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Abstract

Motivation: Super-resolution fluorescence microscopy with a resolution beyond the diffraction

limit of light, has become an indispensable tool to directly visualize biological structures in living

cells at a nanometer-scale resolution. Despite advances in high-density super-resolution fluores-

cent techniques, existing methods still have bottlenecks, including extremely long execution time,

artificial thinning and thickening of structures, and lack of ability to capture latent structures.

Results: Here, we propose a novel deep learning guided Bayesian inference (DLBI) approach, for

the time-series analysis of high-density fluorescent images. Our method combines the strength of

deep learning and statistical inference, where deep learning captures the underlying distribution of

the fluorophores that are consistent with the observed time-series fluorescent images by exploring

local features and correlation along time-axis, and statistical inference further refines the ultrastruc-

ture extracted by deep learning and endues physical meaning to the final image. In particular, our

method contains three main components. The first one is a simulator that takes a high-resolution

image as the input, and simulates time-series low-resolution fluorescent images based on experi-

mentally calibrated parameters, which provides supervised training data to the deep learning

model. The second one is a multi-scale deep learning module to capture both spatial information

in each input low-resolution image as well as temporal information among the time-series images.

And the third one is a Bayesian inference module that takes the image from the deep learning mod-

ule as the initial localization of fluorophores and removes artifacts by statistical inference.

Comprehensive experimental results on both real and simulated datasets demonstrate that our

method provides more accurate and realistic local patch and large-field reconstruction than the

state-of-the-art method, the 3B analysis, while our method is more than two orders of magnitude

faster.

Availability and implementation: The main program is available at https://github.com/lykaust15/

DLBI
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1 Introduction

Fluorescence microscopy with a resolution beyond the diffraction

limit of light (i.e. super-resolution) has played an important role in

biological sciences. The application of super-resolution fluorescence

microscope techniques to living-cell imaging promises dynamic in-

formation on complex biological structures with nanometer-scale

resolution.

Recent development of fluorescence microscopy takes advan-

tages of both the development of optical theories and computational

methods. Living cell stimulated emission depletion (STED)

(Hein et al., 2008), reversible saturable optical linear fluorescence

transitions (RESOLFT) (Schwentker et al., 2007) and structured il-

lumination microscopy (SIM) (Gustafsson, 2005) mainly focus on

the innovation of instruments, which requires sophisticated, expen-

sive optical setups and specialized expertise for accurate optical

alignment. The time-series analysis based on localization micros-

copy techniques, such as photoactivatable localization microscopy

(PALM) (Hess et al., 2006) and stochastic optical reconstruction mi-

croscopy (STORM) (Rust et al., 2006), is mainly based on the com-

putational methods, which build a super-resolution image from the

localized positions of single molecules in a large number of images.

Though compared with STED, RESOLFT and SIM, PALM and

STORM do not need specialized microscopes, the localization tech-

niques of PALM and STORM require the fluorescence emission

from individual fluorophores to not overlap with each other, leading

to long imaging time and increased damage to live samples

(Lippincott-Schwartz and Manley, 2009). More recent methods

(Holden et al., 2011; Huang et al., 2011; Quan et al., 2011; Zhu

et al., 2012) alleviate the long exposure problem by developing

multiple-fluorophore fitting techniques to allow relatively dense

fluorescent data, but still do not solve the problem completely.

Bayesian-based time-series analysis of high-density fluorescent

images (Cox et al., 2012; Xu et al., 2015, 2017) further pushes the

limit. By using data from overlapping fluorophores as well as infor-

mation from blinking and bleaching events, it extends the super-

resolution imaging to the large-field imaging of living cells. Despite

its potential to resolve ultrastructures and fast cellular dynamics in

living cells, several bottlenecks still remain. The state-of-the-art

methods, such as Bayesian analysis of the blinking and bleaching

(i.e. the 3B analysis) (Cox et al., 2012), are computationally expen-

sive, and may cause artificial thinning and thickening of structures

due to local sampling. Significant improvements on runtime and ac-

curacy have been achieved by single molecule-guided Bayesian local-

ization microscopy (SIMBA) (Xu et al., 2017) with the introduction

of dual-channel fluorescent imaging and single molecule-guided

Bayesian inference. However, the enhanced process is severely lim-

ited by the specialized class of proteins.

Deep learning has accomplished great success in various fields,

including super-resolution imaging (Kim et al., 2016; Ledig et al.,

2016; Lim et al., 2017). Among different deep learning architec-

tures, the generative adversarial network (GAN) (Goodfellow et al.,

2014) achieved the state-of-the-art performance on single image

super-resolution (SISR) (Ledig et al., 2016). However, there are two

fundamental differences between the SISR and super-resolution

fluorescence microscopy. First, the input of SISR is a downsampled

(i.e. low-resolution) image of a static high-resolution image and the

expected output is the original image, whereas the input of super-

resolution fluorescence microscopy is a time-series of low-resolution

fluorescent images and the output is the high-resolution image con-

taining estimated locations of the fluorophores (i.e. the recon-

structed structure). Second, the nature of SISR ensures that there are

readily a huge amount of existing data to train deep learning mod-

els, whereas for fluorescence microscopy, there are only limited

time-series datasets. Furthermore, most of these datasets do not

have the ground-truth high-resolution images, which make super-

vised deep learning infeasible.

