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Abstract: Copper (I) oxide (Cu2O) is an appealing semiconducting oxide with potential applications
in various fields ranging from photovoltaics to biosensing. The precise control of size and shape
of Cu2O nanostructures has been an area of intense research. Here, the electrodeposition of Cu2O
nanoparticles is presented with precise size variations by utilizing ethylenediamine (EDA) as a size
controlling agent. The size of the Cu2O nanoparticles was successfully varied between 54.09 nm to
966.97 nm by changing the concentration of EDA in the electrolytic bath during electrodeposition.
The large surface area of the Cu2O nanoparticles present an attractive platform for immobilizing
glucose oxidase for glucose biosensing. The fabricated enzymatic biosensor exhibited a rapid response
time of <2 s. The limit of detection was 0.1 µM and the sensitivity of the glucose biosensor was
1.54 mA/cm2. mM. The Cu2O nanoparticles were characterized by UV-Visible spectroscopy, scanning
electron microscopy and X-ray diffraction.
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1. Introduction

Copper (I) oxide (Cu2O) is a highly attractive oxide semiconductor due to its unique properties.
It is a p-type semiconductor having a direct bandgap of 2 eV. Cu2O is a non-toxic material and its
starting material, copper, is abundantly available. Furthermore, the fabrication and processing of
Cu2O is inexpensive. Due to these advantages, Cu2O has potential applications in several fields
including photovoltaics, catalysis, batteries, gas sensing and biosensing [1–9]. In photovoltaics, Cu2O
presents a promising alternative to silicon and other potential semiconductors. The author, Rai,
in a review article has provided a comprehensive overview of Cu2O as an appealing material for
solar cells including the inexpensive fabrication methods, the construction of a solar cell followed
by its performance. This review also highlights the advantages of the Cu2O material and some of
its drawbacks [4]. It has been demonstrated that Cu2O is a potential material for gas sensing. Deng
and co-workers have used graphene oxide conjugated with Cu2O nanowires for nitrogen dioxide
sensing. Here they demonstrated the crystallization of Cu2O in the presence of graphene oxide to form
nanowires, which were highly anisotropic. These structures show a high performance, as compared
to the separate systems of Cu2O and graphene oxide [5]. In another application, Cu2O was utilized
as a photocathode for solar water splitting [10]. Paracchino and co-workers demonstrated a highly
efficient Cu2O photocathode with the highest recorded photocurrent of −7.6 mA/cm2 [10]. The Cu2O
nanostructures have also been utilized as platforms for biosensing. Zhu and co-workers synthesized
Cu2O hollow microspheres with the help of polyvinylpyrrolidone [11]. The Cu2O hollow microspheres
were investigated for biosensing applications and served as an excellent immobilization platform for
the DNA probe and enhanced the sensitivity of the DNA biosensor. In a similar study, an enzymatic
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biosensor was fabricated using graphene oxide, zinc oxide and Cu2O [12]. The composite biosensing
electrode exhibited enhanced immobilization of glucose oxidase (GOx) enzyme with a linear range of
0.01–2 mM and the detection limit of 1.99 µM.

In all the above studies the Cu2O nanostructures were presented in varying morphologies ranging
from thin film to nanocubes. Thus, it is pertinent to note that Cu2O can be fabricated in several different
morphologies. The variations in morphologies has been studied and well documented in the literature.
It has been demonstrated that variation in morphology can affect the properties of Cu2O including
their optical and electronic properties. Radi and co-workers fabricated size and shape controlled
Cu-Cu2O core shell nanoparticles via electrodeposition on H terminated silicon [13]. The size was
varied between 5–400 nm and different shapes including cubic, cuboctahedral, and octahedral were
obtained by controlling the deposition time and the electrolyte concentration respectively. Zhang and
co-workers synthesized nearly monodispersed Cu2O nanoparticles by a hydrothermal method [14].
Here, they observed that by carefully changing the reactant concentration the Cu2O nanoparticle size,
monodispersity and crystallinity can be controlled. In another example, Xu and co-workers synthesized
octahedral Cu2O nanoparticles with varying edge length from 130 nm to 600 nm [15]. This variation in
edge length was carried out by adjusting the molar ratio of the reactants. The absorption properties of
these Cu2O nanoparticles also varied and thus demonstrated improved ability in photodegradation
of methyl orange compared to cubic Cu2O nanoparticles. Feng and co-workers demonstrated the
formation of hollow spherical and octahedral Cu2O nanocrystals in the presence of EDA and sodium
hydroxide [16]. The change in morphology affected the photocatalytic activity of the Cu2O nanocrystals.
Thus, size and shape control of the Cu2O nanoparticles can alter their properties significantly.

