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Spiking neural network (SNN) is considered to be the brain-like model that best
conforms to the biological mechanism of the brain. Due to the non-differentiability of
the spike, the training method of SNNs is still incomplete. This paper proposes a
supervised learning method for SNNs based on associative learning: ALSA. The method
is based on the associative learning mechanism, and its realization is similar to the animal
conditioned reflex process, with strong physiological plausibility and rationality. This
method uses improved spike-timing-dependent plasticity (STDP) rules, combined with a
teacher layer to induct spikes of neurons, to strengthen synaptic connections between
input spike patterns and specified output neurons, and weaken synaptic connections
between unrelated patterns and unrelated output neurons. Based on ALSA, this paper
also completed the supervised learning classification tasks of the IRIS dataset and the
MNIST dataset, and achieved 95.7 and 91.58% recognition accuracy, respectively,
which fully proves that ALSA is a feasible SNNs supervised learning method. The
innovation of this paper is to establish a biological plausible supervised learning method
for SNNs, which is based on the STDP learning rules and the associative learning
mechanism that exists widely in animal training.

Keywords: spiking neural network, associative learning, supervised learning, STDP, long-term plasticity

INTRODUCTION

In recent years, neural networks have made great progress in the field of information processing.
Especially with the development of deep neural network (DNNs) (Rawat and Wang, 2017) and
convolutional neural networks (CNNs) (LeCun et al., 1989; O’Shea and Nash, 2015; Rawat and
Wang, 2017), the performance and application range of artificial neural networks (ANNs) has been
greatly improved. However, there are still some problems for the ANNs. For example, most ANNs
train the network according to the backpropagation of errors. Therefore, ANNs training requires a
large number of labeled samples which is labor-intensive. In addition, although ANNs claim to be
physiologically plausible, their training process is different from biological neural networks, which
are mainly based on gradient descent and error backpropagation. Different from biological neural
networks, which are mainly based on unsupervised learning like Hebbian learning (Caporale and
Dan, 2008), the learning process of ANNs is mainly based on supervised learning. At the same
time, the error backpropagation mechanism commonly used in ANNs lacks widespread evidence
in biological neural networks.
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Spiking neural networks (SNNs) (Maass, 1997) attracts more
and more researchers because of their similarity to biological
neural networks (Pan et al., 2020; Zirkle and Rubchinsky, 2020).
Compared with ANNs, SNNs uses spike rate or spike timing
to transmit information between neurons (Maass, 1997) instead
of using numerical values to transmit information, and its
unsupervised training process is also based on physiologically
plausible spike-timing-dependent plasticity (STDP) (Caporale
and Dan, 2008; Diehl and Cook, 2015; Masquelier and
Kheradpisheh, 2018; Mozafari et al., 2019) instead of error
backpropagation. Therefore, SNNs are closer to the biological
neural network in principle. Thanks to the characteristics of
SNN’s event-driven computing, those neurons that are not
activated will not participate in the actual computing, thus
saving computing resources. It is very suitable for low-power
consumption computing on dedicated chips, such as TrueNorth
(Akopyan et al., 2015), Tianjic (Pei et al., 2019), Loihi (Davies
et al., 2018), Darwin (Shen et al., 2016), etc. Using these chips,
SNNs have an order of magnitude advantage over ANNs in terms
of computational power consumption (Akopyan et al., 2015;
Davies et al., 2018; Pei et al., 2019; Xu et al., 2020).

The main reason restricting the development of SNNs is the
lack of training algorithms, especially the supervised learning
algorithms of SNNs. Since the spike signal is not differentiable,
the error backpropagation widely used in ANNs cannot be used
to train SNNs. At the same time, backpropagation also rarely
exists in biological neural networks (Bengio, 2015; Lillicrap et al.,
2020). Therefore, it is difficult to find a physiologically plausible
SNN supervised training algorithm.

Many scholars have also proposed some training methods
for SNNs, which can be mainly divided into the following two
categories. The first is the ANN-SNN conversion. This type of
method uses specific rules to convert the ANN trained networks
into a corresponding structure of the SNN networks, making
full use of the low power consumption characteristics of the
SNNs calculation (Pérez-Carrasco et al., 2013; Diehl et al., 2015;
Rueckauer et al., 2017). Since the training process does not occur
in the SNNs, it cannot fully reflect the characteristics of the strong
physiological rationality of the SNNs. The second type is based
on error backpropagation to obtain higher model accuracy, such
as Tempotron (Gütig and Sompolinsky, 2006), PSD(Yu et al.,
2013), ReSuMe (Ponulak, 2005), MST (Gütig, 2016), EMLC(Yu
et al., 2020), MPD-AL(Zhang et al., 2019), SpikeProp (Bohte
et al., 2000), STCA(Gu et al., 2019), etc. The supervised learning
methods mainly calculate the difference between the voltage of
the output neuron at target time points and the threshold value to
change the weight (Xie et al., 2016). There is also some research
using backpropagation and gradient descent to train deep neural
networks for SNN models (Lee et al., 2020). Most of these rules
make proper adjustments to neurons or spike signals to make BP
feasible in SNNs, but they lack certain physiological plausibility.

