transcription 3 (STAT3)
was activated in 22–65% of NSCLC [35]. Targeting STAT3, either directly or by inhibiting
upstream regulators, further impairs their survival, contributing to oncogenesis by either
preventing apoptosis or enhancing cell proliferation [36]. STAT3 previously has been
reported to modulate the expression of genes involved in cell apoptosis and ferroptosis [32].
Thus, we speculated that STAT3-induced inhibition of apoptosis may be involved in the
survival of cancer cells after chemotherapeutic agent exposure in NSCLC. Furthermore,
STAT3 is described as potentially regulating genes that may confer resistance to apoptosis.
Therefore, the expression of signal molecular downstream of STAT3, such as survivin,
should be monitored [37]. Survivin is the smallest member of the inhibitor of apoptosis
(IAP) family, and its expression is almost undetectable in normal adult tissues but found to
be overexpressed in most human malignancies [38]. A natural compound, the indole-based
tambjamine analog 21 (T21), was previously reported to kill cancer cells through inhibit-
ing survivin protein expression in vitro, and the molecular mechanism involved in cell
death was by blocking of Janus kinase/signal transducer and activator of transcription-3
(JAK/STAT3)/survivin pathway [39]. Thus, we reasoned that STAT3/survivin signaling
might reveal how AS sensitizes or enhances the effect of DTX in lung cancer cells. Subse-
quent Western blot analysis revealed that AS solely or co-treated with DTX could strongly
inhibit the expression of p-STAT3 and downstream molecular target survivin in both A549,
H23 cells, regardless of a distinct mode of cell death. AS inhibited STAT3 expression, and
the combination of AS with DTX had the most inhibition effect on the phosphorylation
of STAT3.

The chemical compounds identified by LC-QTOF analysis hits were mostly steroids
and terpenoids. In this report, we highlight the two major compounds that are more
likely to possess the potential ability of chemosensitization of NSCLC. The principal
phytosterol constituent of riceberry rice bran (RBDS), gramisterol, which is consistent with
our results, was studied for cytotoxicity in WEHI-3 cells. Gramisterol potentiated a good
growth-inhibitory effect on leukemic cells through abrogation of p-STAT3 signaling [23].
Trametenolic acid B (TAB), which belongs to the class of triterpenoids, demonstrated
cytotoxic effect on HGC-27 cells but had no apparent signs of cell apoptosis. Instead, TAB
induced autophagic cell death in gastric cancer cells [40]. Recent evidence showed that
TAB could sensitize breast cancer MDA-MB-231/Taxol cells to Taxol by increasing the
intracellular accumulation of the chemo drug via abrogating the expression of major drug
efflux P-gp protein [27].

Collectively, our results indicate that suppression of STAT3/survivin signaling path-
way and selective induction of ROS generation is among the fundamental mechanisms con-
tributing to the particular chemosensitizing properties of AS in NSCLC. Additionally, our
study highlights the medicinal herb AS as a discerning ferroptosis and apoptosis inducer.

4. Materials and Methods
4.1. Collection of Plant Material

Artemisia santolinifolia was obtained from a Mongolian traditional herb medicine
company (Mong-Em; Ulaanbaatar, Mongolia), collected in August 2020. Herb was air-
dried for further extraction process.

4.2. Preparation of Extract

Artemisia santolinifolia ethanol extract (AS) was prepared as follows: The dried plant
material was soaked in 99% ethanol (1:1 w/v) and slowly stirred at 60 ◦C for 6 h. After that,
the supernatant was filtered through filter paper, and the solid material was removed. The
ethanol extract was concentrated using a Rotavapor (Buchi Labortechnik; Flawil, Switzer-
land) to remove solvent at 40 ◦C and reconstituted in 99% ETOH at various concentrations
for in vitro studies.