In the present work, a strong control over the size of the Cu2O nanoparticle during
electrodeposition was demonstrated by utilizing ethylenediamine (EDA) in the electrolytic bath.
To the best of our knowledge, this is the first report of size-controlled synthesis of Cu2O nanoparticles,
using EDA during the electrodeposition technique. The electrodeposition method is facile, inexpensive
and scalable [17–19]. It can be used for precise control of size and morphology of the depositing
species. The Cu2O nanoparticles have been synthesized in varying sizes from 54.09 nm to 966 nm.
The Cu2O nanoparticle electrodes, fabrication by the above mentioned route, were utilized for the
first time as platform for glucose biosensing. The current response of the Cu2O electrodes indicates
that the nanoparticle size has a strong influence on the sensitivity of the glucose biosensor. The Cu2O
electrodes were characterized by UV-visible spectroscopy (UV-Vis), scanning electron microscopy
(SEM) and X-ray diffraction (XRD).

2. Materials and Methods

2.1. Materials

The chemicals used for the electrodeposition of Cu2O were cupric sulfate pentahydrate
(CuSO4·5H2O, ≥98%), ethylenediamine (EDA), lactic acid (C3H6O3, ≥88.5%) and potassium hydroxide
(KOH, ≥85.8%). These chemicals were purchased from Fisher Scientific (Hanover Park, IL, USA).
The chemicals did not require any further purification and thus were used as purchased. The aqueous
solutions were prepared by dissolving the precursor in deionized water. The electrodeposition was
performed on a fluorine doped tin oxide (FTO) coated on glass substrate. The size and conductivity
of the substrate was 25 mm × 25 mm × 1.1 mm and 6–8 ohm/sq. respectively. The substrate was
purchased from University Wafer Inc. (Boston, MA, USA). The chemicals used for cleaning the FTO
substrate were acetone (100%, 200 proof), hydrochloric acid (HCl) and nitric acid (HNO3).

2.2. Fabrication of Cu2O Electrode via Electrodeposition

The electrodeposition was performed in an electrochemical cell (Figure 1a). For the electrodeposition
of Cu2O, an Ag/AgCl wire was used as the reference electrode (Figure 1b). A platinum wire of
2 mm diameter served as the counter electrode (Figure 1c) and an FTO substrate was the working
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electrode (Figure 1d). Prior to electrodeposition, the FTO substrate was sonicated for 10 min in a bath
of acetone. It was then cleaned by hydrochloric acid (HCl) followed by nitric acid (HNO3) for 2 min
each. The substrate was rinsed with deionized water between every cleaning step.
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Figure 1. (a) Electrodeposition setup, with the reference (b), counter (c) and working (d) electrodes.

For the electrodeposition of Cu2O nanoparticles, the CuSO4·5H2O precursor was dissolved in
deionized water. The aqueous solution was stabilized by the addition of C3H6O3 to the solution.
The addition of EDA was carried out after the copper precursor was completely dissolved in solution.
The pH of the final solution was adjusted, to 13, by utilizing KOH. The electrodeposition temperature
was kept at 50 ◦C. The duration for electrodeposition was 30 min. During electrodeposition, the
applied potential was −0.6 V.

2.3. Fabrication of Enzymatic Biosensor

The glucose oxidase (GOx), enzyme was immobilized on the Cu2O electrode by electrostatic
interaction. Since the isoelectric point (IEP) of GOx is 4.5 and that of Cu2O nanoparticles is ~11,
the electrostatic interaction is strong leading to successful immobilization [20]. The GOx enzyme
solution was prepared by dissolving 1 mg of GOx in 1 mL of 10 mM phosphate buffer saline (PBS) at a
pH of 7.4. The immobilization was carried out by drop casting 100 µL of the GOx enzyme solution
onto the Cu2O electrode and left to dry for 2 h at room temperature. The dried electrode was rinsed
with PBS to discard any enzyme that was not immobilized. The Cu2O electrode with immobilized
GOx was stored in PBS at 4 ◦C overnight in a refrigerator.