In this article, we propose a novel deep learning guided Bayesian

inference (DLBI) framework, for structure reconstruction of high-

resolution fluorescent microcopy. Our framework combines the

strength of stochastic simulation, deep learning and statistical

inference. To our knowledge, this is the first deep learning-based

super-resolution fluorescent microscopy method. In particular, the

stochastic simulation module simulates time-series low-resolution

images from high-resolution images based on experimentally cali-

brated parameters of fluorophores and stochastic modeling, which

provides supervised training data for deep learning models. The

deep learning module takes the simulated time-series low-resolution

images as inputs, captures the underlying distribution that generates

the ground-truth super-resolution images by exploring local features

and correlation along time-axis of the low-resolution images, and

outputs a predicted high-resolution image. To achieve this goal, we

develop a GAN in which a generator network and a discriminator

network contest with each other. The generator network tries to

learn the distribution of the high-resolution images in a multi-scale

manner, whereas the discriminator network tries to discriminate the

ground-truth images and the images produced by the generator net-

work. In order to capture the deep features in the images, we further

ease the degradation issue by integrating residual networks (He

et al., 2016) into our GAN model, where degradation means that

stacking more network layers does not lead to better accuracy. The

high-resolution image produced by the deep learning module is often

very close to the ground-truth image. However, it can still contain

some artifacts, and more importantly, lacks the physical meaning.

Thus, we develop the Bayesian inference module to take the pre-

dicted high-resolution image from deep learning, run Bayesian infer-

ence from the initial locations of fluorophores in the predicted

image, and predict a more accurate high-resolution image.

Comprehensive experimental results on two simulated and three

real-world datasets demonstrate that DLBI provides more accurate

and realistic local-patch as well as large-field reconstruction than

the state-of-the-art method, the 3B analysis (Cox et al., 2012).

Meanwhile, our method is more than 100 times faster than the 3B

analysis.

2 Materials and methods

As shown in Figure 1, DLBI contains three modules: (i) stochastic

simulation (Section 2.1), (ii) deep neural networks (Section 2.2) and

(iii) Bayesian inference (Section 2.3).

Although deep learning has proved its great superiority in vari-

ous fields, it has not been used for fluorescent microscopy image

analysis. One of the possible reasons is the lack of supervised train-

ing data, which means the number of time-series low-resolution

image datasets is limited and even for the existing datasets, the

ground-truth high-resolution images are often unknown. Here, a

stochastic simulation based on the experimentally calibrated param-

eters is designed to solve this issue, without the need of collecting a

massive amount of real fluorescent images. This empowers our deep

neural networks to effectively learn the latent structures under the

low-resolution, high-noise and stochastic fluorescing conditions.

The primitive super-resolution images produced by deep neural net-

works still contain artifacts and lack physical meaning, we finally
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develop a Bayesian inference module based on the mechanism of flu-

orophore switching to produce high-confident images.

Our method combines the strength of deep learning and statistic-

al inference, where deep learning captures the underlying distribu-

tion that generates the training super-resolution images by exploring

local features and correlation along time-axis, and statistical infer-

ence removes artifacts and refines the ultrastructure extracted by

deep learning, and further endues physical meaning to the final

image.

2.1 The stochastic simulation module
The input of our simulation module is a high-resolution image that

depicts the distribution of the fluorophores and the output is a time-

series of low-resolution fluorescent images with different fluorescing

states. We refer the readers to Supplementary Section S1 for termi-

nologies in fluorescence microscopy.

In our simulation, Laplace-filtered natural images and sketches

are used as the ground-truth high-resolution images that contain the

fluorophore distribution. If a gray-scale image is given, the depicted

shapes are considered as the distribution of fluorophores and each

pixel value on the image is considered as the density of fluorophores

at the location. We then create a number of simulated fluorophores

that are distributed according to the distribution and the densities.

For each fluorophore, it switches according to a Markov model, i.e.

among states of emitting (activated), not emitting (inactivated), and

bleached. The emitting state means that the fluorophore emits pho-

tons and a spot according to the point spread function (PSF) is

depicted on the canvas. All the spots of the emitting fluorophores

thus result in a high-resolution fluorescent image. Applying the

Markov model on the initial high-resolution image generates a time-

series of high-resolution images. After adding the background to the

high-resolution images, they are downsampled to low-resolution

images and noise is finally added. Figure 2 summarizes the stochastic

simulation procedure.

Here, the success of simulation relies on three factors: (i) the

principal of the linear optical system, (ii) experimentally calibrated

parameters of fluorophores and (iii) stochastic modeling.

2.1.1 Linear optics

A fluorescence microscope is considered as a linear optical

system, in which the superposition principle is valid, i.e. Image

(Obj1þObj2)¼ Image (Obj1)þ Image (Obj2). The behavior of flu-

orophores is considered invariant to mutual interaction. Therefore,

for high-density fluorescent images, the pixel density can be directly

calculated from the light emitted from its surrounding fluorophores.

When a fluorophore is activated, an observable spot can be

recorded by the sensor, the shape of which is called the PSF.

Considering the limitation of sensor capability, the PSF of an iso-

tropic point source is often approximated as a Gaussian function:

I x; yð Þ ¼ I0 exp � 1

2r2
x� x0ð Þ2 þ y� y0ð Þ2

� �� �
; (1)

where r is calculated from the fluorophore in the specimen that

specifies the width of the PSF, I0 is the peak intensity and is propor-

tional to the photon emission rate and the single-frame acquisition

time, (x0, y0) is the location of the fluorophore.

While PSF describes the shape, the full width at half maximum

(FWHM) describes the distinguishability. It is defined to be the

half width of the maximum amplitude of PSF. If PSF is modeled

as a Gaussian function, the relationship between FWHM and r is

given by

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2ln2
p

r � 2:355 r: (2)

Considering the probability of linear optics, a high-density fluor-

escent image is composed by PSFs of the fluorophores.

2.1.2 Calibrated parameters of fluorophores

In most imaging systems, the characteristics of a fluorescent protein

can be calibrated by experimental techniques. With all the calibrated

parameters, it is not difficult to describe and simulate the fluorescent

switching of a specialized protein.