Compared with supervised learning, SNNs unsupervised
learning is much more unified. At present, the most widely
used unsupervised learning method of SNNs is STDP and its
variants, which can obtain significant unsupervised clustering
and feature extraction results (Diehl and Cook, 2015; Masquelier
and Kheradpisheh, 2018; Tavanaei et al., 2019; Xu et al., 2020).

At the same time, the STDP rules have been supported by many
related experiments in the field of neuroscience. They have been
widely confirmed in biological neural networks and have strong
physiological plausibility (Caporale and Dan, 2008).

Almost all supervised learning rules use error
backpropagation and gradient descent methods to achieve good
accuracy, though these methods lack biological interpretability.
Lee et al. (2015) pointed out that biological neurons are linear
and non-linear operations, while backpropagation is purely
linear, and there is no corresponding mechanism to realize the
precise timing of backpropagation signals and the alternating
of feedforward and feedback propagation, as well as retrograde
signal propagation along axons and synapses. Therefore, there
is no biological justification for back transmission. Lillicrap
et al. (2020) also showed that while feedback connections are
ubiquitous in the cortex, it’s hard to know how they transmit
the error signals needed for backpropagation. The effect of
feedback connection on neural activity still needs to be further
explored. Given that, some researchers have begun to implement
supervised learning combined with STDP rules. Legenstein et al.
(2005) introduced a teacher signal by injecting current into the
output neurons during training and combined it with STDP
rules to achieve supervised learning. However, using this method
does not guarantee STDP convergence for any input mode. The
remote supervised method (ReSuMe) (Ponulak and Kasiński,
2010) uses STDP rules and makes output neurons spike at desired
time points through a remote teacher signal. Wade (Wade et al.,
2010) used Bienenstock, Cooper and Monroe (BCM) rules to
adjust the learning window of STDP and proposed SWAT rules.
In this method, the BCM model was used to slide the threshold
and promote the synaptic weight to converge to a stable state.
However, this method is only applicable to frequency coding.
For ReSuMe and SWAT, although a liquid state machine or
multi-layer feedforward network structure is used, only the
synaptic weights of the output layer are learned, and the synapses
of the hidden layer in the network are fixed after initialization.
Hao et al. (2020) used symmetric STDP, combined with synaptic
scaling and dynamic threshold, to achieve good results at both
NMIST and fashion MNIST, but increasing the depth of the
network has little effect on the performance of the network and is
not conducive to the extension of this rule unless other methods
such as convolution are introduced. Pfister et al. (2003), realized
supervised learning by optimizing the possibility of observing
postsynaptic impulse sequences at the expected time by starting
from the criterion of probabilistic optimality and adding teacher
signals to the model. But this model uses the relatively simple
spike response model (SRM; Gerstner, 1995). Using other models
will make this rule much more complicated. More details of
probabilistic SNN can be found in Jang et al. (2019), which
reviews probabilistic models and training methods based on a
probabilistic signal processing framework. Also, there is some
research that combines supervised and unsupervised STDP
training. Using a simplified approximation of a conventional
Bayesian neuron and an improved STPD rule, (Shrestha et al.,
2017) combined unsupervised and supervised STDP learning
to train a three-layer SNN on the MNIST dataset. Hao et al.
(2020) achieved good performance on the MNIST dataset by
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combining their proposed symmetric spike-timing-dependent
plasticity (sym-STDP) with synaptic scaling and dynamic
threshold (Hao et al., 2020). There are also other plasticity-based
unsupervised training with supervised modules (Querlioz
et al., 2013; Kheradpisheh et al., 2018). However, most of these
STDP based supervised learning methods do not have enough
physiological plausibility.

To solve the above problems, an SNN supervised learning
algorithm based on associative learning is proposed. The learning
rules are based on the widely recognized STDP rules, and the
classic STDP is simply adjusted while retaining physiological
rationality. The major innovation of this paper is to establish
a more biologically interpretable supervised learning method,
which is based on the conditioned reflex associative learning
mechanism that exists widely in animal training. To realize
associative learning, an improved STDP model inspired by the
heterosynaptic long-term plasticity is proposed.

The following contents of this article are mainly divided
into methods, experiments and results, and discussion. The
method part will introduce the neuron model, synaptic plasticity
model, and the implementation methods of supervised learning.
The experiments and results part includes the details of IRIS
and MNIST classification networks, specific results, and process
analysis of the classification tasks. In the discussion part, the
advantages and current shortcomings of the supervised learning
rules are analyzed.