2.4. Characterization

The absorption properties of the fabricated Cu2O nanoparticles was studied by a UV-Visible
spectrometer, which was a Lambda 25 instrument. The morphology of the Cu2O nanoparticles was
evaluated by scanning electron microscopy (SEM), a FEI Quanta-250 SEM instrument operating at
10 kV accelerating voltage. The composition of the Cu2O nanoparticles was investigated by X-ray
diffraction (XRD). The XRD instrument was a Siemens D500. The X-ray diffractometer utilized a Cu
Kα radiation (λ = 1.5406 Å) at 45 kV and 30 mA, with a scanning range of 20◦ to 80◦ and a scan step of
0.05◦. The electrodeposition was carried out by using a CHI601E potentiostat from CH Instruments.

3. Results and Discussion

3.1. Characterization of Electrodeposited Cu2O Nanoparticles

The composition and crystallinity of the deposited Cu2O nanoparticles was characterized by
X-ray diffraction. Figure 2a shows XRD plots of Cu2O nanoparticles with varying EDA content. The
XRD plots were indexed and matched well with the Cu2O reference (JCPDS: 05–0667), having a cubic
crystal structure. The XRD plots clearly show (111), (200) and (220) peaks for Cu2O. The intensity of
the XRD peaks decreased with increase in the EDA content in the Cu2O samples. It was also observed
that the sample thickness reduced with increase in the EDA content. Additionally, it was observed that
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the peak positions were shifted to higher Bragg values with increase in the EDA content (Figure 2b).
This shift can be attributed to the decrease in the lattice parameter with increase in the EDA content.
The peak position, in Figure 2b, for the samples with varying EDA content have been offset along the
Y axis for clear viewing.
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Figure 2. (a) XRD plots of Cu2O samples with varying ethylenediamine (EDA) contents; (b) The right
shift in the 2-theta values for (111), (200) and (220) planes.

The photographs of the Cu2O nanoparticles electrodeposited on the FTO substrates are shown
in Figure 3. These Cu2O nanoparticles were prepared with increasing content of EDA solution, from
0.2 mL to 1 mL, in the electrolytic bath during deposition. From these photographs it was clear that
there was a distinct difference in the color of the Cu2O samples with increasing EDA content during
deposition. The Cu2O sample with 0.2 mL of EDA appeared red-orange in color (Figure 3a), while the
sample with 1 mL of EDA appeared yellow in color (Figure 3d). Thus these photographs suggested
that there was a change in the absorption properties of the samples with increase in the EDA content
in the deposition process.
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Figure 3. Photographs Cu2O samples prepared by electrodeposition in the presence of varying volumes
of EDA in electrolytic bath from (a) 0.2 mL; (b) 0.4 mL; (c) 0.8 mL to (d) 1 mL.

Additionally, UV-Vis absorption spectra were collected from the Cu2O samples to evaluate their
absorption properties. Figure 4 shows UV-Vis spectra for Cu2O samples with EDA content of 0.2 mL
and 1 mL. The absorption between 350 nm and 550 nm was assigned to the inter-band transition in
Cu2O nanoparticles. Further, the broad band feature around 700 nm was attributed to the localized
surface plasmon resonance, which is observed in Cu2O nanoparticles [21]. Additionally, a blue shift in
the absorption spectra indicated a decrease in the nanoparticle size with increase in the EDA content of
the Cu2O samples. The differences in the absorption spectra for 0.2 mL and 1 mL EDA can be related to
the photographs shown in Figure 2. For Cu2O sample with 0.2 mL EDA, the combination of absorption
peaks at 510 nm and 700 nm can be related to the red-orange color (Figure 3a,b). As the EDA content
was increased to 1 mL, the absorption peak blue shifted to 475 nm and a higher intensity broader peak
was observed beyond 600 nm. The absorption peak combination of 475 nm and higher intensity at
700 nm can be related to the yellowish color of the Cu2O sample with 1 mL EDA (Figure 3c,d).
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Figure 4. UV-Vis spectra of Cu2O nanoparticle with increase in the EDA content from 0.2 mL (red curve),
0.4 mL (black curve), 0.8 mL (green curve) to 1 mL (blue curve).