The first characteristic of a fluorophore is its switching probabil-

ity. A fluorophore always transfers among three states, emitting, not

emitting and bleached, which can be specified by a Markov model

(Fig. 3). If the fluorophore transfers from not emitting to bleached,

it will not emit any photon anymore. As linear optics, each fluoro-

phore’s transitions are assumed to be independent.

The second characteristic of a fluorophore is its PSF. When a

real-world fluorophore is activated, the emitted photons and its cor-

responding PSF will not stay unchanged over time. The stochasticity

of the PSF and photon strength describes the characteristics of a

fluorescent protein. To simulate the fluorescence, we should not ig-

nore these properties. Fortunately, the related parameters can be

well-calibrated. The PSF and FWHM of a fluorescent protein can be

measured in low molecule density. In an instrument for PALM or

Fig. 1. The overall workflow of DLBI. The three modules are shown in solid

boxes: the simulation module (green), the deep learning module (red) and

the Bayesian inference module (blue). The training (orange) and testing (pur-

ple) procedures are shown in dashed boxes. For training, time-series low-

resolution images simulated from the simulation module are used to train the

deep learning module in a multi-scale manner, from 2�, 4�, to 8� resolution.

For testing, given certain time-series low-resolution images, the deep learn-

ing module predicts the 2� to 8� super-resolution images, and the Bayesian

inference module takes the predicted 8� image (which contains artifacts) and

produces the final high-resolution image

Fig. 2. The workflow of stochastic simulation. Firstly, a high-resolution image

is inputted as the distribution and density of fluorophores. Then, the emitting

of photons is simulated based on the stochastic parameters for each time

frame. A random background (DC offset) is added to each image. The images

are then downsampled to low-resolution and noise is added, which results in

a time-series of low-resolution images
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STORM, the PSF of the microscope can be measured by acquiring

image frames, fitting the fluorescent spots parameter, normalizing

and then averaging the aligned single-molecule images. The distribu-

tion of FWHM can be obtained from statistical analysis. The prin-

ciple of linear optics ensures that the parameters measured in single-

molecule conditions are also applicable to high-density conditions.

In our simulation, a log-normal distribution (Cox et al., 2012;

Zhu et al., 2012) is used to approximate the experimentally meas-

ured single fluorophore photon number distribution. Firstly, a table

of fluorophore’s experimentally calibrated FWHM parameters is

used to initialize the PSF table in our simulation, according to

Equations (1) and (2). Then for each fluorophore recorded in the

high-resolution image, the state of the current image frame is calcu-

lated according to the transfer table [P1, P2, P3, P4, P5] (Fig. 3) and

a random PSF shape is produced if the corresponding fluorophore is

at the ‘emitting’ state. This procedure is repeated for each fluoro-

phore, which results in the final fluorescent image.

2.1.3 Stochastic modeling

The illumination of real-world objects is different at different time.

In general, the illumination change of real-world objects can be sup-

pressed by high-pass filtering with a large Gaussian kernel.

However, this operation will sharpen the random noise and cannot

remove the background or DC offset (DC offset, DC bias or DC

component denotes the mean value of a signal. If the mean ampli-

tude is zero, there is no DC offset. For most microscopy, the DC off-

set can be calibrated but cannot be completely removed.) To make

our simulation more realistic, several stochastic factors are intro-

duced. First, for a series of simulated fluorescent images, a back-

ground value calculated from the multiplication between a random

strength factor and the average image intensity is added to the fluor-

escent images to simulate the DC offset. For the same time-series,

the strength factor remains unchanged but the background strength

changes with the image intensity. Second, the high-resolution fluor-

escent image is downsampled and random Gaussian noise is added

to the low-resolution image. Here, the noise is also stochastic for dif-

ferent time-series and close to the noise strength that is measured

from the real-world microscopy.

The default setting of our simulation takes a 480�480 pixel

high-resolution image as the input and simulates 200 frames of

60�60 pixel (i.e. 8� binned) low-resolution images.

2.2 The deep learning module
We build a deep residual network under the GAN framework

(Goodfellow et al., 2014; Ledig et al., 2016) to estimate the primi-

tive super-resolution image ISR (the latent structure features) from

time-series of low-resolution fluorescent images T ¼ IFL
k

� �
k¼1;...;K

.

Instead of building just one generative model, our approach builds a

pair of models, a generator model, G, which produces the estimation

of the underling structure of the training images, and a discriminator

model, D, which is trained to distinguish the reconstructed super-

resolution image from the ground-truth one. Figure 4 demonstrates

the overview of our deep learning framework.

2.2.1 Basic concepts

The goal of training a generator neural network is to obtain the opti-

mized parameters, hG, for the generating function, G, with the min-

imum difference between the output super-resolution image, ISR,

and ground-truth, IHR:

bhG ¼ arg min
hG

1

N

XN
n¼1

lSR G T n; hGð Þ; IHR
n

	 

; (3)

where G T n; hGð Þ is the generated super-resolution image by G for

the nth training sample, N is the number of training images, and lSR

is a loss function that will be specified later.

For the discriminator network D, D(x) represents the probability of

the data being the real high-resolution image rather than from G. When

training D, we try to maximize its ability to differentiate ground-truth

from the generated image, to force G to learn better details. When train-

ing G, we try to minimize log 1 �D G T n; hGð Þ; hDð Þð Þ, which is the log

likelihood of D being able to tell that the image generated by G is not

ground-truth. That is, we minimax the following function:

min
hG

max
hD

EIHR�ptrain IHRð Þ log D IHR; hD

	 
	 
� �
þEIHR�pG Tð Þ log 1�D G T ; hGð Þ; hDð Þð Þ½ �:

(4)

In this way, we force the generator to optimize the generative loss,

which is composed of perceptual loss, content loss and adversarial loss

(more details of the loss function will be introduced in Section 2.2.3).