METHODOLOGY

Neuron Model
In this paper, the leaky integrated and fire (LIF; Koch and Segev,
1998) model is adopted, which is a neuron model widely used
in the field of SNN calculation and computational neuroscience
simulation. This model is obtained by simplifying the Hodgkin
Huxley (HH) (Hodgkin and Huxley, 1952) model but retains
basic functionality. So that the computational results are close to
those of the HH model, and the complexity and computational
complexity of the model are greatly reduced. The model formula
is shown as Equation 1.

Cm
dV
dt
= − gL (V − VL) + Isyn (1)

Where Cm is the membrane capacitance, Vis the membrane
potential, gL is the leakage conductance, VL is the leakage
potential, and Isyn is the input current from the presynaptic
neurons. Assuming that the total conductance value is gE, and the
constant τm =

Cm
gL

is defined, then (1) can be converted to (2).

τm
dV
dt
= − (V − VL)−

gE

gL
(V − VE) (2)

τE
dgE

dt
= − gE +

∑
j∈NE

wj,iδt (3)

gE in (2) will dynamically change under the influence of the
presynaptic spikes, and the specific changes are shown in (3).

That is, once the presynaptic neuron generates a spike, gE will
increase non-linearly.VE is the reversal potential of excitatory
neurons, τE is the conductance decay time constant of excitatory
neurons, NE is the number of presynaptic neurons, δt is the
specific moment when the presynaptic neuron generates spikes,
and wj,i represents the connection weight of presynaptic neuron
j to postsynaptic neuron i.

if (V > Vthr)


V = VL

Tref = T0
Vthr = Vthr + VthrDelta

(4)

As shown in (4), when the membrane potential V increases
to exceed the membrane potential threshold Vthr , the membrane
potential will be reset, and the refractory period Tref will be set to
T0. During the refractory period, the neuron will not respond to
the presynaptic spikes as shown in Figure 1. At the same time, in
order to ensure that the spike firing frequency of neurons is stable
in a specific range, and avoid the situation where some neurons
are firing too much and others not enough, the mechanism
of neuron dynamic threshold is introduced referring to Diehl’s
approach (Diehl and Cook, 2015). Homeostasis, which is known
in neuroscience, is also considered here (Watt and Desai, 2010).
As shown in (4), every time a neuron generates a spike, the
neuron threshold will be increased accordingly, thus raising the
threshold for the next spike. VthrDelta is a hyperparameter used to
control the difficulty of neuron spike generation.

τthr
dVthr

dt
= − (Vthr − VthrBase) (5)

Also, as shown in (5), Vthr will gradually decay to VthrBase,
lowering the membrane potential threshold of neurons that do
not produce spikes for a while. Combined with (4), the difficulty
of neuron spike firing is controlled at a reasonable range. τthr

FIGURE 1 | The changes of membrane potential and membrane potential
threshold of LIF neuron model with dynamic threshold under the influence of
presynaptic neuron spikes. In the figure, the blue curve is the neuron
membrane potential, the green curve is the membrane potential threshold,
and the yellow vertical dashed lines are the moments when the presynaptic
spikes are fired.
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FIGURE 2 | Pavlov’s dog experiment. The big circle in the figure represents the state diagram (imaginary) of the relevant neurons in the dog in the corresponding
state. The first column represents auditory-related stimuli, the second column represents animal behaviors including drooling, and the third column represents
olfactory-related stimuli. The depth of the red arrow indicates the strength of the excitatory connection between the corresponding neurons. The darker the color, the
higher the strength of the connection between neurons, and vice versa, the lower the strength of the connection between neurons. The red dot indicates that the
neuron is currently active (that is, it has fired a spike within a period), and the blue indicates that the neuron is resting (that is, it has not fired a spike for a while). The
bells and meat in the picture will cause the second neuron in the first column and the second neuron in the third column to enter the active state, respectively. When
the second neuron in the second column is active, the dog will drool. Pavlov’s dog experiment is conducted in the order of (A–D).

is the dynamic threshold decay time constant. Figure 1 is an
example of changes in neuron membrane potential and dynamic
threshold. It can be seen from the figure that presynaptic neuron
spikes will cause the neuron membrane potential to rise, and
the membrane potential will slowly decrease over time. When
the membrane potential exceeds the threshold, the membrane
potential will rise and drop rapidly in a short time, completing
the firing of a spike. Every time the neuron emits a spike, the
membrane potential threshold will increase and gradually decay
to its initial state. At the same time, when a neuron fires a spike,
it will enter refractory time, during which the neuron does not
respond to presynaptic spikes.

Synapse Model
The synapse model used in this paper is mainly based on the
STDP rule, and the classic STDP is appropriately adjusted to
make it more in line with the needs of this model.

