
Comprehensive Characterization of
Tumor Purity and Its Clinical
Implications in Gastric Cancer
Shenghan Lou1, Jian Zhang2, Xin Yin1, Yao Zhang1, Tianyi Fang1, Yimin Wang1 and
Yingwei Xue1*

1Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China, 2Department of Thoracic
Surgery, Harbin Medical University Cancer Hospital, Harbin, China

Solid tumour tissues are composed of tumour and non-tumour cells, such as stromal cells
and immune cells. These non-tumour cells constitute an essential part of the tumour
microenvironment (TME), which decrease the tumour purity and play an important role in
carcinogenesis, malignancy progression, treatment resistance and prognostic
assessment. However, the implications of various purity levels in gastric cancer (GC)
remain largely unknown. In the present study, we used an in-silico approach to infer the
tumour purity of 2,259 GC samples obtained from our hospital and 12 public datasets
based on the transcriptomic data. We systematically evaluated the association of tumour
purity with clinical outcomes, biological features, TME characteristics and treatment
response in GC. We found that tumour purity might be a patient-specific intrinsic
characteristic of GC. Low tumour purity was independently correlated with shorter
survival time and faster recurrence and significantly associated with mesenchymal,
invasive and metastatic phenotypes. Integrating GC purity into a clinical prognostic
nomogram significantly improved predictive validity and reliability. In addition, low
tumour purity was strongly associated with immune and stromal cell functions.
Fibroblasts, endothelial cells and monocytes were markedly enriched in low-purity
tumours, serving as robust indicators of a poor prognosis. Moreover, patients with low
GC purity may not benefit more from adjuvant chemotherapy. Our findings highlight that
tumour purity confers important clinical, biological, microenvironmental and treatment
implications for patients with GC. Therefore, a comprehensive evaluation of tumour purity
in individual tumours can provide more insights into the molecular mechanisms of GC,
facilitate precise classification and clinical prediction and help to develop more effective
individualised treatment strategies.
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1 INTRODUCTION

Gastric cancer (GC) is the fifth most prevalent cancer and the third most frequent cause of cancer-
related deaths worldwide (Bray et al., 2018), with almost 1,000,000 new cases and 800,000 deaths
each year (Torre et al., 2015; Bray et al., 2018). Owing to a lack of symptoms in the early stage, most
patients with GC are usually diagnosed at an advanced stage (Dai et al., 2019). Treatment options for
patients at an advanced stage are limited, resulting in a relatively low 5-year survival rate (<20%)
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(Katai et al., 2018). GC is a heterogeneous disease (Han et al.,
2015), and different histopathological and molecular classification
systems have been reported for its diagnosis (Serra et al., 2019).
However, despite the widespread clinical use of histopathological
classification (such as Lauren classification), the currently available
histopathological systems remain insufficient to guide precise
treatment for individual patients (Dicken et al., 2005). To date,
the tumour–node–metastasis (TNM) staging system is considered
the gold-standard method to predict prognosis and guide treatment
decisions for patientswithGC (Sasako et al., 2010).However, the high
heterogeneity of GC leads to different outcomes among patients with
the same TNM stage receiving the same treatments (Tang et al.,
2020), suggesting that clinical prediction and treatment outcomes are
unsatisfactory.

Solid tumour tissue comprises cellular components originating
from various cancerous and noncancerous tissues, including
immune, stromal, endothelial and epithelial cells (Joyce and
Pollard, 2009). Such these noncancerous cells form an important
part of the tumour microenvironment (TME) and interact with each
other and tumour cells to sustain tumour growth and survival (Aran
et al., 2015). GC tissues contain abundant GC-associated
noncancerous cells within their microenvironments. With the
increased understanding of the diversity and complexity of the
TME of GC, these noncancerous cells, represented by stromal and
immune cells, have been found to play an important role in
carcinogenesis, malignancy progression and treatment resistance
(Junttila and de Sauvage, 2013; Zeng et al., 2019; Zhang et al.,
2020). However, the currently available classification systems
merely consider the noncancerous factors present within GC
tissues, and there is limited knowledge regarding the
characteristics of GC cells under various purity levels.

Tumour purity, defined as the proportion of cancer cells in the
tumour tissue, can be estimated by expert pathologists who review
tumour sections or based on computational methods (Haider et al.,
2020). However, pathological assessment may be inconsistent
because of human error and bias (Smits et al., 2014). More
importantly, tumour sections reviewed by pathologists may not
always represent the tumour region that is subject to molecular
profiling (Haider et al., 2020). However, estimation of tumour purity
using alternative in-silico techniques can circumvent these problems.
The continuously accumulating transcriptomic and genomic data
provide an ideal resource for examining the multi-omic features
underlying tumour purity in different cases. Integration of multiple
independent studies is considered a better approach to enhancing the
reliability of results, thus enabling us to identify the common core
features of diseases (Ricketts et al., 2018).

Therefore, in the present study, we systematically evaluated the
role of tumour purity in GC by integrating the clinical and multi-
omic data of 2,259 GC samples obtained from our hospital, Gene
Expression Omnibus (GEO) and The Cancer Genome Atlas
(TCGA). We analysed the association of GC purity with clinical
outcomes, functional characterisation and TME. In addition, we
found that GC purity could predict the response of patients to
chemotherapy. These findings provide novel insights into
developing individualised treatment strategies for GC, which can
help to improve prognostic risk stratification and facilitate treatment
decision-making for patients with GC.

2 MATERIALS AND METHODS

2.1 Gastric Cancer Dataset Source
Demographic information, clinical data and tissue samples were
obtained from 214 patients with GC who had undergone
gastrectomy as the primary treatment between 2016 and 2019
at the Harbin Medical University (HMU) Cancer Hospital. These
data were used to construct the HMU-GC cohort. All samples
were collected after written informed consent was obtained from
the patients. This study was approved by the Institutional Review
Board of the HMU Cancer Hospital. RNA isolation, library
construction and mRNA sequencing were performed by
Novogene (Beijing, China). The data were deposited in the
GEO repository (GSE184336).