2.2.2 Model architecture

Our network is specialized for the analysis of time-series images

through: (i) 3D filters in the neural network that take all the image

frames into consideration, which extracts the time dependent

information naturally, (ii) two specifically designed modules in the

generator residual network, i.e. Monte Carlo dropout (Gal and

Ghahramani, 2015) and denoise shortcut, to cope with the stochas-

tic switching of fluorophores and random noise and (iii) a novel in-

cremental multi-scale architecture and parameter tuning scheme,

which is designed to suppress the error accumulation in large upscal-

ing factor neural networks.

Figure 5 illustrates the entire architecture of the generator model.

The input is time-series low-resolution images. We first use a convo-

lutional layer with the filter size as seven by seven (Here, the filter

size depends on the FWHM of a PSF. Generally, a fluorescence

microscope produces low-resolution images with PSF spanning

Fig. 3. The Markov model describing state transition of a fluorophore

Fig. 4. Overview of our deep learning framework. There are two main compo-

nents of the model, the generator network (G) and the discriminator network (D).

G is used to convert the time-series noisy, low-resolution images into a noise-

free, super-resolution image while D is used to distinguish the ground-truth high-

resolution image from the one produced by G. G and D are designed to contest

each other, which are trained simultaneously. As the training goes on, both G’s

ability to generate better super-resolution images and D’s ability to distinguish

the generated images are improved, which results in more and more similar

images to the ground-truth from G. During testing, only G is used
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3 � 7 pixels. The specially designed filter size can balance between

the computational time and physical meaning.), which is larger than

the commonly used filter, to capture meaningful features of the in-

put fluorescence microscope images. The Monte Carlo dropout

layer, which dropouts some pixels from the input feature maps dur-

ing both training and testing, is applied to the output of the first

layer to suppress noise. To further alleviate the noise issue, we use

another technique, the denoise shortcut. It is similar to the identical

shortcut in the residual network block. However, instead of being

exactly the same as the input, we set each channel of the input fea-

ture map as the average of all the channels. The denoise shortcut is

added to the output of the convolutional layer, which is after 16 re-

sidual blocks (see Supplementary Section S2), element-wise. After

this feature map extraction process, we use a pixel shuffle layer com-

bined with the convolutional layer to increase the dimensionality of

the image gradually (upsampling Conv X2 in Fig. 5).

Here, we adopt a novel multi-scale tuning procedure to stabilize

the 8� images. As shown in Figure 5, our generator can output and

thus calculate the training error of multi-scale super-resolution images,

ranging from 2� to 8�, which means that our model has multiple

training interfaces for back propagation. Thus during training, we use

the 2�; 4�; 8� high-resolution ground-truth images to tune the model

simultaneously to ensure that the dimensionality of the images increases

smoothly and gradually without introducing too much fake detail.

For the discriminator network, we adopt the traditional convolu-

tional neural network, which contains eight convolutional layers,

one residual block and one sigmoid layer (see Supplementary

Section S2). The convolutional layers increase the number of chan-

nels gradually to 2048 and then decrease it using one by one filters.

Those convolutional layers are followed by a residual block, which

further increases the model ability of extracting features.

Supplementary Section S2 provides detailed descriptions of the gen-

erator and discriminator networks.

2.2.3 Model training and testing

GAN is known to be difficult to train (Salimans et al., 2016). We

use the following techniques to obtain stable models. For the gener-

ator model, we do not train GAN immediately after initialization.

Instead, we pretrain the model. During the pretrain process, we min-

imize the mean squared error between the super-resolution image

and the ground-truth, i.e. with the pixel-wise MSE loss as

lSR
MSEl

¼ 1

l2WH

XlW

x

XlH

y

G T ; hGl

	 

� IHR

x;y

� �2
; (5)

where W is the width of the low-resolution image, H is the height of

the low-resolution image, and l ¼ 2; 4; 8 is the upscaling factor.

During pretraining, we optimize lSR
MSE8

; lSR
MSE4

; lSR
MSE2

simultaneously,

instead of optimizing the sum of them.

Only after the model has been well-pretrained do we start train-

ing the GAN. During that process, we also use VGG19 (Simonyan

and Zisserman, 2014) to calculate the perceptual loss (Johnson

et al., 2016) and use Adam optimizer (Kingma and Ba, 2014) with

learning rate decay as the optimizer. When feeding an image to the

VGG model, we resize the image to fulfill the dimensionality

requirement:

lSR
VGGl

¼
XV

i¼1

VGG G T ; hGl

	 
	 

i
� VGG IHR

	 

i

� �2
; (6)

where V is the dimensionality of the VGG embedding output.

During final tuning, we simultaneously optimize the 2�; 4�,

and 8� upscaling by the generative loss:

lSR
GANl

¼ 0:4 � lSR
MSEl

þ 10�6 � lSR
VGGl

; (7)

and

lSR
GAN8

¼ 0:5 � lSR
MSE8

þ 10�3 � lSR
ADV8

þ 10�6 � lSR
VGG8

; (8)

where l ¼ 2;4 and the 8� upscaling has an additional term, the ad-

versarial loss lSR
ADV8

¼
PN

n¼1 log 1�D G T n; hGð Þ; hDð Þð Þ. For the dis-

criminator network, we use the following loss function:

lSR
DIS ¼

XN
n¼1

log D G T n; hGð Þ; hDð Þð Þ þ
XN
n¼1

log 1�D IHR
n ; hD

	 
	 

: (9)

During testing, for the same input time-series images, we run the

model multiple times to get a series of super-resolution images.