4w =

η

(
α + β · e−

ISI
τp

)
∗w∗(1− w) if (ISI > 0)

0 else
(6)

ISI = tpost − tpre (7)

Equation 6 is the synaptic plasticity model used in this paper,
where 4w is the modified amplitude of the synapse weight after
each spike, and ISI (inter-spike interval) is the time difference
between the most recent spike time of the neuron before and after
the synapse as in (7). η is the learning rate, α is a constant bias
term that is usually less than 0 to simulate the heterosynaptic LTD

(long-term depression)(Krug et al., 1985; Christie et al., 1994). β is
used to adjust the intensity of weight change, usually greater than
0. τp is the time constant of the LTP (long-term potentiation) part
to control the detail. Also, w(1-w) in equation 6 means limiting

FIGURE 3 | The influence of the pre/postsynaptic spike frequency on the
synapse weight under different τp. The gray dashed line in the figure is where
the weight change is 0, and the length of the vertical lines on the curve
represents the standard deviation of multiple trials (n = 50). The abscissa is
the pre/postsynaptic spike frequency. Presynaptic and postsynaptic
frequencies are equal and obey the Poisson distribution. Each simulation time
is 100 s, α = –0.1, β = 1, and η = 0.01.
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the weight to between 0 and 1. And when the current weight
approaches 0 or 1, the change of weight is very small.

Heterosynaptic LTD is a long-term plasticity phenomenon
that exists widely in biological neural networks (Krug et al., 1985;
Christie et al., 1994). The main manifestation is that when a
certain neuron generates a spike, the strength of the synapses
which regards the current neuron as the postsynaptic neuron
will be attenuated to a certain extent. This is mainly because
VDCCs (voltage-dependent calcium channels) are activated after
the neuron generates a spike signal. After the postsynaptic neuron
pulses, the VDCC channel on the postsynaptic neuron opens,
which activates inhibitory calmodulin such as PP1 in the cell,
and produces a series of intermediate actions that ultimately lead
to a decline in synaptic strength (Krug et al., 1985; Caporale
and Dan, 2008). To realize heterosynaptic LTD, the classic STDP
is modified in this paper. In the case of ISI > 0, LTP will be
generated when ISI is less than a certain value, and LTD will be
generated when ISI is greater than a certain value. In Equation
6, the parameter α simulates the heterosynapses, producing the
results that in the case of ISI > 0, LTD is generated when ISI
is greater than a certain threshold. When ISI < 0, if the same
LTD as the classic STDP is used, then, on the whole, the effect
of LTD will be much greater than that of LTP, which will make all
synaptic weights tend to 0 in the process of training. Therefore,
the delta weight was set to 0 when ISI < 0 to balance LTD and
LTP. With this improved STDP and the heterosynaptic LTD,
associative learning could be achieved.

Supervised Learning Algorithm
Associative learning is the basis of cognition and plays an
important role in the process of animal learning and training
(McSweeney and Murphy, 2014). Figure 2 is the classic
associative learning experiment of Pavlov’s dog (Pavlov, 2010).
As shown in Figure 2A, in the beginning, the dog secretes saliva
under the stimulation of meat. This is an instinctive behavior,
that is, there are naturally high-strength connections between the
meat neuron and drooling neuron. And as shown in Figure 2B,
the dog does not drool under the stimulation of the bell, and the
connections between auditory-related neurons and the drooling
neuron are relatively weak, which cannot cause the dog to drool.
As shown in Figure 2C, give dog meat and bell stimulation
at the same time, repeat this step for a while, the connection
between the bell and drooling neuron is gradually potentiated.
The connections between other auditory neurons and drooling
are weakened. The result is shown in Figure 2D. Only under the
stimulation of the bell, the dog drools too. This process realizes
the associated learning of bells and drooling.

The conclusion can be made by observing the changes in
the connections between neurons in the process: The essence
of associative learning is that the connection strength between
neurons that are simultaneously activated within a period
increases, and the connection strength between unrelated stimuli
and unresponsive behaviors decreases. This phenomenon is also
consistent with the Hebb rule “neurons that fire together, wire
together.” The above steps are widely used in animal training
to adjust the behavior of the training object by establishing the
relationship between specific things (Pavlov, 2010). This process

is similar to the effect achieved by supervised learning. So, is there
a rule of synaptic long-term plasticity that can achieve similar
effects, and then achieve associative learning and supervised
learning?