We systematically searched for publicly available GC gene
expression datasets in GEO and TCGA databases. Datasets
missing the follow-up data were excluded. In addition, to enhance
the robustness of downstream analyses, samples with survival time
less than 3months were excluded (Joung and Merkow, 2021; Resio
et al., 2021). A total of 12 public treatment-naive GC cohorts
(GSE62254/ACRG, GSE15459, GSE57303, GSE34942, GSE38749,
GSE15456, GSE84437, GSE26901, GSE26899, GSE13861,
GSE26253 and TCGA-STAD) were selected for further analysis.
In addition, four GC cell datasets, namely, Cancer Cell Line
Encyclopedia (CCLE), GSE22183, GSE15455 and GSE146361,
were included as references.

2.2 Data Preprocessing
To process microarray data, the raw CEL files obtained from
Affymetrix were processed using the robust multichip average
(RMA) algorithm for background correction and normalisation
using the affy package (Irizarry et al., 2003; Gautier et al., 2004).
The raw data from Illumina were processed using the limma
package (Ritchie et al., 2015). For microarray datasets without
raw data, the normalised matrix files were directly downloaded.

For high-throughput sequencing data obtained from the
HMU-GC and TCGA-STAD datasets, raw read count values
were converted to transcripts per kilobase million (TPM) values,
which are more similar to those generated from microarrays and
are comparable between samples (Wagner et al., 2012). Batch
effects from non-biological technical biases among different
datasets were corrected using the ComBat algorithm in the sva
package (Leek et al., 2012).

The gene expression profile at the probe level (or Ensembl ID
level) was converted to the official gene symbol level using the
biomaRt package (Durinck et al., 2005). When multiple probes
(or Ensembl IDs) were mapped to the same gene symbol, the
probe (or Ensembl ID) with the largest mean expression values
across samples was selected.

2.3 Identification of GC Purity and a
Purity-Related Co-expression Network
Tumour purity was calculated using the ESTIMATE algorithm
(Yoshihara et al., 2013). In addition, GC tissues in the TCGA-
STAD cohort were reviewed to infer GC purity based on visual
evaluation of the whole-slide images of haematoxylin and eosin
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(H&E) staining. Two pathologists independently confirmed the
results of histological purity.

Weighted correlation network analysis (WGCNA) was
performed using the WGCNA package to screen for purity-
related gene modules (Langfelder and Horvath, 2008). A scale-
free topology fitting index (R2) of 0.85 was set as the threshold to
construct a signed weighted gene co-expression network. The
minimum co-expression module size was set as 30, and the
minimum cut height for module merging was set as 0.25. A
biweight midcorrelation coefficient (R) > 0.4 and p-value < 0.05
were set as thresholds to screen for gene modules significantly
associated with GC purity.

2.4 Association of GC Purity With Clinical,
Molecular and Prognostic Features
Nearest template prediction (NTP) analysis was performed to
classify samples based on the known clinical and molecular
features (Hoshida, 2010). Univariate and multivariate Cox
regression analyses were performed to calculate the hazard
ratio (HR) and 95% confidence interval (CI). The
Kaplan–Meier survival analysis with log-rank test was used to
compare the survival rates of patients in different subgroups.
Differences in prognosis between the high- and low-purity
subgroups were compared using the restricted mean survival
time (RMST) analysis (Kim et al., 2017). In addition, subgroup
analyses were performed to examine the association between GC
purity and other clinical characteristics.

Furthermore, GC purity was integrated with other
independent prognostic factors to generate a composite
prognostic nomogram for model visualisation and evaluation
of clinical applications. The predictive value of the nomogram
was compared with that of the TNM staging system in terms of
concordance index (C-index). The performance of the composite
model was evaluated based on calibration curves, time-dependent
receiver operating characteristic (ROC) analysis, and decision
curve analysis (DCA) (Vickers and Elkin, 2006).

2.5 Functional and Pathway Enrichment
Analyses
Gene annotation enrichment analysis was performed using the
clusterProfiler package (Yu et al., 2012). Gene set enrichment
analysis (GSEA) was performed to screen for biological processes
related to GC purity (Subramanian et al., 2005), and gene set
variation analysis (GSVA) was performed to quantify the
pathway enrichment scores using the GSVA package
(Hänzelmann et al., 2013) and screen for significantly enriched
pathways in each cluster. The well-defined ‘Hallmark gene sets’
were selected to quantify the pathway activity (Liberzon et al.,
2015).

2.6 Estimation of Infiltrating Cells in the GC
Microenvironment
To quantify the infiltration level of stromal and immune cells in
each GC sample, we calculated the stromal and immune scores

using the ESTIMATE algorithm (Yoshihara et al., 2013). Based
on the guidelines of transcriptome-based cell-type quantification
methods (Sturm et al., 2019), we used the MCPcounter and xCell
algorithms to quantify specific immune and stromal cells in the
GC samples (Becht et al., 2016; Aran et al., 2017). Based on the
whole-slide images of H&E staining obtained from the TCGA-
STAD cohort, we further used the convolutional neural network,
a supervised deep-learning approach, to identify the proportion
of tumour-infiltrating lymphocytes (TILs) in digitised H&E-
stained tissue specimens (Saltz et al., 2018).

