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Abstract
The placenta is the first organ to form and performs the functions of the lung, gut, kidney, and endocrine systems.
Abnormalities in the placenta cause or reflect most abnormalities in gestation and can have life-long consequences for the
mother and infant. Placental villi undergo a complex but reproducible sequence of maturation across the third-trimester.
Abnormalities of villous maturation are a feature of gestational diabetes and preeclampsia, among others, but there is
significant interobserver variability in their diagnosis. Machine learning has emerged as a powerful tool for research in
pathology. To capture the volume of data and manage heterogeneity within the placenta, we developed GestaltNet, which
emulates human attention to high-yield areas and aggregation across regions. We used this network to estimate the
gestational age (GA) of scanned placental slides and compared it to a baseline model lacking the attention and aggregation
functions. In the test set, GestaltNet showed a higher r2 (0.9444 vs. 0.9220) than the baseline model. The mean absolute error
(MAE) between the estimated and actual GA was also better in the GestaltNet (1.0847 weeks vs. 1.4505 weeks). On whole-
slide images, we found the attention sub-network discriminates areas of terminal villi from other placental structures. Using
this behavior, we estimated GA for 36 whole slides not previously seen by the model. In this task, similar to that faced by
human pathologists, the model showed an r2 of 0.8859 with an MAE of 1.3671 weeks. We show that villous maturation is
machine-recognizable. Machine-estimated GA could be useful when GA is unknown or to study abnormalities of
villous maturation, including those in gestational diabetes or preeclampsia. GestaltNet points toward a future of genuinely
whole-slide digital pathology by incorporating human-like behaviors of attention and aggregation.

Introduction

The placenta is the first organ to form and functions as the
fetal lung, gut, kidney, endocrine, and immune systems. As an
active participant in gestation, it consumes as much oxygen at
term as the entire fetus [1]. Placental pathology causes and

reflects adverse events in pregnancy [2, 3]. Pathology in the
placenta can have lifelong consequences for mothers and
offspring, including increased risk of cardiovascular disease
[4], bronchopulmonary dysplasia [5], cerebral palsy [6], col-
orectal carcinoma [7], and asthma [8]. Therefore, the exam-
ination of the placenta can yield considerable benefit. Yet,
<20% of placentas are examined in the United States, and
significant lesions are frequently unrecognized [9, 10].

Digital pathology has the potential to revolutionize our
understanding of placental function and disease [11]. Rou-
tine diagnostic pathology relies on qualitative assessment
and pattern recognition. Research studies on human pla-
centas usually rely on these assessments or quantitative
measurements of selected regions done by hand. A more
quantitative, thorough examination may identify new biol-
ogy and pathophysiology. The sheer volume of archived
glass slides of placentas, ~120,000 at our institution alone,
with ~500,000 cells in each whole-slide image (WSI),
provides an enormous untapped reservoir of material for
hypothesis development and testing.
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In comparison, clinical examination captures only a fraction
of the information from each slide, and the quality is dependent
on the examiner. Despite the accessibility of placentas at the
time of birth, that information is discarded in most cases. Once
an AI system is operating, increasing the scale, adding new
populations or diseases is simple. This could include placentas
from low-resource or international settings, patients with spe-
cific sociodemographic factors, or patients with emerging
diseases of pregnancy, like COVID-19.

Changes over time

Over the course of the second- and third-trimesters, the
placental disc increases approximately tenfold in size. The
most significant microscopic changes are within the term-
inal villi, with increased numbers of small villi with
decreased cellularity, increased stromal density, migration
of capillaries to below the syncytial membrane, and col-
lection of syncytiotrophoblast nuclei into knots. These
changes have the overall effect of minimizing the distance
between maternal and fetal blood [12–14]. In analogy with
the lung, this results in maximum surface area with mini-
mum diffusion distance for oxygen and nutrients (Fig. 1).
Determination of the appropriateness of villous maturation
is a key step in assessing a placenta. This task is daunting,
as it involves the integration of the factors mentioned above
across multiple slides to form a single gestalt. Accordingly,
interobserver variability is high [15–17].