Because of the Monte Carlo dropout layer in the generator model,

all of the super-resolution images are not identical. We then com-

pute the average of these images as the final prediction, with another

map showing the P-value of each pixel. We use Tensorflow com-

bined with TensorLayer (Dong et al., 2017) to implement the deep

learning module. Trained on a workstation with one Pascal Titan X,

the model gets converged in around 8 h.

2.3 The Bayesian inference module
Our Bayesian inference module takes both the time-series low-reso-

lution images and the primitive super-resolution image produced by

the deep learning module as inputs, and generates a set of optimized

fluorophore locations, which are further interpreted as a high-

confident super-resolution image. Since the deep learning module

has already depicted the ultrastructures in the image, we use these

structures as the initialization of the fluorophore locations, re-

sampling with a random punishment against artifacts. For each

pixel, we re-sample the fluorophore intensity by
ffiffiffiffiffiffiffi
Ix;y

p
and the loca-

tion by x; yð Þ6 rand x; yð Þ, where Ix;y is the pixel value in the image

produced by deep learning, rand(x, y) is limited in 68. In this way,

the extremely high illumination can be suppressed and fake struc-

tures will be re-estimated.

Fig. 5. Architecture of the generator network, which is composed of a residual

network component and a multi-scale upsampling component. The low-

resolution images are firstly fed to the residual network to extract information

from the original 3D space, during which denoising is performed by the Monte

Carlo dropout and denoise shortcut. The extracted feature maps are fed into the

multi-scale upsampling component to increase the resolution gradually. We in-

crease the resolution by a factor of two during each upsampling, resulting in three

parameter tuning interfaces. Using the three interfaces, we can use all the 2�, 4�
and 8� ground-truth images to train the generator network, reducing the artifacts

in the final 8� super-resolution images greatly
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2.3.1 Basic concepts

As shown in Figure 3, a fluorophore has three states: emitting (light),

not emitting and bleached. In classic Bayesian-based time-series

analysis, the switching procedure of fluorophores is modeled

by Bayesian inference, i.e. given an observed region R, deciding

whether there is a fluorophore (F) or not (N) by

P FjRð Þ
P NjRð Þ ¼

P RjFð ÞP Fð Þ
P RjNð ÞP Nð Þ ; (10)

where P(F) and P(N) are constants which are based on experimental

prior, P RjFð Þ is the probability of the observed data region R given

the location of the fluorophore, P RjNð Þ is the probability of the

observed data region R if there is no fluorophore, which can be cal-

culated by integrating all the probability of observing pixels given

the noise model.

For a single fluorophore, the switching procedure can be mod-

eled by a hidden Markov model (HMM) (Rabiner, 1989), as shown

in Figure 6A. However, for high-density fluorophores, each fluoro-

phore transfers the state independently with a stable probability

(Cox et al., 2012) and all the fluorophores together can be modeled

by a factorial hidden Markov model (FHMM) (Ghahramani and

Jordan, 1996), as shown in Figure 6B, which has been used and

proved in (Xu et al., 2017).

2.3.2 Refining results with physical meaning

Although HMM and FHMM are capable of modeling the fluoro-

phore switching process, they are localization-guided, which often

ignore the global information, and are computationally expensive to

learn. Thus, we initialize the fluorophores’ locations by using the

image generated by deep learning and use Bayesian inference to fur-

ther refine the results.

We apply the FHMM model to deal with high-density fluores-

cent microscopy. The parameters of FHMM are estimated by the

expectation-maximization algorithm:

Q /newj/ð Þ ¼ E log P Ft;Dtf gj/newð Þj/; Dtf gf g; (11)

where the observation sequence has T frames, Dtf g; t ¼ 1; . . . ;T.

The hidden states are Ftf g, where each fluorophore has three

possible states in the model. Q is a function of the fluorophore

parameters /new given the current parameter estimation and the ob-

servation sequence Dtf g. The procedure iterates between a step that

fixes the current parameters and computes posterior probabilities

over the hidden states (the E-step), and a step that uses these proba-

bilities to maximize the expected log likelihood of the observations

as a function of the parameters (the M-step).

In the E-step, we fix the fluorophore parameters in the model

and utilize the hybrid of Markov chain Monte Carlo and forward al-

gorithm to sample the initial model. When a new fluorophore is

determined, we take samples of this fluorophore using the forward

filtering backward sampling algorithm (Godsill et al., 2004). Thus,

the sampled image sequence contains this fluorophore. In the

M-step, we optimize the fluorophore parameters and find the max-

imum a posteriori (MAP) fluorophore positions using the conjugate

gradient. Then, based on already known positions of fluorophores,

the surrounding fluorophores with high probability are expended.

The final super-resolution image is obtained by iterating these two

steps until convergence.

The detailed method description and parameter setting are given

in Supplementary Section S3.

3 Experimental results

3.1 Training deep learning
To train our deep learning module, the stochastic simulation module

was used to simulate time-series low-resolution images from 12 000

gray-scale high-resolution images. These images were downloaded

from two databases: (i) 4000 natural images were downloaded

from ILSVRC (Russakovsky et al., 2015) and Laplace filtered and

(ii) 8000 sketches were downloaded from the Sketchy Database

(Sangkloy et al., 2016). Note that our simulation is a generic

method, which does not depend on the type of the input images.

Thus any gray-scale image can be interpreted as the fluorophore dis-

tribution and used to generate the corresponding time-series low-

resolution images.