2.7 Estimation of the Potential Response to
Chemotherapy
Seven common chemotherapeutic agents (5-fluorouracil,
cisplatin, oxaliplatin, capecitabine, paclitaxel, docetaxel and
irinotecan), which are approved for GC treatment, were
selected to predict the chemotherapeutic response. Based on
two public drug sensitivity databases, namely, CTRP (Basu
et al., 2013) and PRISM (Corsello et al., 2020), the
chemotherapeutic response was predicted via the pRRophetic
package using ridge regression to estimate the area under the
curve (AUC) value of each sample (Geeleher et al., 2014). Lower
AUC values indicated increased sensitivity to treatment. The
prediction accuracy was evaluated via 10-fold cross-validation
based on each training set. Default values were selected for all
parameters, including the combat algorithm for removing batch
effects and the mean value for summarising duplicate gene
expression.

2.8 Statistical Analyses
Differences between groups for continuous variables were
evaluated using the Kolmogorov–Smirnov, Mann–Whitney or
Kruskal–Wallis tests. The two-sided Pearson’s chi-squared or
Fisher exact test was used to analyse the categorical data. The
association between continuous variables was tested using
Spearman correlation analysis. Restricted cubic splines were
used to test potential non-linear associations. All statistical
analyses were conducted using the R software, and p-values
were two-sided. A p-value < 0.05 was considered statistically
significant. The Benjamini–Hochberg method was used to
control the false discovery rate (FDR) for multiple hypothesis
testing.

3 RESULTS

3.1 Tumour Purity Is an Intrinsic Property
of GC
More than 40 GC cell lines involving 215 cell samples were
analysed as references (Supplementary Table S1). A high degree
of purity, i.e. median purity of 0.999 (inter-quartile range [IQR],
0.996–1), was observed in GC cell lines. Furthermore, no
significant difference was found between the microarray and
RNA-seq datasets (Kolmogorov–Smirnov test, p � 0.789),
which verified the validity and robustness of the ESTIMATE
algorithm.
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In the GC meta-dataset (Supplementary Figure S1A), a total
of 2,599 GC tissues from 13 cohorts were initially selected. After
excluding samples with survival time less than 3 months (Joung

and Merkow, 2021; Resio et al., 2021), 2,259 samples were
retained for further analyses. As demonstrated in Figure 1A,
GC samples were arranged in order of increasing purity, and a

FIGURE 1 | Tumour purity is an intrinsic property of gastric cancer (GC). (A) The landscape of clinicopathological and molecular characteristics associated with GC
purity. (B) Representative slides of GC tissues. (C) Spearman correlation analysis of GC purity based on morphological assessment and the ESTIMATE method. (D)
Distribution of GC purity evaluated based on morphological assessment and the ESTIMATE method. The upper and lower ends of the boxes represent the inter-quartile
range of values. The lines in the boxes represent the median value. The whisker edges are the last data points within 1.5 of the inter-quartile range. The horizontal
width of the violin represents the data density. (E) Density distribution of GC purity estimated based on morphological assessment and the ESTIMATE method.
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FIGURE 2 | Gastric cancer (GC) purity is characterised by specific clinicopathological and molecular features. (A–F) Distribution of GC purity in terms of (A) TNM
stage, (B) Lauren classification, (C) EM (epithelial and mesenchymal) subtype, (D) ACRG subtype, (E) Singapore subtype and (F) TCGA subtype. The upper and lower
ends of the boxes represent the inter-quartile range of values. The lines in the boxes represent the median value. The whisker edges are the last data points within 1.5 of
the inter-quartile range. The horizontal width of the violin represents the data density.
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wide range (0.215–0.964) of purity was observed among the 2,259
samples, with a median purity of 0.681 (IQR, 0.608–0.759). In
addition, the morphological features of GC cells were assessed in
179 patients in the TCGA cohort (Figure 1B; Supplementary
Table S2). Consistent with the findings of the previous study
(Aran et al., 2015), GC purity evaluated based on the ESTIMATE
algorithm was significantly correlated with morphology
(Figure 1C). However, significant differences were observed
between the two evaluation methods (Figures 1D,E), which
suggested that morphology evaluation can only provide a
qualitative estimation of GC purity.

Furthermore, we investigated different samples from the same
patient to determine their consistency. In the GSE14209 dataset,
22 patients were analysed twice (pre- and post-chemotherapy).
We observed high concordance between the pre- and post-
chemotherapy samples (Supplementary Figure S1B). The
results suggest that tumour purity levels among patients with
cancer are robust and consistent, implying that tumour purity
may be an intrinsic property of GC.

3.2 GC Purity Is Characterised by Specific
Clinicopathological and Molecular Features
Based on the speculation that tumour purity is an intrinsic
property of GC, we assessed the association between GC
purity and clinical and molecular features. We found a
negative correlation between GC purity and age at diagnosis
(Spearman R � 0.122; p < 0.001; Supplementary Figure S1C).
According to the TNM staging system and histopathological
features, GC samples were classified into the corresponding
clinicopathological and molecular features. A consistent
decrease in GC purity was observed as the TNM stages
advanced (Figure 2A). Based on the Lauren classification,
intestinal-type GC had the highest purity level, whereas
diffuse-type GC was accompanied had the lowest purity level
(Figure 2B). These results suggest that low tumour purity is
closely associated with the malignant progression of GC.

Based on clinical features, low-purity GC samples were more
likely to belong to the mesenchymal subtype, whereas high-purity
GC samples were enriched in the epithelial subtype (Figure 2C).
Based on the other three molecular classifications, namely, the
ACRG (Figure 2D), Singapore (Figure 2E) and TCGA
(Figure 2F) classification systems, decreased tumour purity
levels were associated with epithelial–mesenchymal transition
(EMT) and invasive or genomically stable (GS) molecular
subtypes, which were usually correlated with the invasion and
metastasis of GC. These findings indicate that GC purity is closely
related to specific clinicopathological and molecular features.