Gestational age (GA) is the single most important factor
in perinatal well-being. The probability of a newborn suc-
cessfully transitioning from womb to nursery to home
increases markedly with GA, and the probability of adverse
outcomes including hypoxic-ischemic encephalitis, necro-
tizing enterocolitis, and bronchopulmonary dysplasia
markedly decrease [18]. Accurate identification of GA most
commonly relies on sonographic measurements made in the
first- or second-trimester [19–21]. These measurements may
not be available in low-resource settings or when prenatal
care is inadequate. Other methods, such as the recalled date
of the last menstrual period or sonographic measurements
made in the third-trimester, are less accurate.

The placenta and digital pathology

Compared to neoplasia, the placenta is relatively under-
studied by digital pathology. Studies using photo-
micrographs of single fields and manual annotation show
the potential for scientific discovery using deep, image-
based phenotyping of the placenta. Manual measurement of
villous and vascular surface area has shown changes over
pregnancy [12, 13]. Preeclampsia (PreE) has been asso-
ciated with changes in villous count, area, diameter, capil-
lary count, and degree of capillarization in the villous core

[14]. Gestational diabetes has been associated with
decreased villous vascular volume [22]. Abnormal villous
maturation has a genetic expression signature—placentas
with a diagnosis of accelerated maturation have gene
expression more appropriate for placentas delivered
4.7 weeks later with normal maturation [23].

More recent studies support the feasibility of applying
modern machine learning and digital pathology techniques to
the placenta. Studies have shown the ability to segment villi
from scanned slides and measure their stromal density and
vessel numbers [24, 25]. Published algorithms exist for
identifying cytotrophoblast, fibroblast, macrophage, syncytio-
trophoblast, and vascular endothelial cells in the placenta [26].

Deep learning models employing convolutional neural net-
works (CNN) have shown impressive performance for identi-
fying image content in multiple domains and tasks, including
digital pathology [27–32]. In training, networks commonly
learn to associate a single image or HPF to an outcome or
finding of interest. Contrary to CNN’s implicit assumption of
one image corresponding to one label, a single WSI contains
thousands of HPF with considerable heterogeneity. Practicing
pathologists must examine all HPF, attend to fields they con-
sider representative, and aggregate their findings to produce a
single diagnosis. The gap between algorithm development and
practice reduces the clinical relevance of many AI studies
including those in the broader medical imaging field. We
propose an algorithm that learns the patient outcome from a
collection or set of images in training. This helps to incorporate
more regions from each WSI during the learning procedure.

The problem of aggregation extends beyond digital
pathology and is present whenever a model receives mul-
tiple inputs. Practitioners must decide at which stage of the
pipeline data are incorporated, how they are weighted, and
the extent to which aggregation is trainable. In non-image
tasks, data are routinely input as a single vector allowing
complex trainable interactions. Conversely, ensemble stra-
tegies may aggregate results from multiple separately
trained models without back propagation. Choices in
aggregation strategy are liable to be suboptimal if practi-
tioners are unaware that a choice is being made.

This study aims to develop a deep learning model that
incorporates and predicts across whole slides and demon-
strates the utility of that model in the estimation of GA in
placenta—a low concordance task in notoriously hetero-
geneous tissue.

Materials, subjects, and methods

Patients and materials

Pathology reports from patients delivering 1/1/2010 to 10/
31/2019 were retrieved from the laboratory information
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system (Cerner Build List Id: 2014.08.1.36). GA, clinical
history, and diagnoses, including accelerated, delayed, and
appropriate maturation, were extracted using regular
expressions (6.2) and the Natural Language Toolkit (NLTK,
version 3.3) on Python (version 3.6.9) as described [33, 34].

We identified cases with an obstetrically determined GA
of 24–42 weeks with an original pathologic diagnosis of
appropriate villous maturation, confirmed through a review
by a practicing perinatal pathologist (JAG). This GA was
considered the ground truth for each case.

Clinical examination of placentas at our institution includes
1 cassette of membranes, 1 of umbilical cord sections, 1 with
three incisional biopsies of the placental disc’s maternal sur-
face (basal plate plus villi), 2 cassettes of the representative
non-lesional full-thickness placental disc, and additional cas-
settes containing any lesions. The maternal surface biopsies
and full-thickness sections are selected from the inner 2/3 of
the radius of the placental disc were reviewed for possible
scanning. We selected a slide with morphology consistent
with clinically determined GA without mass-forming lesions
or villous abnormalities. Given low counts in the earliest GA,
we allowed cases with decidual or chorionic plate pathology
(e.g., chorioamnionitis).