To initialize all the weights of the deep learning models, we used

the random normal initializer with the mean as 0 and standard devi-

ation as 0.02. As for the Monte Carlo dropout layer, we set the keep

ratio as 0.8. In terms of the Adam optimizer (Kingma and Ba,

2014), we followed the setting in (Dai et al., 2017; Li et al., 2018)

and set the learning rate as 1 � 10�4 and the beta 1, which is the ex-

ponential decay rate for the first moment estimates, as 0.9. During

training, we set the batch size as 8, the initialization training epoch

as 2 and the GAN training epoch as 40. When performing the real

GAN training, we utilized the learning rate decay technique, reduc-

ing the learning rate by half every 10 epochs.

3.2 Evaluation datasets
Two simulated datasets and three real-world datasets are used to

evaluate the performance of the proposed method. Simulated data-

sets are used due to the availability of ground-truth.

The first two datasets are simulated datasets, for which the

ground-truth (i.e. high-resolution images) is downloaded from the

Single-Molecule Localization Microscopy (SMLM) challenge

(http://bigwww.epfl.ch/smlm/datasets/) (Sage et al., 2015). The two

datasets correspond to two structures: MT0.N1.HD (MT) and

Tubulin ConjAL647 (Tub). For each structure, single molecule posi-

tions were downloaded and then transformed to fluorophore den-

sities according to Section 2.1. For simulation, the photo-convertible

fluorescent protein (PCFP) mEos3.2 (Zhang et al., 2012) and its

associated PSF, FWHM and state transfer table were used. For the

convenience of calculation, we cropped the large-field structure into

four separate areas, each with 480�480 pixels (1px ¼ 20nm). For

each high-resolution image, 200 frames of low-resolution fluores-

cent images were generated, each with 60�60 pixels.

Fig. 6. The Bayesian inference model used for fluorophore switching. (A) For

one fluorophore, its transition between different states can be modeled by a

HMM. (B) For high-density fluorophores, the observed fluorescence and their

underlying transitions can be modeled by a FHMM
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The third dataset is a real-world dataset, which was used in re-

cent work (Xu et al., 2017). The actin was labeled with mEos3.2

(For the convenience of cellular labeling and instrument setup, here

all the experiments were carried out by mEos3.2.) in U2OS cells

(Actin1) and taken with an exposure time of 50 ms per image frame.

The actin network is highly dynamic and exhibits different subtype

structures criss-crossing at various distances and angles, including

stress fibers and bundles with different sizes and diameters. The

dataset has 200 frames of high-density fluorescent images, each with

249�395 pixels (1px ¼ 160nm) in the green channel. This is a

good benchmark set that has been well tested which can compare

our method with SIMBA (Xu et al., 2017), a recent Bayesian ap-

proach based on dual-channel imaging and PCFPs.

Two other real-world datasets labeled with mEos3.2 were also

used. One is an actin cytoskeleton network (Actin2), which is

labeled and taken under a similar exposure condition with Actin1,

but is completely new and has not been used by previous works. The

other one is an Endoplasmic reticulum structure (ER), which has a

more complex structure. It is a type of organelle that forms an inter-

connected network of flattened, membrane-enclosed sacs or tubes

known as cisternae, which exhibits different circular-structures and

connections at different scales. For the ER dataset, the exposure

time is 6.7 ms per frame. The resolution of each image in Actin2 is

263�337 pixels (1px ¼ 160nm) and that in ER is 256�170 pixels

(1px ¼ 100nm). Both datasets have 200 frames of high-density

fluorescent images and the same photographing parameters as

Actin1. These datasets were used to demonstrate the power of our

method in diverse ultrastructures. The detailed procedure for col-

lecting the real-world datasets is given in Supplementary Section S4.

Since the 3B analysis (Cox et al., 2012) is one of the most widely

used high-density fluorescent super-resolution techniques, which

can deal with high temporal and spatial resolutions (Cox et al.,

2012; Lidke, 2012), it was chosen to compare with our method.

3.3 Performance on simulated datasets
3.3.1 Visual performance

Figure 7 shows the visualization of the ground-truth high-resolution

images, representative low-resolution input images, the reconstruc-

tion results of the 3B analysis, and the results of our method on the

simulated datasets. Due to the space limitation, we illustrate three

representative areas of each dataset and leave the fourth in

Supplementary Section S5.

As shown in Figure 7, the ground-truth images have very clear

structures while the low-resolution image frames are very blurry and

noisy (8� downsampled). To reconstruct the ultrastructures, we ran

the 3B analysis with 240 iterations and ran our Bayesian inference

module after the deep learning module with 60 iterations. In each it-

eration, the Bayesian inference module of our method searches

four neighbor points for each fluorophore, whereas the 3B analysis

takes isolated estimation strategy. Thus the difference in iteration

numbers is comparable. Due to the high computational expense of

the 3B analysis, each 60�60 image was subdivided into nine over-

lapped subareas for multi-core process, whereas for our method, the

entire image was processed by a single CPU core.

It is clear that the reconstructions of our method are very similar

to the ground-truth in terms of smoothness, continuity, and thickness.

On the other hand, the reconstructions of the 3B analysis consist of a

number of interrupted short lines and points with thin structures. In

general, two conclusions can be drawn from the visual inspection.

First, DLBI discovered much more natural structures than the 3B

analysis. For example, in the bottom part of Figure 7B, there are

two lines overlapping with each other and a bifurcation at the tail.

Due to the very low resolution in the input time-series images (e.g.