Figure 3 shows the 4w of the synaptic long-term plasticity
rule introduced above under different frequency pre/postsynaptic
spikes. As can be seen from the figure, τp affects the
results significantly. However, when the pre/postsynaptic spike
frequency is high enough, 4w under any τp tends to increase.
To be specific, in multiple (n = 50) simulations, the pre-
synaptic spikes obeyed the Poisson distribution at a specific
frequency. The relative positions of the pre/postsynaptic spikes
are uncertain, but the standard deviation of 4w or multiple
trials is controlled within a relatively small range (Figure 3),
indicating that when the pre/postsynaptic spike frequency is high
enough, the synaptic weight shows a relatively stable LTP. This
result is consistent with experimental results in neuroscience
(Sjöström et al., 2001). Therefore, when a specific spike pattern
(a combination of neurons’ spike states, that is, some neurons
generate spikes and others do not) is expressed in presynaptic
neurons, synapses from presynaptic neurons relating a specific
pattern to a specific postsynaptic neuron can be enhanced by
inducing the specific postsynaptic neuron to fire. In the same way,
the neurons that are not related to the current spike pattern do
not produce spikes, and the strength of their connections to the
current postsynaptic neurons is weakened under the effect of the
heterosynaptic LTD. These characteristics can be used to enhance
some synapses and weaken others, achieve a result similar to the
above associative learning, and then realize supervised learning.

Take the network in Figure 4 as an example. The input
neurons in the network are equivalent to the bell signals in
Figure 2, the output neurons in the network are equivalent to
the drooling signals and the supervised neurons are equivalent
to the meat signals. It simulates the associative learning process
of Pavlov’s dog experiment, which enables the output neuron
to learn the input signal based on both the teacher signal and
the input signal.

FIGURE 4 | A schematic diagram of the supervised learning network
structure. The first, second, and third layers are the supervised input layer,
output layer, and teacher layer, respectively. The gradient on the left indicates
that the first layer can be used as the output layer of the previous network.
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The implementation steps of supervised learning are as
follows:

(1) Construct the network structure shown in Figure 4, where
the first column is the supervised learning input layer
(can be used as the output layer of unsupervised learning
or other supervised learning output layers). The second
column is the output layer, and the third column is
the teacher layer. The number of neurons in the output
layer and the teacher layer is equal to the number of
sample categories, and a one-to-one mapping relationship
between the output layer, the teacher layer, and the sample
categories is constructed.

(2) Input spike signals to the supervised input layer, the
spike signals are from the encoded spikes or the spikes
of the previous neurons. Mark all neurons with spikes in
the supervised input layer as Is and others in the same
layer as Inon.

(3) Simultaneously with (2), input spike signals to the teacher
layer of the corresponding category, and induce the output
neurons of the corresponding category to generate spikes.
Mark the neuron with spikes in the output layer as Os and
others in the same layer as Onon.

(4) Since Is and Os both emit spikes for a while, under
the mechanism described above, as long as the spike
frequency of Is and Os is high enough, the strength of
the synaptic connection from Is to Os will increase. The
specific enhancement intensities are positively correlated
with the spike frequencies of each neuron in Is. At the same
time, since Inon does not produce spikes, the strength of the
synaptic connection from Inon to Os will decrease under
the effect of the heterosynaptic LTD. The strengths of all
synaptic connections to Onon remain unchanged.

(5) Change the next sample and label, repeat steps (2) to (4)
until the training of all samples is completed.

In the inducement of association supervised learning, it is
necessary to use the long-term plasticity rules introduced in
Equations 6, 7. In contrast, due to the existence of the negative
semi-axis LTD in the classic STDP, under the effect of high-
frequency pre/postsynaptic spikes, the change of synaptic weights
will have a greater relationship with the specific spike moments,
which makes it difficult for stable LTP to arise as in Figure 3.
At the same time, due to the lack of heterosynaptic LTD, the
synaptic connection of unrelated neurons cannot be effectively
inhibited, so it cannot be used to realize associative learning and
supervised learning.

Based on the above phenomenon, the potentiation of specific
neuron connections can be achieved by inducing target neurons
to emit spikes, that is, the spike induction of target neurons
can achieve synaptic potentiation between specific spike patterns
and target neurons and synaptic depression between unrelated
neurons and target neurons. We call it ALSA (associative
learning based supervised learning algorithm for SNNs). The
supervised part only exists in the teacher layer, which is realized
by stimulating the neurons in the teacher layer with a certain
frequency, and no additional statistics on the number of output

FIGURE 5 | IRIS classification network structure diagram. Each red input
neuron in the picture receives an input vector of the IRIS dataset and encodes
the numerical information into the neuron spikes signal of the encoding layer.
The three neurons in the output layer correspond to the three categories of
samples in the IRIS dataset, and the teacher layer is to generate supervised
signals. The enlarged part of the dotted line in the figure is the details of the
neurons in the coding layer, and the yellow translucent triangle is the encoding
triangle.

spikes and the precise time of output spikes are required.
Synaptic strengthening and weakening are still achieved through
unsupervised long-term plasticity rules. Therefore, ALSA can be
said to be more in line with biological interpretability which is
based on the universal associative learning behavior of animals,
and it is relatively easy to realize which requires only certain
teacher stimulation. In the following part, the feasibility of ALSA
will be verified by two specific experiments.