One slide per patient with villous tissue, either basal villous
wedges or full-thickness placental disc, was selected and
scanned at the institutional Pathology Core Facility using a
Hamamatsu Nanozoomer 2.0 HT scanner at ×20 objective
magnification. 154 slides were split randomly, stratified by
GA, into training, validation, and test sets with proportions of

~70% (107 slides), ~15% (23 slides), and ~15% (24 slides),
respectively. Because deliveries are not evenly distributed
across the GA and maturation anomalies are more prevalent at
earlier GA, the training, validation, and test sets are not pre-
cisely balanced at each GA. A list of cases and corresponding
GA is presented in Supplementary Table 1.

Regions of terminal villi with villous maturation con-
sistent with GA were box annotated by the pathologist.
Stem villi, areas of fibrin deposition, and septae were
avoided. On full-thickness sections, parabasal areas were
preferentially annotated. In total, 1918 region annotations
(at least 10 per slide) were made. Regions were extracted
with OpenSlide (1.1.1) on Python (3.6.9) and were color
normalized using the method from Macenko et al. [35].
Regions were tiled into 512 × 512 pixel high-power fields
(HPF) at ×20 magnification level and shrunk to 256 × 256
(effective magnification ×10), for a total of 26,555 HPF
(Supplementary Table 1). During training, HPF are aug-
mented by random rotations and changes in brightness and
contrast [36].

Baseline model

HPF are input into a feature extraction CNN based on
VGG19 (30) with trainable weights initialized by a pre-
trained model on ImageNet [37] in Keras (Tensorflow
2.3.0). The network is modified by replacing the fully
connected layers in the original VGG19 architecture with a
single fully connected layer of size 1024 with ReLU
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Fig. 1 Changes in terminal villi
over gestation. In the early 3rd-
trimester (1, 3),
syncytiotrophoblast (ST) nuclei
are evenly spaced. Capillaries
(C) are distant from maternal
blood, which bathes the villi.
The stroma consists of loose
extracellular matrix proteins
with frequent macrophages and
fibroblasts (brown and pink
stars). At term (2, 4), the villi are
smaller. Syncytiotrophoblast
nuclei are gathered into knots
(K), thinning the
vasculosyncytial membrane.
Capillaries are directly beneath
the syncytiotrophoblast layer.
Stroma is denser with lower
cellularity.
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activation function and a dropout with a rate of 0.5. The
extracted feature map is submitted to the representation
learning sub-network, which consists of sequential fully
connected layers of size 1024 and 256 with ReLU activation
functions and a dropout with a rate of 0.5 after the first fully
connected layer, and one linear node at the end to produce a
single value—the estimated gestational age (EGA). The
mean squared error loss between EGA and clinically
determined GA (as the ground truth) is used to train the
model. The baseline model was trained for 2000 epochs. To
aggregate across a WSI for inference, the median EGA for
all HPF is determined post hoc.

GestAltNet–input–glimpsing

In the base model, training explicitly links the clinical
outcome to a single HPF. We propose an alternative net-
work for estimating GA, GestAltNet (Figs. 2 and 3).
GestAltNet learns in aggregate from a collection of images

and relates the clinical outcome to a set of HPF during
training. While the baseline model trains using a single HPF
as input, GestAltNet uses a glimpse as input in training.
Each glimpse consists of 16 randomly selected HPF from a
single WSI, generally representing multiple regions.
Glimpses are examined in batches of 64 and consumption of
all batches represents one epoch. HPF and glimpses are
resampled as needed to maintain glimpse and batch sizes.
HPF are randomly assigned to glimpses at initialization and
after every 50 epochs (chosen based on the performance in
the validation set).