Fig. 7H), neither DLBI nor the 3B analysis was able to recover the

overlapping structure. However, DLBI reconstructed the proper

thickness of that structure (Fig. 7T), whereas the 3B analysis only

recovered a very thin line structure (Fig. 7N). Moreover, the

Fig. 7. Visualization of the ground-truth high-resolution images, representative low-resolution input images, the reconstruction results of the 3B analysis (Cox

et al., 2012), and the results of our method on three representative areas of each simulated dataset: MT (columns 1–3) and Tub (columns 4–6). The four rows

show the ground-truth high-resolution images, the first frames of the simulated time-series low-resolution images, the reconstruction results of the 3B analysis

and the reconstruction results of DLBI, respectively
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bifurcation structure was reconstructed naturally by DLBI. Similar

conclusions can be drawn on the more complex structures in the

Tub dataset (columns 4–6 in Fig. 7).

Second, DLBI discovered much more latent structures than the

3B analysis. The Tub dataset consists of a lot of lines (tubulins) with

diverse curvature degrees (Fig. 7D–F). The reconstructions of the 3B

analysis successfully revealed most of the tubulin structures but left

the crossing parts interrupted (Fig. 7P–R). As a comparison, the re-

construction results of DLBI recovered both the line-like tubulin

structures and most of the crossing parts accurately (Fig. 7V–X).

3.3.2 Quantitative performance

For single-molecule super-resolution fluorescence microscopy, the

quantitative performance has been measured by assessing the localiza-

tion accuracy of single-emitters in each frame (Huang et al., 2011;

Ram et al., 2006; Small, 2009). For high-density super-resolution

fluorescence microscopy, the entire time-series are analyzed and the

production is the probability map of the locations of fluorophores.

Since the ground-truth is known for the simulated datasets, here

we use peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM) to measure the reconstruction performance, both of which

are widely-used criteria for image reconstruction in computer vision.

The performance of the 3B analysis and DLBI on the two simulated

datasets are given in Table 1. Here, we denote the four areas

(Section 3.2) of each dataset as ‘01’, ‘02’, ‘03’ and ‘04’, respectively.

It can be seen that DLBI clearly outperforms the 3B analysis in terms

of both PSNR and SSIM on all the areas of the two datasets.

3.4 Performance on real datasets
Figure 8 shows the first frame of the time-series fluorescent images

for each of the three real-world datasets. Here, we evaluate the per-

formance of our method for both local-patch reconstruction (areas

selected by green rectangles) and large-field reconstruction (areas

selected by yellow rectangles).

3.4.1 Local-patch reconstruction

Figure 9 shows the first frames of the low-resolution images of the

three local-patches, and the reconstruction results of the 3B analysis

and DLBI. The regions of interests of the selected patches are

60; 60; 60; 60ð Þ; 120;120; 60; 60ð Þ and 60; 60; 60; 60ð Þ for the three

datasets, respectively (Region of interest is usually denoted as

X;Y;W;Hð Þ, where (X, Y) are the coordinates of the top left point

of the rectangle, W is the width of the rectangle, and H is the height

of the rectangle.). The temporal resolutions for the two actin data-

sets and the ER dataset were 10 s and 1.34 s, respectively, according

to the exposure time of the image frames.

It can be seen that the reconstruction results of the 3B analysis

capture the main structures in the fluorescent images, but mainly

consist of isolated high-illuminating spots, with details being inter-

rupted (Fig. 9D–F). In contrast, the results of DLBI recover most of

the latent ultrastructures, and the reconstructed structures have

well-estimated fluorophore distribution and continuous depiction

(Fig. 9G–I).

We further assessed the reconstruction quality of the 3B analysis

and DLBI by SQUIRREL (super-resolution quantitative image rating

and reporting of error locations) (Culley et al., 2018). SQUIRREL

compares the diffraction-limited image (the reference image) and

the reconstructed equivalents to generate a quantitative map, in which

two scores are calculated: the resolution-scaled Pearson

coefficient (RSP) and the resolution-scaled error (RSE). The higher

RSP and lower RSE values, the higher the image quality is. Table 2

shows the RSP and RSE scores for the 3B analysis and DLBI. It is clear

Fig. 8. The first frame of the time-series fluorescent images for each of the

three real-world datasets: (A) Actin1 (Xu et al., 2017), (B) Actin2 and (C) ER

Fig. 9. Reconstructions of the local patches of the three real datasets. First col-

umn: the Actin1 dataset (the green box in Fig. 8A). Second column: the Actin2

dataset (the green box in Fig. 8B). Third column: the ER dataset (the green

box in Fig. 8C). The first row shows the first frames of the time-series low-

resolution images. The second row shows the reconstructions of the 3B ana-

lysis. The third row shows the reconstructions of DLBI. The reconstructed

images are 480� 480 pixels and the local-patch images are 60�60 pixels

Table 1. Performance comparison between the 3B analysis and

DLBI on the four areas of the two simulated datasets in terms of

PSNR and SSIM

Datasets MT0.N1.HD Tubulin ConjAL647

01 02 03 04 01 02 03 04

PSNR (dB) 3B 17.99 17.62 17.84 17.89 13.42 15.49 15.00 13.21

DLBI 18.59 19.16 18.51 20.42 18.72 19.17 18.72 16.63

SSIM 3B 0.89 0.89 0.90 0.90 0.74 0.81 0.75 0.69

DLBI 0.92 0.92 0.93 0.94 0.82 0.85 0.80 0.76

The best performance is shown in bold.
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that DLBI significantly outperforms the 3B analysis. More detailed

comparisons are given in Supplementary Section S5.3.

3.4.2 From deep learning to Bayesian inference

Our method combines the strength of deep learning and statistical in-

ference, where deep learning captures both local features in the images

and the time-course correlation, and statistical inference removes arti-

facts from deep learning and enhances physical meaning to the final

results. Conceptually, this is equivalent to using the power of deep

learning to automatically and systematically explore and extract spa-

tial and temporal features, and taking advantages of the explicit and

rigorous mathematical foundation of probabilistic graphical models.

Here, we investigate the effectiveness of this combination.