Molecules 2021, 26, 7200 12 of 16

4.3. Cell Culture

The human adenocarcinoma cell line A549 and NCI-H23 were obtained from ATCC
Cell Bank and cultured in DMEM/F12, RPMI 1640 (Gibco, Carlsbad, CA, USA) with 10%
heat-inactivated FBS (Fetal Bovine Serum, Biological Industries, Cromwell, CT, USA) in the
presence of 1% L-glutamine (Corning, NY, USA) and 1% penicillin–streptomycin solution,
100 U/mL (Corning, NY, USA) at 37 ◦C in a humidified atmosphere containing 5% CO2
before use in experiments.

4.4. SRB Assay

Cell viability was examined as previously described [41]. Briefly, cells were seeded
on 96-well plates at 2.5 × 103/well of A549 and 3 × 103/well of H23 overnight. The
cells were treated with different concentrations of AS or/and DTX for 48 h. Afterward,
cells were washed twice with 200 µL phosphate-buffered saline (PBS) and then fixed in
trichloroacetic acid (TCA, Sigma-Aldrich; St Louis, MO, USA) for 1 h. Cells were stained
with sulforhodamine B (SRB, Sigma Aldrich; St Louis, MO, USA) and then washed with a
1% acetic acid solution three times. The plate was air-dried and solubilized with a Tris base
solution (BioShop; Ontario, Canada). The absorbance change of each well was assessed
at the wavelength of 515 nm using the SpektraMax iD3 multi-mode microplate reader
(Molecular Devices; CA, United States).

4.5. Drug Synergy

The inhibition rate of cell viability was detected, while the different doses of AS (100
and 200 µg/mL) and DTX (0.5, 2.5 and 5 nM) were added solely or combined for a period
of 48 h to evaluate the feasibility of AS and DTX. The combination index (CI) and the
combinatorial effect of AS and DTX were investigated by the Chou–Talalay equation [42].
A synergistic effect occurs when the CI value is <1; additive occurs when the CI value
equals 1, and antagonism when the CI value is >1.

4.6. Cell Cycle Analysis

Cell cycle progression was analyzed by flow cytometry. A549 and H23 cells were
seeded in 60 mm culture dishes at a density of 3 × 105/5 mL and cultured overnight.
Subsequently, cells were treated with increasing concentrations of AS (100 and 200 µg/mL)
alone or combined with DTX (0.5 nM) for 48 h. After treatment, the cells were harvested
by trypsinization, followed by centrifugation at 2000 rpm for 5 min. The cells were fixed
in ice-cold 70% ethanol at −20 ◦C for 24 h. Prior to flow cytometric analysis, the ethanol
was removed by centrifugation. After washing with PBS, 3 µL of propidium iodide (PI,
1 mg/mL) stain solution and 5 µL RNase A (1 mg/mL) (Sigma-Aldrich; St Louis, MO, USA)
were added to samples and placed for 30 min at room temperature. Cell cycle analysis
was performed using an Attune NxT flow cytometer (Invitrogen; Carlsbad, CA, USA) at
an excitation wavelength of 488 nm and an emission wavelength of 610 nm by measuring
the amount of PI-labeled DNA in the cells. Data were acquired from 10,000 cells and were
analyzed using FlowJo software (TreeStar; Ashland, OR, USA).

4.7. Flow Cytometric Analysis of Early and Late Apoptosis

Flow cytometric analysis was performed using FITC Annexin V Apoptosis Detection
Kit (Biolegend; San Diego, CA, USA). A549 and H23 cells were harvested via trypsin-EDTA
treatment, washed twice with PBS, and centrifuged. The pellets were resuspended and
stained with 5µL FITC-conjugated Annexin V for 10 min and then 5µL 7-AAD (7-amino-
actinomycin D) for 5 min at room temperature in the dark. For the analysis, 500 µL binding
buffer was added to each mixture and analyzed using Attune NxT flow cytometer (Invit-
rogen; Carlsbad, CA, USA). The results were analyzed using FlowJo (TreeStar; Ashland,
OR, USA) software. The ratio of apoptotic cells was calculated by the percentage of each of
early and late apoptotic cells.
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4.8. Analysis of ROS

Intracellular ROS was evaluated by using 2,7′-dichlorodihydrofluorescein diacetate
(H2DCFH-DA) kit from Sigma-Aldrich (St. Louis, MO, USA). After the above-indicated
treatments for 48 h, cells were stained with 5µM DCFH-DA for 30 min in an incubator
and then washed twice with phosphate-buffered saline (PBS). The fluorescence intensity of
cells was analyzed by flow cytometry. Data analysis was performed using FlowJo software
(TreeStar; Ashland, OR, USA).