To further probe the nanoparticles size of the Cu2O samples, a series of SEM images were obtained
and particle size distribution was calculated. Figure 5 shows the SEM image of Cu2O nanoparticles
fabricated in the absence of EDA. Here, we observe a cubic structure of the Cu2O nanoparticles with
size approximately 750 nm.
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Figure 5. SEM image of Cu2O reference sample, fabricated in the absence of EDA.

Figure 6 shows SEM images of Cu2O oxide samples with increasing EDA content along with
their corresponding size distribution. Figure 6a shows Cu2O nanoparticles deposited in the presence
of 0.2 mL of EDA in the electrolytic bath. The shape of the Cu2O nanoparticles appear to be mix
of triangular and rhombic shapes. When the EDA content was increased to 0.4 mL the average
nanoparticle size decreased. The SEM image in Figure 6c shows a combination of large and small
nanoparticles. It was also observed that all the nanoparticles had similar shapes as seen in Figure 6a.
Further increase in the EDA content to 0.8 mL did not show any apparent change in the Cu2O
nanoparticle size and shape (Figure 6e). However, with additional increase in the EDA content to
1 mL, drastic decrease in the nanoparticle size and shape was observed (Figure 6g). Here, a bimodal
distribution was observed. This distribution is confirmed by the SEM image for 1 mL EDA sample,
which shows small Cu2O nanoparticles underneath larger nanoparticles. Moreover, the nanoparticle
size distribution appeared to be narrow for both nanoparticle sizes. The nanoparticles were quasi
spherical in shape. Table 1 provides the average nanoparticle size for Cu2O samples under investigation
in the present work.
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Table 1. Size distribution of Cu2O nanoparticles with varying EDA content.

Cu2O Sample with Varying EDA Content in mL Particle Size (nm)

0.2 966 ± 23
0.4 792 ± 16
0.8 802 ± 34

1.0 54 ± 20 427 ± 20

3.2. Cu2O Nanoparticles as Biosensing Platform

Here, Cu2O nanoparticles were utilized for glucose sensing to test whether the fabricated
electrodes can serve as a robust and viable biosensing platform. The steady-state amperometric
response of the enzymatic biosensor was investigated by the successive addition of equal amounts of
glucose in 10 mM PBS, at an applied potential of 0.8 V under constant stirring condition. Amperometric
response was first obtained from Cu2O reference sample followed by Cu2O samples with 0.2 mL
and 1 mL EDA. These samples were not treated with GOx. All samples exhibited amperometric
response, to the addition of glucose, in the absence of GOx. The amperometric response was higher
in samples with EDA. The response and sensitivity increased with EDA content (Figure 7a). In the
presence of GOx, the Cu2O samples with EDA exhibited an increase in the overall current along with
distinct amperometric response. Figure 7b exhibited a rapid and sensitive response to the addition
of glucose for the two biosensors fabricated in the presence of EDA. The current response increased
with the increase in the glucose concentration at every step. The biosensors also demonstrated a fast
current response of <2 s. Additionally, the Cu2O nanoparticles with higher concentration of EDA
(1 mL) exhibited a total current enhancement compared to sample with 0.2 mL EDA. The reference
sample, immobilized with GOx, exhibited the lowest current response compared to the other samples
fabricated with EDA. Thus the total current response indicated that the biosensor was more sensitive
to increased surface area. Furthermore, the concentration of EDA used during the deposition process
eventually influences the sensitivity of the biosensor. Figure 7c shows the calibration curves for the
Cu2O reference sample and Cu2O samples with EDA content of 0.2 mL and 1.0 mL. It is evident that
the current increases with glucose concentration, almost linearly from a range of 0.1 mM to 3.5 mM.
The sensitivity of the biosensors ranges between 1243.2–1538 µA/cm2. mM for Cu2O nanoparticles
with EDA content of 0.2 mL to 1.0 mL respectively. The affinity of GOx to the substrate, glucose was
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obtained by calculating the apparent Michaelis–Menten constant with the help of the Lineweaver–Burk
equation [22]:

1
i
=

(
Kapp

M
imax

) (
1
C

)
+

1
imax

where C is the glucose concentration, imax and i are the currents for substrate saturation and steady state
respectively, during the glucose sensing measurements. From the calculation, Kapp

M was obtained to be
1.00 mM and 1.25 mM for Cu2O samples with EDA content of 0.2 mL and 1.0 mL respectively, which
indicates good affinity of the immobilized GOx to glucose. The biosensor characteristics obtained in
this work were compared to the values in literature, shown in Table 2 [12]. The present work exhibited
higher detection limit among other studies in literature. Additionally, a large linear range was obtained.
Stability test on the biosensor was also performed. The Cu2O with 1 mL EDA sample was tested after
7 days of initial amperometric response. The amperometric response of the EDA sample diminished
slightly after 7 days of storage.
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Table 2. Comparison of glucose biosensor characteristics with different Cu2O nanostructures
in literature.