Figure 10 demonstrates the outputs of the deep learning module

and the Bayesian inference module. It can be seen that the super-

resolution images outputted from the deep learning module are very

close to the final images from the Bayesian inference module, except

for some artifacts and false structures. This is due to two reasons: (i)

the abundance of training data provided by our simulation module,

which are simulated under the real experimentally-calibrated

parameters, enable deep learning to effectively learn spatial and tem-

poral features and (ii) the high diversity of biological structures is

still a challenge, which causes the artifacts and false structures to be

learned by deep learning.

After the deep learning module generates the super-resolution

image, the Bayesian inference module uses both the original time-series

low-resolution images and the deep learning image to statistically infer

a ‘false/true’ determination on each fluorophore location and produce

the final image. In particular, the false structures are not directly

rejected but used as seeds to search for true structures. Therefore, as

shown in Figure 10, although the deep learning module outputted

some unnatural structures for the Actin2 and ER datasets, these struc-

tures were further corrected by the Bayesian inference module.

3.4.3 Runtime analysis

After being trained, running the deep learning model is very compu-

tationally inexpensive. Furthermore, the results of deep learning

provide a close-to-optimal initialization for Bayesian inference,

which also significantly reduces trial-and-error and leads to faster

convergence. Figure 11 shows the runtime comparison of the deep

learning module, the entire DLBI pipeline, and the 3B analysis on

the nine reconstruction tasks (i.e. the six areas of the simulated data-

sets shown in Fig. 7 and the three local patches of the real datasets

shown in Fig. 9). It can be seen that the runtime for the deep learn-

ing module ranges between 1–3 min and that of DLBI ranges be-

tween 30–40 min. In contrast, the runtime for the 3B analysis is

around 75 h, which is more than 110 times higher than that for

DLBI. Our results have demonstrated that the super-resolution

images from the deep learning module alone is a good estimation to

the ground-truth. Therefore, for users who value time and can com-

promise accuracy, the results from the deep learning module provide

a good tradeoff, and thus a good estimation of the ground-truth.

3.4.4 Large-field reconstruction

To analyze a dataset with 200 frames, each with about 200�300

pixels, it takes our method about 7 � 10 h on a single CPU core.

Therefore, our method is able to achieve large-field reconstruction

on the yellow areas shown in Figure 8. Figure 12 shows the large-

field reconstruction images of the three real datasets. For the Actin1

dataset, the selected area is 200�300 pixels and the reconstructed

super-resolution image is 1600�2400 pixels. For the Actin2 data-

set, the selected area is 250�240 pixels and the reconstructed image

is 2000�1920 pixels. And for the ER dataset, the selected area is

200�150 pixels and the reconstructed image is 1600�1200 pixels.

As shown in Figure 12A and B, the actin networks in the two

datasets have been successfully recovered by DLBI. The thinning

and thickening trends of the cytoskeleton have been clearly depicted,

as well as the small latent structures, including actin filaments, actin

bundles and ruffles. For the endoplasmic reticulum structure

(Fig. 12C), the circular-structures and connections of the cytoskel-

eton have also been accurately reconstructed.

Fig. 10. Reconstructions of the three local patches of the three real datasets

(the first column) by the deep learning module (the second column) and by

deep learning guided Bayesian inference (the third column)

Fig. 11. Runtime comparison of the deep learning module (DNN), the entire

DLBI pipeline (DLBI) and the 3B analysis (3B) on the nine reconstruction tasks

(i.e. the six areas of the simulated datasets shown in Fig. 7 and the three local

patches of the real datasets shown in Fig. 9). The runtime was measured on a

Fedora 25 system with 128 Gb memory and E5-2667v4 (3.2 GHz) CPU

Table 2. Performance comparison between the 3B analysis and

DLBI on the real datasets in terms of RSP and RSE with SQUIRREL

Dataset Actin1-patch Actin2-patch ER-patch

Criteria RSP RSE RSP RSE RSP RSE

3B 0.583 3915.096 0.770 2196.068 0.827 4077.037

DLBI 0.721 3326.007 0.878 1648.919 0.916 2904.707

The higher RSP and lower RSE values, the higher the image quality is. The

best performance is shown in bold.
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For the Actin1 dataset, the single-molecule reconstruction of

the red channel is available (Fig. 12D). This reconstruction was

produced by PALM (Hess et al., 2006) using 20 000 frames,

whereas the reconstruction image of DLBI (Fig. 12A) used only

200 frames. We further overlayed the image produced by DLBI

with that of PALM to check how well they overlap (Fig. 12E). It is

clear that the main structures of the two images almost perfectly

agree with each other. In addition, our method was able to recover

the latent structure on the top-left part, which was not photo-

graphed by PALM due to out of range of views in dual-channel

photographing. If we carefully check the original low-resolution

fluorescent images, we could find that this predicted structure in-

deed exists, which is consistent with our reconstruction.

4 Discussion and conclusion

In this article, we proposed a deep learning guided Bayesian inference

method for structure reconstruction of super-resolution fluorescence

microscopy. Our method combines the strength of deep learning and

statistical inference. We further overcame the high data requirement

bottleneck of deep learning by a novel stochastic simulation module

based on the experimentally-calibrated parameters and problem-

specific physical models. It should be noted that although our simula-

tion provides close-to-realistic data to train the deep learning module,

it still contains bias and unrealistic parts, which will be learned by the

deep learning module. Bayesian inference, on the other hand, can

correct and refine the ultrastructure learned by deep learning, and

thus enhance the physical meaning of the final super-resolution

image.

We have comprehensively evaluated the quality of the recon-

structed super-resolution images. The future work includes evaluat-

ing how well the framework can rediscover the parameters used in

the simulation module.
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