3.3 GC Purity Confers Different Survival and
Recurrence Outcomes
We found that low purity was significantly related to the
malignant phenotype. To further evaluate the prognostic value
of GC purity in combination with other clinical variables, we
performed univariate and multivariate Cox proportional hazard
regression analyses based on combined clinicopathologic

variables in the GC meta-dataset cohort. In addition to
chemotherapy history and TNM stage, which is a well-known
prognostic factor, GC purity was identified as a significant
predictor of overall survival (OS) and recurrence-free survival
(RFS) based on the univariate analysis (Table 1).

Although the Epstein–Barr virus (EBV) subtype is
characterised by lower purity scores (Figure 2F), it is
associated with a good prognosis (Sohn et al., 2017).
Therefore, the relationship between GC purity and prognosis
may not necessarily be linear. We used restricted cubic splines to
assess the possible non-linear association between GC purity and
prognosis. However, a non-linear relationship (a U-shaped curve)
was observed between GC purity and OS (Figure 3A) and RFS
(Figure 3B).

Furthermore, patients with GC were stratified into two (high
or low purity) and three (high, moderate or low purity) subgroups
using the optimal cut-off values determined using the X-tile
software (Camp et al., 2004). In both subgroup analyses, the
OS (Figures 3C,D) and RFS (Figures 3E,F) rates were lower in
patients with low purity scores than in patients with high purity
scores. The RMST difference also determined a benefit of high
purity, and the benefit seemed to increase over time (Table 2). For
example, the RMST differences between the two groups were
2 months for OS and 4 months for RFS after 5 years of follow-up,
which increased to 7 months for OS and 12 months for RFS after
10 years. These results suggested that low GC purity was
associated with a shorter survival time and faster recurrence.

When all relevant clinical variables were included in the
multivariate Cox regression analysis, GC purity was identified
as a significant prognostic factor (Table 1). Subgroup analyses
were further performed to assess the association between GC
purity and other prognostic factors. No significant association
was observed between GC purity and both OS and RFS (Table 3),
indicating that GC purity retained its prognostic relevance even
after classic clinicopathological prognostic features were
considered.

Furthermore, we integrated these independent factors
(tumour purity, TNM stage and chemotherapy history) to
establish a prognostic nomogram for predicting the OS of
patients with GC (Supplemenatry Figure S2A). The
calibration plot revealed an optimal agreement between
nomogram prediction and actual observation at different time
points (Figure 3G). Moreover, we compared the OS prediction
power between the nomogram and clinical model. The C-index of
the nomogram was significantly higher than that of the clinical
model for predicting OS (Figure 3H). In addition, the time-
dependent ROC curve confirmed that the nomogram exhibited
better performance in predicting the prognosis of GC (Figure 3I).

Lastly, DCA curves were used to assess the clinical usefulness
and net benefit of these two models. The composite nomogram
demonstrated a larger net benefit than that exhibited by the
clinical model within most of the threshold probabilities
(Figure 3J). Similar results were also found for RFS
(Supplemenatry Figure S2B; Figures 3K–N). These results
indicated that integrating GC purity into a prognostic model
can significantly improve its predictive power. In addition, the
nomogram exhibited better clinical utility for predicting
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prognosis, emphasising the requirement of considering GC purity
in clinical practice.

3.4 Biological Insights Into GC Purity
Given that tumour purity is closely related to the
clinicopathological, molecular and prognostic features, we used
RNA expression profiles to examine the underlying biological
processes associated with GC purity. We performed principal
components analysis (PCA) to identify the transcriptomic
features related to GC purity and found a strong association
between mRNA expression profiles and GC purity (Figure 4A),
implying that distinct biological phenotypes are attributed to
varied GC cell percentages.

Furthermore, we performed GSEA to assess the biological
features associated with GC purity. The results suggested that
samples with different GC purity exhibited distinct biological
processes (Figure 4B). Consistent with the clinical and molecular

features, low tumour purity was significantly related to pathways
associated with invasion and metastasis and multiple immune-
related pathways. However, high purity was considerably
associated with metabolism and proliferation-related pathways.

Subsequently, we used WGCNA to obtain purity-related
modules. We constructed a cluster dendrogram according to
the soft threshold power (Supplemenatry Figure S3A) and
identified 11 colour modules (Supplemenatry Figure S3B).
Among the identified modules, four were highly associated (|
R| > 0.4) with tumour purity (Figure 4C; Supplemenatry Table
S3). In addition, gene significance significantly correlated with
module membership in each module (Supplemenatry Figure
S3C), suggesting that genes in these modules might play an
essential role associated with GC purity.

Furthermore, module enrichment analyses were performed to
explore the biological features of purity-related modules
(Figure 4D). Consistent with the results of GSEA, genes in the

TABLE 1 | Univariate and multivariate cox analyses for tumor purity in gastric cancer.

Overall survival Recurrence-free survival

Univariate Multivariate Univariate Multivariate

Samples HR
(95%CI)

p
value

Samples HR
(95%CI)

p
value

Samples HR
(95%CI)

p
value

Samples HR
(95%CI)

p
value

Age
Increasing

years
2254 1.014 (1.009,

1.019)
<0.001 772 1.002

(0.991,
1.012)

0.765 1155 1.003
(0.995,
1.011)

0.499

Gender
Female 764 Reference 400 Reference
Male 1495 1.052 (0.922,

1.200)
0.449 757 1.045

(0.858,
1.273)

0.66

Chemotherapy
No 131 Reference 112 Reference 104 Reference 103 Reference
Yes 732 0.497 (0.364,

0.678)
<0.001 660 0.337

(0.239,
0.475)

<0.001 556 0.290
(0.209,
0.403)

<0.001 556 0.243
(0.174,
0.338)

<0.001

Lauren classification
Intestinal 821 Reference 328 Reference 541 Reference
Mixed 137 1.521 (1.174,

1.970)
0.001 60 1.218

(0.780,
1.903)

0.386 60 1.505
(0.984,
2.303)

0.06

Diffuse 724 1.152 (0.991,
1.340)