EXPERIMENTS AND RESULTS

The IRIS and the MNIST classification experiments are used as
examples. The details and results of the experiments as well as
the feasibility of ALSA are introduced in detail. The simulator
we used is an event-driven high accurate simulator (EDHA) for
SNNs (Mo et al., 2021).

IRIS Classification
The IRIS (Dua and Graff, 2017) dataset contains three classes
of irises, 50 of each class, and a total of 150 data. One of them
is linearly separable from the other two, and the latter two are
nonlinearly separable. The dataset contains four attributes: calyx
length, calyx width, petal length, and petal width.

Figure 5 is the IRIS classification network structure diagram,
including the input layer, encoding layer, output layer, and
teacher layer. The input layer receives IRIS data and encodes it
into neuron spikes of the encoding layer.

fi = max(0,
−h |ai − v|

w
+ h) (8)

Since the input data of this dataset is all numerical
information, it is difficult to directly use it in SNNs. Therefore,
encoding is necessary. The encoding is realized by dispersing the
data to multiple neurons. The encoding method is shown in (8),
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FIGURE 6 | Results of IRIS classification. (A) The network accuracy varies with the number of training samples. The four curves represent the data of 4 trials. The
other parameters of the four trials are the same except for the random initial weights. (B) The final classification confusion matrix, the result is the average of the four
trials in (A).

fi is the spike frequency of the corresponding subscript coding
neuron, ai is the distance from the corresponding subscript
neuron to the starting point (the gray vertical line in Figure 5),
and the remaining variables are as circled in Figure 5 shown.
v is the input value, w is one-half of the length of the bottom
side of the encoding triangle, and h is the highest encoding spike
frequency, that is, the height of the bottom side of the encoding
triangle in Figure 5. Both w and h are hyperparameters. With the
input value as the center, the closer the neuron is to the center of
the input value, the higher the neuron spike frequency is.

Connections from the encoding layer to the output layer
are fully-connected and all synapses are trainable. ALSA is
implemented for training between the input layer and the output
layer. The three neurons in the output layer correspond to three
categories. During training, each sample is kept in the network
for 200 milliseconds, during which the teacher layer induces the
output layer neuron of the corresponding category to generate
spikes. There is an interval of 50 milliseconds between the two
samples, during which the coding layer neurons do not generate
spikes, which resets the neuron state.

Due to the small number of samples in the IRIS dataset,
the hold-out method is implemented to achieve cross-validation
during training and validation. Divide each category of data
elements into five groups, so that there are 30 data elements in
each group, 10 data elements in each category. After dividing the
data into five groups, four groups were used for training, and the
remaining one group was used for validation. After the training
is completed, the remaining group retained in advance is used as
the test set to evaluate the network performance.

Figure 6 is the result of the IRIS classification network. The
detailed network parameters are as follows: 4 groups of coding

neurons, 12 in each group, 48 in total, h = 20hz, w = 2. The
synapse weights from the coding layer to the output layer are
evenly distributed from 0.2 to 0.3, η = 0.015, α = −0.1, β = 1,
τp = 50, and the teacher spike frequency is 20 hz.

As can be seen from the figure, ALSA can effectively realize
the classification of the IRIS dataset. Due to the single-layer
structure, there is a certain deviation in the distinction between
Versicolor and Virginia. The accuracy of network classification
reaches about 95% after learning all training samples (cross-
validation, the number of the training set is 120) once, but there
are some differences in the four trials. As the number of iterations
increases, the accuracy of the four trials gradually converges to a
similar value, and the average accuracy of four trials is 95.7%.

MNIST Classification
The MNIST (LeCun et al., 1998) dataset is widely used in the
performance test of various neural networks. The MNIST dataset
contains ten classes of handwritten digits from 0 to 9, including
a total of 60,000 samples in the training set and 10,000 samples
in the test set.

Figure 7 is a structural diagram of the MNIST classification
network, including four layers: input layer, features layer, output
layer, and teacher layer. The input layer is fully connected
with the features layer after the input data is encoded. The
encoding method adopts time encoding, that is, the larger the
corresponding pixel value, the earlier the neuron spike signal will
be emitted, and the spike will not be emitted if the value is lower
than the encoding threshold which is a hyper-parameter. Each
picture is kept in the network for 200 milliseconds, and there is
an interval of 50 milliseconds between two pictures, during which

Frontiers in Neuroscience | www.frontiersin.org 7 March 2022 | Volume 16 | Article 838832

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-838832 March 25, 2022 Time: 16:39 # 8

Mo et al. Associative Learning Based Supervised Learning

FIGURE 7 | MNIST handwritten digit classification network structure diagram.
There are four layers including input, features, output, and teacher. The light
blue color blocks in the features layer in the figure indicate inhibition, and the
red neurons in the output layer and teacher layer indicate that the neurons are
in an active state (that is, there is a spike signal for the time the input vector is
presented to the network). The red dashed line indicates the excitatory
connection between neurons.

no spike is generated in the input layer, which is for resetting
the network state.