4.9. Western Blot Analysis

Briefly, the cells were treated with AS (100, 200 µg/mL) or/and DTX (0.5 nM) for
48 h. Cellular lysates were centrifuged at 12,500 rpm for 30 min, and the supernatant
was collected. Thirty micrograms of protein samples were separated by SDS-PAGE and
then transferred onto a nylon membrane for Western blot analysis. The membranes were
blocked with TBS-5% non-fat milk for 1–2 hrs at room temperature and subsequently
probed with primary antibodies: against caspase-3, survivin (Cell Signaling Technology;
Danvers, MA, USA), GPX4 (Gentex; Irvine, CA, USA), and STAT3 (Abcam; Cambridge,
UK) overnight at 4 ◦C, diluted according to the protocol. After washing with TBS-T, the
blots were incubated with appropriate HRP-conjugated secondary antibody for 1 h at room
temperature. Protein bands were detected by using ECL chemiluminescence and exposed
to X-ray film ImageQuant (LAS 4000 series) for 1–60 s. β-actin (Abcam; Cambridge, UK)
was used as the internal control.

4.10. LC-MS/MS Analysis

The analytical LC-MS/MS experiment was performed on a Waters ACQUITY UPLC
I-Class system and Vion IMF QTof MS spectrophotometry. The system is equipped with a
Waters BEH C18 Acquity analytical column (75 µm × 150 mm, 1.8 µm). The column oven
temperature was set at 40 ◦C, and the temperature of the auto-sampler was set at 4 ◦C. For
each LC-HDMSE run, approximately 2 µL of the sample (1 mg/mL) was loaded onto the
column through a 10 µL sample-loop using 98% mobile phase A (0.1% formic acid in H2O)
at a flow rate of 0.4 mL/min with a gradient elution consisting of an increase from 20% to
46% mobile phase B (0.1% formic acid in ACN) over 30 min, and a re-equilibration step at
20% mobile phase B for 10 min. The lock mass, 200 fmol/µL of [Leu] solution prepared
with 0.1% formic acid in 30% ACN, was delivered from the auxiliary pump at a flow rate
of 0.2 µL/min to the reference sprayer of the LockSpray source.

LC-HDMSE Data were acquired in resolution mode with UNIFI Scientific Information
System. The mass spectrometer operated in resolution mode with a typical resolving
power of at least 40,000 FWHM at m/z 500. All analyses were performed using positive
mode ESI using a LockSpray source. The lock mass channel was sampled every 30 s.
The mass spectrometer was calibrated with a Leucine enkephalin solution (200 fmol/µL)
delivered through the reference sprayer of the LockSpray source. Accurate mass LC-
HDMSE data were acquired in an alternating, low energy (MS) and high energy (MSE)
mode of acquisition with a mass scan range from m/z 50 to 1000, using a capillary voltage
of 2 kV, a source temperature of 150 ◦C, and a cone voltage of 30 V. The mass measured
accuracy was <5 ppm when the instrument operated with the lock mass, and the accuracy
was the same between low energy and high energy MS scans. The spectral acquisition
time in each mode was 1.0 s with a 0.1 s inter-scan delay. In low-energy HDMS mode,
data were collected at a constant collision energy of 2 eV in the trap and transfer cells. In
high-energy HDMSE mode, the collision energy was ramped up from 15 to 30 eV in the
transfer cell only.
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4.11. Statistics

All data were treated with Sigma Plot (Systat Software; San Jose, CA, USA) software.
The results are presented as means ±SE of three independent experiments. Differences
between the two groups were calculated using Student’s t-test and analysis of variance
(ANOVA) with pair-wise comparisons. Statistical significance was defined at * p < 0.05,
** p < 0.01, and *** p < 0.001 vs. corresponding control.
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