0.065 384 1.007
(0.773,
1.311)

0.962 505 1.128
(0.928,
1.370)

0.227

TNM stage
Stage I 285 Reference 129 Reference 193 Reference 125 Reference
Stage II 582 1.579 (1.142,

2.182)
0.006 222 1.328

(0.806,
2.188)

0.266 375 1.303
(0.882,
1.924)

0.183 202 1.411
(0.886,
2.247)

0.147

Stage III 980 3.407 (2.527,
4.593)

<0.001 289 3.209
(2.035,
5.061)

<0.001 382 2.630
(1.819,
3.802)

<0.001 206 3.273
(2.120,
5.051)

<0.001

Stage IV 325 7.363 (5.378,
10.079)

<0.001 132 5.768
(3.599,
9.244)

<0.001 201 5.464
(3.752,
7.956)

<0.001 125 4.454
(2.862,
6.932)

<0.001

Tumor purity
Increasing

values
2259 0.455 (0.269,

0.771)
0.003 772 0.120

(0.025,
0.570)

0.007 1157 0.372
(0.158,
0.874)

0.023 659 0.129
(0.025,
0.663)

0.014

CI, confidence interval; HR, hazard ratio. The bold values mean that the results were statistical significance.
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FIGURE 3 | Prognostic value of tumour purity in gastric cancer. (A,B) Association of tumour purity and (A) overall survival (OS) and (B) recurrence-free survival (RFS)
estimated using restricted cubic splines. (C–F) Kaplan–Meier curves for (C,D) OS and (E,F) RFS among different subgroups. p-values were obtained using the log-rank
test. The + symbols in the panels indicate censored data. (G,K) Calibration plots of the nomogram for the predicted (G) OS and (K) RFS at 1, 3, 5, and 10 years. (H,L)
Restrictedmean survival (RMS) time curves for (H)OS and (L) RFS. (I,M) Time-dependent ROC curves for (I)OS and (M) RFS. (J,N) Decision curve analysis for the
prediction of (J) OS and (N) RFS using the nomogram. HR, hazard ratio.
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red module were enriched in pathways associated with metabolic
activation (Supplemenatry Table S4). Genes in the blue module
were significantly enriched in proliferation-specific pathways
(Supplemenatry Table S5). In addition, genes in the turquoise
(Supplemenatry Table S6) and yellow (Supplemenatry Table
S7) modules were prominently related to stromal and immune
activation pathways, respectively.

Eventually, we analysed proteomic data generated using
reverse-phase protein arrays in the TCGA cohort
(Figure 4E). Consistent with the clinical and gene

expression data, α-catenin, E-cadherin and other crucial
epithelial adhesion proteins in epithelial cells were
positively correlated with tumour purity. Low tumour
purity was associated with high expression of MYH11,
RICTOR and CAV1, which are markers for mesenchymal
lineage or EMT. In addition, low GC purity was associated
with increased expression of numerous stromal- and
immune-associated proteins. High GC purity was,
however, associated with increased expression of multiple
proliferation- and metabolism-associated proteins.

TABLE 2 | Restricted mean survival time (RMST) differences in different time points.

Overall survival

Time point High purity (n = 986) Low purity (n = 1273) RMST differencea

RMST 95% CI RMST 95% CI Effect size 95% CI p value

12 months 11.096 10.938 11.253 11.009 10.862 11.156 0.087 −0.128 0.303 0.428
36 months 28.054 27.294 28.813 27.509 26.841 28.176 0.545 −0.466 1.557 0.291
60 months 42.216 40.742 43.689 40.361 39.091 41.632 1.855 −0.091 3.8 0.062
84 months 55.412 53.179 57.644 51.701 49.797 53.606 3.71 0.776 6.645 0.013
120 months 73.604 70.179 77.03 67.03 64.118 69.942 6.574 2.078 11.071 0.004
160 monthsb 91.961 86.98 96.942 83.132 78.979 87.285 8.829 2.344 15.314 0.008

Recurrence free survival

Time point High purity (n = 478) Low purity (n = 679) RMST differencea

RMST 95% CI RMST 95% CI Effect size 95% CI p value

12 months 10.408 10.088 10.728 10.355 10.084 10.625 0.054 −0.365 0.472 0.802
36 months 27.384 26.131 28.637 25.688 24.633 26.744 1.695 0.057 3.333 0.043
60 months 42.541 40.22 44.862 38.472 36.529 40.416 4.069 1.042 7.096 0.008
84 months 57.137 53.67 60.604 50.045 47.174 52.916 7.092 2.591 11.594 0.002
120 months 78.252 72.882 83.621 66.409 62.032 70.787 11.842 4.914 18.77 0.001
150 monthsb 95.8 88.686 102.915 79.602 73.837 85.367 16.198 7.041 25.355 0.001

RMST, restricted mean survival time. The bold values mean that the results were statistical significance.
aRMST difference � RMSThigh purity−RMSTlow, purity.
bFinal follow-up time point.

TABLE 3 | Subgroup analysis for tumor purity in gastric cancer.