Each neuron in the features layer has inhibitory synaptic
connections to all neurons in the same layer except itself, which
is for achieving lateral inhibition to prevent repeated learning.
Also, the features layer neurons are fully connected with the
output layer neurons.

Teacher layer neurons are connected one-to-one with
corresponding output layer neurons to induce output layer
neurons to generate spikes.

The input layer to the features layer is mainly based on
unsupervised learning, using the rules of synaptic plasticity
described in 6, 7. The training method is similar to Diehl’s work
(Diehl and Cook, 2015). For every input image, one neuron in
the features layer is activated first and the others are laterally
inhibited. The weights between the input layer and the features
layer change according to the modified STDP rules. From the
features layer to the output layer, ALSA is implemented for
supervised learning under the guidance of the teacher layer to
realize the mapping of handwritten digitals from the features
layer to the output layer.

The network is trained using a layer-by-layer training method,
that is, the training between the input layer and the features layer
is finished after certain samples, and then the training between
the features layer and the output layer is performed.

Figure 8 is the final result of the MNIST classification network.
The detailed network parameters are as follows: input layer
28 × 28, consistent with the sample resolution in the MNIST
dataset, feature layer 20 × 20, output layer 1 × 10, and teacher
layer 1 × 10. The encoding threshold is 0.3. The synapse weights
from the input layer to the feature layer are uniformly distributed
from 0.01 to 0.11, η = 0.015, α = −0.3, β = 1.3, and τp 20. The

synapse weights from the characteristic layer to the output layer
are uniformly distributed from 0.1 to 0.2, η = 0.001, α = −0.003,
β = 2, and τp = 100. The teacher spike frequency is 20 hz.

It can be seen from Figure 8A that when there are 400 neurons
in the feature layer, as the number of training samples increases,
the weights from the input layer to the features layer gradually
show the sample pattern clearly. However, there are still some
cases where the weight distribution from the input layer to the
features layer is fuzzy, or multiple samples are superimposed
which is mainly because of lack of learning or small among-
class gaps. Samples with smaller intra-class gaps (such as 0, 2,
7) can show clearer contours with fewer training samples. The
accuracy of the supervised learning part reaches a higher accuracy
after training the complete training samples once, gradually
converges in the subsequent training, and finally reaches 88.53%,
which has a certain gap compared with the mainstream
MNIST classification network. To verify the effectiveness of
the supervised learning rules proposed in this paper, it will be
compared with the widely cited experimental results of Diehl.
It is worth noting that Diehl uses the unsupervised + statistical
method in his paper (Diehl and Cook, 2015). In Diehl’s results,
when the size of the unsupervised learning output layer is 400
and 1600, the corresponding classification accuracy is 87 and
91.9%, respectively. For the convenience of comparison, this
article chooses the network models with 400 and 1600 neurons
in the features layer, respectively and the results are obtained in
Figures 8B,C. After multiple training runs, the average results are
obtained as follows: the classification accuracy of 400 neurons is
88.53%, and that of 1600 excitative neurons is 91.58% (η = 0.065,
α = −0.2, β = 1.3, and τp = 20). This result indicates that the
supervised learning using ALSA in this network can achieve
performance similar to the statistical methods of Diehl. It can
be seen from the above two classification experiments that ALSA
can realize pattern recognition and classification, and it is proved
to be working. The feasibility of the ALSA learning method is
preliminarily verified here, and more different experiments are
needed to improve it in the future.

DISCUSSION

Biologically Plausible
The ALSA supervised learning method proposed in this
paper is based on associative learning. The synaptic long-
term plasticity rule is also based on classic STDP after
appropriate modifications. The main contents are supported by
corresponding neuroscience-related experiments or phenomena
(Krug et al., 1985; Christie et al., 1994; McSweeney and Murphy,
2014). By inducing the target neuron to emit spikes, the
connection weights between the neuron corresponding to the
current spike pattern and the target neuron are strengthened,
and others are weakened, which is consistent with the Hebb
rule “neurons that fire together, wire together.” Moreover, the
implementation method of supervised learning is similar to
the process of animal training based on associative learning,
and the latter has been proved to be an effective animal
training method in a large number of experiments and practices.
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FIGURE 8 | Results of MNIST classification (A) The distribution of weights under different numbers of training samples from the input layer to the feature layer with
400 neurons in the feature layer (n = 400). (B) The accuracy of the supervised part of the network varies with the number of training samples. The blue line
represents the accuracy of the model with different numbers of training samples when the number of neurons in the feature layer is 400 (n = 400). The green line
represents the test accuracy changing with the number of training samples when the number of neurons in the feature layer is 1600 (n = 1600). (C) The final
classification confusion matrix with 1600 neurons in the feature layer.