Working Electrode Sensitivity
(µA/cm2·mM)

Kapp
M

(mM)
LOD
(µM)

Linear Range
(mM) Reference

GOx/Cu2O 55.32 0.79 0.2 0.2–3.5 The work
GOx/Cu2O/EDA (0.2) 1243.2 1.00 0.1 0.1–3.5 The work
GOx/Cu2O/EDA (1) 1538 1.25 0.1 0.1–3.5 The work

Cu2O/GNs 285 - - - - - - - 3.3 0.3–3.3 [23]
CuxO/Cu 1620 - - - - - - - 49 0–4 [24]

Cu2O/CRG - - - - - - - - - - - - - - 1.2 0.1–1.1 [25]
Cu2O/Cu 62.29 - - - - - - - 37 0.05–6.75 [26]

Cu2O/Carbon Vulcan XC-72 629 - - - - - - - 2.4 0–6 [27]
Cu2O/Nafion/Glassy Carbon 121.7 - - - - - - - 38 0–0.5 [28]

From the above characterizations and biosensor investigation of the Cu2O nanoparticles it was
clear that the nanoparticle size decreased and the density increased with increase in EDA content.
Evidently, the optical properties varied with changing EDA content. Additionally, the XRD data
provided evidence of decreasing lattice parameter with increasing EDA content. Furthermore, the
sensitivity was enhanced with decrease in nanoparticle size. Thus, it was evident that EDA played
an important role in controlling the size, density, optical and biosensing properties of the Cu2O
nanoparticles. It was therefore pertinent to understand the influence of EDA on the final outcome of
the Cu2O nanoparticles.
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Chemical additives including sodium dodecyl sulfate (SDS), polyvinylpyrrolidone (PVP) and
EDA have been often utilized in many solution-based synthesis as well as electrochemical synthesis
of various nanostructures as a shape modifying agent [29–31]. However, the fabrication of Cu2O
nanoparticles via electrodeposition using EDA as a size and shape modification additive has not
been report to the best of our knowledge. Here, there are several factors that could influence the size,
density and shape of the Cu2O nanoparticles in the presence of EDA. The chemical additive EDA
has a tendency to adsorb on high energy faces of a growing crystal, thus leading to a controlled size
and shape of the Cu2O nanoparticles. The drastic decrease in the nanoparticle size, with increase in
the EDA content, can subsequently increase the density of the nanoparticles on the FTO substrate.
The decrease in size and increase in the density was corroborated by the SEM data. However, the EDA
present in the electrolytic bath can also interact with the FTO substrate occupying deposition sites of
Cu2+ ions. This could hinder the deposition of Cu2+ and lower the deposition of the Cu2O on the FTO
substrate. Such interaction of EDA with the FTO substrate resulted in lower sample thickness. This
was confirmed by the XRD data and also verified by visual inspection. Thus, the presence of EDA
affects the deposition forming small nanoparticle size, higher density and lower sample thickness
with increase in EDA content. Further, the interplay between the applied potential, electrolyte pH and
EDA content is still unclear and thus requires further exploration. Presently, detailed investigation is
underway to understand the precise influence of EDA on size, density, deposition rate and conductivity
of these Cu2O samples.

4. Conclusions

In conclusion, successful electrodeposition of Cu2O nanoparticle was performed in the presence
of EDA. The nanoparticles size was varied between 54.09 nm to 966.97 nm, by adjusting the EDA
content in the electrolyte bath. The absorption spectra indicated a blue shift in the absorption peak with
decrease in the Cu2O nanoparticle size. The enzyme, GOx was successfully immobilized on the Cu2O
nanoparticles. The sensitivity of the biosensor was influenced by the presence of EDA. The sensitivity
increased with EDA content during electrodeposition. More detailed investigations elucidating the
influence of EDA on the Cu2O nanoparticle size, density and sample thickness are underway.
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