Overall survival Recurrence free survival

Samples HR
(95%CI)

p value
for interaction

Samples HR
(95%CI)

p value
for interaction

Gender
Female 764 0.013 (0.001, 0.286) 0.2 400 0.001 (0.0001, 0.024) 0.003
Male 1495 0.214 (0.035, 1.300) 757 0.590 (0.081, 4.288)

Age
<65 1461 0.063 (0.009, 0.447) 0.589 797 0.065 (0.008, 0.506) 0.4716
>65 793 0.274 (0.021, 3.627) 358 0.147 (0.009, 2.353)

Chemotherapy
No 131 0.201 (0.018, 2.301) 0.681 104 0.074 (0.006, 0.970) 0.7392
Yes 732 0.100 (0.014, 0.706) 556 0.148 (0.017, 1.320)

Lauren type
Intestinal 821 0.135 (0.018, 1.040) 0.849 541 0.062 (0.007, 0.522) 0.1588
Mixed 137 1.238 (0.012, 130.179) 60 42.089 (0.045, 39,734.047)
Diffuse 724 0.140 (0.009, 2.252) 505 0.302 (0.014, 6.298)

TNM stage
Stage I 285 0.355 (0.009, 13.991) 0.076 193 0.017 (0.0004, 0.800) 0.3875
Stage II 582 0.002 (0.00003, 0.072) 375 0.004 (0.0001, 0.186)
Stage III 980 0.572 (0.057, 5.730) 382 0.245 (0.013, 4.500)
Stage IV 325 0.115 (0.005, 2.812) 201 0.291 (0.015, 5.804)

HR, hazard ratio; CI, confidence interval. The bold values mean that the results were statistical significance.
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FIGURE 4 | Biological features of tumour purity in gastric cancer. (A) Principal component analysis score plot for the gene expression profile underlying different
purity levels. (B)Gene set enrichment analysis associated with purity levels. (C) Trait andmodule relationship analysis. Each row corresponds to amodule eigengene and
each column to a trait. The top number represents the biweight midcorrelation coefficient of each cell, and the corresponding p-values are mentioned in brackets. (D)
Representative results of functional enrichment analysis for the yellow, blue, red and turquoise modules. (E) Heatmap of the reverse-phase protein arrays
demonstrating purity-associated protein production. The coefficient was evaluated via Spearman correlation analysis.
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FIGURE 5 | Tumour microenvironment features of tumour purity in gastric cancer (GC). (A) Heatmap of the infiltration level of stromal and immune cells among the
purity-based subtypes. (B) Representative slides (top) and tumour-infiltrating lymphocyte (TIL) maps (bottom) of GC tissues with different purity values. The red colour
represents a positive TIL patch, the blue colour represents a tissue region with no TIL patch and the black colour represents no tissue. (C) The Spearman correlation
between TILs and purity value. (D) Heatmap of survival analysis of purity-related stromal and immune cells for overall survival (OS) and recurrence-free survival
(RFS). CNN, convolutional neural network; H&E, haematoxylin and eosin; OS, overall survival; RFS, recurrence-free survival; HR, hazard ratio.
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3.5 GC Purity is Associated With Infiltration
of Distinct Stromal and Immune Cells
Low GC purity was markedly associated with stromal and
immune activation pathways (Figure 4). Therefore, we further
examined the relationship between TME features and GC purity
to characterise TME heterogeneity. Both stromal and immune
scores, representing the overall infiltration of stromal and
immune cells, respectively, in tumour tissues, were inversely
correlated with GC purity (Figure 5A), suggesting that TME
with decreased tumour purity had a significantly increased
infiltration of stromal and immune cells. In addition, TILs
were confirmed to be negatively correlated with GC purity
(Figures 5B,C) (Saltz et al., 2018).

Furthermore, we used the MCPcounter algorithm to evaluate
the relative abundance of infiltrating stromal and immune cell
subpopulations against GC purity (Figure 5A). T cells, cytotoxic
lymphocytes, B lineage, myeloid dendritic cells, monocytic
lineage, fibroblasts and endothelial cells exhibited a
consistently negative correlation (R < −0.4) with GC purity.
We further characterised TME heterogeneity using the xCell
algorithm, which can evaluate as many as 39 different
immuno-oncology cell types (Figure 5A). Similar to the
previous result, fibroblasts, endothelial cells, myeloid dendritic
cells and several T and B cell types were found to be negatively
correlated with GC purity (R < −0.4). Although numerous
immune cell types (CD8+ naive T cells, Th1 cells and Th2
cells) were positively associated with GC purity, the
correlation was relatively weak.

Lastly, we attempted to assess the prognostic implications of
these purity-related stromal and immune cells in GC
(Figure 5D). Survival analyses revealed that fibroblasts and
endothelial cells were consistently associated with worse OS
and RFS. However, T cells, particularly memory T cells, were
consistently associated with better OS and RFS. The results of the
xCell algorithm revealed that monocytes might correlate with
worse OS and RFS. Therefore, T cells, fibroblasts, endothelial cells
and monocytes can be a cluster of nontumour cells contributing
to TME and specific clinical outcomes for patients with GC with
varying purity levels.

3.6 GC Purity is Strongly Correlated With
Chemotherapy Response
Chemotherapy is the mainstay of treatment for patients with
advanced GC. However, chemotherapy resistance is the
primary cause of treatment failure. Given that distinct
clinical, biological and microenvironmental features are
associated with GC purity, we further investigated the
relationship between GC purity and chemotherapy
response to promote individualised treatment decisions.
The analysis was performed in a subset of patients in the
meta-data cohort with data on chemotherapy (n � 863). Of the
863 patients, 732 received adjuvant chemotherapy. We found
that GC purity could serve as an independent predictor for
adjuvant chemotherapy benefit (Table 4). Patients with GC
with a high purity level who received adjuvant chemotherapy

had a significant OS benefit (HR, 0.101; 95% CI, 0.014–0.719;
p � 0.022).

Furthermore, we determined whether varied purity levels were
associated with differences in clinical benefit from adjuvant
chemotherapy. Among patients who received adjuvant
chemotherapy (n � 732), we found significant OS differences
among three subgroups (Figures 6A,B). Adjuvant chemotherapy
was associated with significantly increased OS and RFS rates in
patients with GC in the high- and middle-purity subgroups
(Figures 6C,D). However, no benefit from adjuvant
chemotherapy was observed among patients with GC in the
low-purity subset (Figure 6E).