Therefore, ALSA is physiologically reasonable and has strong
physiological plausibility.

In this paper, a supervised learning algorithm for spiking
neural networks based on associative learning named ALSA was
proposed. Compared to other supervised learning algorithms
for SNN, ALSA is based on modified STDP, thus ALSA is
more biologically plausible than most other training algorithms.
In addition, the modified STDP used in ALSA shows more
similarities to the Hebb rule and actual experiment results
in neuroscience. Unsupervised learning is powerful in SNNs
due to its great ability in spatial-temporal feature extraction
called coincidence detection. Normally, coincidence detection is
based on STDP or its modification. While none of the existing
supervised learning algorithms excepting ALSA are based on
STDP, which make it impossible to realize supervised and
unsupervised learning algorithm in the same layer. ALSA shows
more compatibility with unsupervised learning algorithms. The
key difference of ALSA to unsupervised learning is the teacher

signal, without the teacher signal, ALSA works as a normal
unsupervised learning algorithm, with the teacher signal, ALSA
works as a biologically plausible supervised learning algorithm.
Thus, ALSA can make full use of the power of unsupervised
learning and supervised learning.

Compatibility
At present, many SNN supervised learning algorithms have
been able to achieve good training effects and performance.
But most of the methods are incompatible with unsupervised
learning methods. The current unsupervised learning method
of SNNs is more reasonable in principle, with stronger
physiological plausibility and rationality, and the unsupervised
learning method of SNNs has also been proved to have strong
feature extraction capabilities, especially the spatial-temporal
features extraction ability (Dennis et al., 2015; Masquelier and
Kheradpisheh, 2018; Wu et al., 2018). This is an ability that
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the traditional ANN networks do not have. It is also the
place where SNNs have unique advantages. Therefore, it is
important to give full play to the unsupervised learning ability
of SNNs. ALSA is based on the improved STDP. As shown
in the MNIST classification experiment above, this synaptic
plasticity rule can realize SNNs unsupervised learning well,
that is, the same rule can realize unsupervised learning and
supervised learning at the same time. And through appropriate
adjustments, in theory, unsupervised learning and supervised
learning can be realized in the same layer. Unsupervised learning
and supervised learning can be performed at different phases
for better learning. Therefore, ALSA has strong compatibility
with SNN unsupervised learning, which greatly expands the
application scope of ALSA.

Trainable Layers
Due to the characteristics of ALSA, it can only be used for
single-layer network training. However, as mentioned above,
ALSA has strong compatibility with SNN unsupervised learning.
Therefore, we can make full use of the powerful unsupervised
learning ability of SNNs to build multi-layer unsupervised +
single-layer supervised SNNs to make up for the shortcomings
of only a single-layer training. Also, the supervised method can
be used to some key layers in the network by inducing neurons
in these layers, to realize multi-layer unsupervised + multi-layer
supervised SNNs as a whole.

Performance
In the experimental part, two experiments, training with IRIS
dataset and MNIST dataset are conducted, respectively, and both
achieved satisfactory results. The average accuracy of the four
training trials of the IRIS dataset was 95.7%. When the number of
neurons in the feature layer was 1600, the classification accuracy
of the MNIST dataset achieved 91.58%, when training with the
proposed ALSA rule. Although the performance achieved by
the SNN network has a certain gap compared with the current
mainstream ANN networks based on error backpropagation or
other classifiers. However, the results of these two experiments
prove the feasibility of ALSA to a large extent. In the future,
combined with the above-mentioned multi-layer unsupervised
and multi-layer supervised methods, with a large network scale,
the performance of ALSA has a lot of room for development.
Right now, it is still a challenge for us to increase the network
scale and improve the recognition accuracy. For the MNIST
dataset, there are over 60,000 pictures, and it takes several
days to several weeks to train once after further increasing the
network scale. In the future, we plan to improve the speed by

optimizing the computing framework, such as using multithread
or GPU acceleration.

Robustness
The existence of dynamic membrane potential can prevent some
neurons from over-emitting spikes while other neurons do not
emit spikes, which will lead to the problem of “winner takes all,”
making all neurons have a relatively fair environment to learn
spike patterns and improve the efficiency of feature learning. In
addition, because of the dynamic threshold, the spiking frequency
of teacher neurons has little influence on associative learning and
supervised learning. The learning performance of the network is
not sensitive to the teacher spiking frequency. According to the
results of the two classification experiments, the performance of
the final network tends to be stable, indicating that ALSA can
control the state of the neural network in a relatively stable state
and has high robustness.
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