Eventually, we assessed the value of GC purity in facilitating
individualised chemotherapy regimens. We performed ridge
regression to predict the drug susceptibility results for each
sample (Figure 6F) using the CTRP and PRISM-derived drug
response data. Spearman correlation analysis between the AUC
value and GC purity was used to select agents with a significant
correlation coefficient (Figure 6G). In addition, a differential
analysis among the three subtypes was conducted to identify
agents with lower estimated AUC values in each subgroup
(Figures 6H,I). These analyses yielded two CTRP-derived
compounds (fluorouracil and paclitaxel) and four PRISM-
derived compounds (fluorouracil, capecitabine, cisplatin, and
oxaliplatin). These compounds had lower estimated AUC
values in the high-purity subgroup and a negative correlation
with GC purity, suggesting that chemotherapy resistance to these
five agents was observed in patients with GC with low tumour
purity.

4 DISCUSSION

GC tissues have a diverse mixture of tumour and nontumour cells
within their microenvironment. Tumour purity has been
recognised as a potential prognostic factor for GC (Aurello
et al., 2017; Zhou et al., 2017; Ahn et al., 2018; Kemi et al.,
2018). However, the purity level in previous studies was estimated
by pathologists through visual evaluation, which could be affected
by the sensitivity of histopathological characteristics,
interobserver bias and variability in accuracy (Cohen et al.,
2012; Smits et al., 2014). Moreover, because GC is a highly
heterogeneous disease, analyses based on one or a few datasets
inevitably lead to the neglect of tumour heterogeneity, a non-
negligible factor for cancer biology and treatment (McGranahan
et al., 2016). Therefore, previous single-centre studies with
relatively small sample size limited the significance of their
results. More importantly, previous studies failed to assess
features other than clinical outcomes owing to the lack of
different omic data.

Instead of the routine pathology-based estimation, we used the
ESTIMATE algorithm, a computational method, in this study
owing to its compatibility with RNA-seq and microarray
transcriptome profiles, thus resulting in a more objective and
accurate assessment (Aran et al., 2015). The extremely high
tumour purity in various GC cell lines further suggested that
the ESTIMATE algorithm has excellent robustness in calculating
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tumour purity in GC. In the present study, we integrated 2,259
GC cases from 13 different cohorts into a meta-data cohort and
systematically investigated the role of GC purity. Owing to the
benefits of the meta-data cohort with large sample size, tumour
heterogeneity could be fully considered, which enhanced the
reliability of our results and enabled us to reveal common key
features of GC purity (Ricketts et al., 2018). We found that GC
tissues from the same patient had a high concordance of purity
level. Moreover, GC purity was strongly associated with clinical,
biological and microenvironmental features. These findings
suggest that tumour purity may be a patient-specific intrinsic
characteristic of GC (Aran et al., 2015). Therefore, false
interpretations owing to varied purity levels may negatively
affect our understanding of GC biology and our ability to
select the optimal treatment strategy.

For clinical features, consistent with the results of previous
studies (Aurello et al., 2017; Zhou et al., 2017; Ahn et al., 2018;
Kemi et al., 2018), low tumour purity was more likely to be found
in the malignant phenotype and was associated with poor
prognosis outcomes (OS and RFS). In addition, low tumour
purity was strongly associated with mesenchymal, invasive and
EMT phenotypes. Previous studies have suggested that malignant
GC cells can recruit abundant surrounding cells within the TME
and subjugate them to create a protective shield against immune
attack (Silver et al., 2016). However, GC cells with limited
invasive and metastatic features tend to form a solid bulk with
less nontumour cell infiltration (Zhang et al., 2017). Therefore,
the strong relationship between GC purity and
clinicopathological and molecular factors may be partially
attributed to their role in maintaining the balance between
tumour and nontumour cells (Ying et al., 2011). Low tumour
purity and correlated cellular heterogeneity may be responsible
for the aggressive phenotype and poor prognosis of GC.
Therefore, GC purity provides novel insights into estimating
malignant phenotypes, thus explaining why most therapeutic

strategies aimed purely against GC cells do not have an ideal
outcome.

Furthermore, we determined that tumour purity is a robust
independent prognostic indicator for GC. GC purity retained its
prognostic relevance even after the classic clinicopathological
prognostic factors were considered. These findings highlight
the pivotal role of nontumour cells in the prediction of
prognosis. Therefore, we integrated GC purity with other
independent indicators to develop a prognostic nomogram.
Compared with the TNM staging system, the nomogram
showed superior validity and reliability in predicting survival
time (OS and RFS), which further emphasised the requirement of
considering GC purity in clinical management, especially for
prognostic prediction.

Concerning biological features, distinct functional processes
were the primary differential phenotype that resulted from varied
GC purity levels. High tumour purity was associated with
metabolism- and proliferation-related pathways. However, low
tumour purity was associated with stromal- and immune-related
pathways. For example, the IL6–JAK–STAT3 pathway, which is
involved in the proliferation, survival, invasiveness andmetastasis
of tumour cells and suppresses the antitumour immune response
in TME (Johnson, 2018), had high pathway activity in the low-
purity group. The IL2–STAT5 signalling pathway, which is
important for maintaining the development and function of
regulatory T cells (Jones et al., 2020), was activated in the low-
purity group. These results may explain the malignant phenotype
and unfavourable prognosis of low-purity tumours.

Concerning the microenvironmental features, consistent with
the finding that low GC purity was markedly associated with
stromal and immune activation pathways, we found that tumour
purity had a close relationship with the characteristics of cell
infiltration in TME. Endothelial cells and fibroblasts were
markedly enriched in low-purity tumours. Survival analyses
revealed that the proportion of endothelial cells and fibroblasts

TABLE 4 | Univariate and multivariate cox analyses for tumor purity in patients who received adjuvant chemotherapy.

Univariate Multivariate

Samples HR
(95%CI)

p value Samples HR
(95%CI)

p value

Age
Increasing years 732 1.006 (0.996, 1.017) 0.22
Gender
Female 250 Reference
Male 482 0.929 (0.731, 1.180) 0.545

Lauren classification
Intestinal 248 Reference Reference 248 Reference Reference
Mixed 46 1.783 (1.092, 2.911) 0.021 46 1.662 (1.013, 2.728) 0.044
Diffuse 366 1.253 (0.957, 1.640) 0.101 366 1.088 (0.827, 1.432) 0.548

TNM stage
Stage I 84 Reference Reference 79 Reference Reference
Stage II 220 3.027 (1.443, 6.351) 0.003 204 2.681 (1.272, 5.653) 0.01
Stage III 294 7.258 (3.555, 14.819) <0.001 263 6.581 (3.213, 13.480) <0.001
Stage IV 134 14.248 (6.913, 29.369) <0.001 114 11.932 (5.747, 24.777) <0.001

Tumor purity
Increasing values 732 0.066 (0.013, 0.343) 0.001 660 0.101 (0.014, 0.719) 0.022

HR, hazard ratio; CI, confidence interval. The bold values mean that the results were statistical significance.
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FIGURE 6 | Drug response features of tumour purity for chemotherapy of gastric cancer. (A)Kaplan–Meier curves for overall survival (OS) among different purity subgroups of
patients who received adjuvant chemotherapy. p-values were obtained using the log-rank test. The + symbols in the panels indicate censored data. (B) Subgroup analyses for
adjuvant chemotherapy using the Cox proportional hazards regression model. The lines represent the 95% confidence intervals of the hazard ratios. (C–E) Kaplan–Meier curves for
OS among patients who received adjuvant chemotherapy (CTX) and those who did not (non-CTX) in the (C) high-purity, (D) middle-purity and (E) low-purity subgroups.
p-valueswere obtained using the log-rank test. The+ symbols in thepanels indicate censoreddata. (F)Thepredictedarea under the curve (AUC) value of chemotherapeutic drugs for
each patient. (G) TheSpearman correlation coefficient between tumour purity andAUCvalues. (H,I)Differences in the predictedAUC value for chemotherapeutic drugs basedon the
(H)CTRPand (I)PRISMdatabases among the three subgroups. The upper and lower ends of the boxes represent the inter-quartile range of values. The horizontal width of the violin
represents the data density. p-values were obtained via the Kruskal–Wallis test. CTX, adjuvant chemotherapy; non-adjuvant chemotherapy, non-CTX.
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presented negative prognostic value, partially explaining the
unfavourable prognosis in the low-purity group. However, not
all immune cells were substantially enriched in tissues with low
GC purity. The number of antitumour cells, represented by CD8+

T cells and NK cells, may not increase in low-purity tumours,
suggesting that these antitumour immune cells cannot infiltrate
the established protective shield around GC cells (Zhang et al.,
2020).

Eventually, we assessed the potential therapeutic effects of tumour
purity in GC. The clinical data suggest that high GC purity can serve
as an independent predictor for adjuvant chemotherapy benefits.
Compared with those in the low-purity subgroup, patients in the
high- andmiddle-purity subgroups could benefitmore from adjuvant
chemotherapy. Consistently, the drug response analysis revealed that
the high tumour purity was positively correlated with chemotherapy
sensitivity, suggesting that patients with high purity values are more
sensitive to chemotherapy. Significant activation of proliferation- and
metabolism-related pathways in high-purity tumours may induce
considerable sensitivity to paclitaxel and fluorouracil. The low
sensitivity of low-purity tumours to adjuvant chemotherapy is
consistent with our observation that low-purity tumours contain
abundant fibroblasts, which are associated with chemotherapy
resistance (Yu et al., 2017). Low-purity tumours are also
characterised by significant activation of the EMT signalling
pathway. EMT has been reported to confer resistance to
chemotherapy (Sale et al., 2019). Signalling pathways that regulate
EMT, such as TGF-β and hedgehog pathways, are activated in low-
purity tumours and correlated with chemotherapy resistance (Chen
et al., 2021).

One of themain advantages of this study was the use of meta-data
cohorts with large sample size and systematic analysis of tumour
purity inmultidimensional profiles. Our findings highlight the critical
role of tumour purity in GC biology and clinical management.
However, the present study had several limitations, such as the
retrospective nature of clinical data. This study focussed on
analysing the association of clinical and molecular factors with the
whole microenvironment (tumour purity) without referring to
specific cell types. Therefore, further in-depth studies should be
conducted to interpret the effects of specific cell types on TME
and assess their relationship with GC cells.

In conclusion, this study highlights that GC purity is closely
associated with clinical, biological, TME and drug-response
features. Therefore, ideal clinical management of GC should
focus on not only the properties of tumour cells but also non-
tumour components. A comprehensive evaluation of tumour
purity in individual patients with GC can help to elucidate the
complex role of the GC microenvironment and provide novel
insights into individualised treatment regimens.
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Supplementary Figure 1 | Tumour purity in gastric cancer (GC) cells and tissues.
(A) Principal component analysis (PCA) score plot for the expression profile of the 13
datasets before (left) and after (right) batch effect removal. (B) Spearman correlation
analysis of purity value before and after chemotherapy. (C) Spearman correlation
between purity value and age.

Supplementary Figure 2 | Prognostic nomogram based on tumour purity and
clinical factors for gastric cancer. (A) Prognostic nomogram for overall survival (OS).
(B) Prognostic nomogram for recurrence-free survival (RFS).

Supplementary Figure 3 | Weighted correlation network analysis (WGCNA) for
tumour purity. (A) Evaluation of soft-thresholding power. (B) Hierarchical
dendrogram of the co-expression modules identified using WGCNA. (C) The
biweight midcorrelation correlation between module membership and gene
significance for the yellow, blue, red and turquoise modules.
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