GestAltNet–pipeline–attention and aggregation

As in the baseline model, images are input into a VGG19
derived network. The intermediate output of VGG19 at
block3, consisting of 256 3 × 3 kernels (Fig. 3, red squares),
is input to the attention sub-network. This sub-network is a
feedforward neural network with two fully connected layers

Glimpse formationSample tiles w/o replacementAnnotating ROIs Distributing glimpses into batches

All patients (one epoch)

batch
64 glimpses

Fig. 2 Glimpse and batch formation: Scanned whole-slide images
are annotated and ROIs are extracted (left panel). ROIs are tiled
into HPFs (2nd panel, black lines). HPFs are randomly sampled
without replacement across all ROIs of each patient to form a glimpse
(third panel, HPF shading indicates glimpse) second panel from left,

colored HPFs indicate their corresponding glimpse. Glimpses are
constant size (16) except the last glimpse (purple oval) which takes the
remainder. Glimpses from one patient are distributed across batches
(fourth panel, gray ovals are glimpses from other patients).

... ......

Aggregation

GA

Feature maps for HPFs

GA

Average pooling

Attention sub-network

Representation
learning

Attentions

Backpropagate (GA - GA)2 for one batch 

...

...

... ...

Feature extraction sub-network

Intermediate
convolution output

W
ei

gh
te

d
po

ol
in

g

one glimpse of size n

batch
64 glimpses

...
...

...

...

... ......

...

...

...

...

... ... ... ...

=+ + +

x + x + x+...

... ...

.........

Fig. 3 Model pipeline: Glimpses are submitted as a batch to a
convolutional neural network (purple shaded area). Intermediate
outputs (red boxes) are input to an attention sub-network. Features
maps (f1–fn) are weighted by their attention (a1–an) and aggregated
via weighted averaging (oval). The representation learning subnetwork

estimates the gestational age (GA) based on the aggregated feature
map f. The mean squared error (GA - GA)2 inside a total batch of 64
glimpses is used in backpropagation. The whole learning procedure is
done in an end-to-end manner.
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of size 256, 256 with ReLU activation functions, a dropout
with a rate of 0.5 after the first fully connected layer [38],
and one linear node at the end. The linear node results in a
single scalar value for each HPF in the glimpse, repre-
senting its attention. To limit extreme values, attentions are
transformed using softmax.

A single aggregate feature map (f in Fig. 3) is obtained
through weighted averaging over the feature maps of the 16
HPF within the glimpse, where weights are the corre-
sponding HPF attentions. The aggregate feature map is
submitted to the representation learning sub-network as in
the baseline network to compute EGA. During training,
mean squared error between EGA and clinically determined
GA (ground truth) is used as the loss function, and back-
propagation is performed end-to-end across the entire net-
work. GestAltNet was trained for 500 epochs. For the
whole-slide inference, the median EGA, computed across
glimpses, was determined.

Metrics

To assess the overall accuracy, we measured the coefficient
of determination (r2) and the absolute error in weeks. For
test and unannotated slides, EGA was calibrated using the
linear regression of EGA vs. GA for validation regions and
whole slides (respectively). We considered an absolute error
of >3 weeks as clinically significant because (1) accelerated
villous maturation has been diagnosed based on an apparent
GA of ≥37 weeks with chronologic GA of ≤34 weeks, i.e.,
3 weeks [39]; (2) gene expression study showing acceler-
ated villous maturation equates to 4.7 weeks ahead, and
delayed maturation equates to 1.5 weeks behind normal
gestation (average 3.1 weeks) [23]; (3) Using the placental
weight reference of Pinar et al. [40], a placenta of average
weight at one GA is considered large or small for gesta-
tional age (LGA, SGA) 3–5 weeks earlier or later. For
example, a placenta with the mean weight for 24 weeks, 189
grams, is considered LGA at 21 weeks (expected 114–172
grams) and SGA at 27 weeks (expected 192–305 grams).

Attention and whole-slide estimation of GA

For the whole-slide level inference 36 new slides, neither
previously annotated nor part of the training, validation
and testing sets were used. The non-tissue area of the WSI
was masked out by first applying Gaussian smoothing to
the slide’s grayscale thumbnail, and then applying Otsu’s
image binarization method to the thumbnail [41]. Atten-
tion was determined and GA was estimated on a per-HPF
basis for all HPF. To determine appropriate attention
thresholds for the selection of representative HPF in WSI
level inference, we examined the per-HPF attention and
accuracy over the non-overlapping HPF inside the tissue

area of the WSI in our validation set. We set the lower
threshold at the median attention of HPF with absolute
errors of ≤3 weeks and the upper threshold at the 99th

percentile of attention for HPF with absolute errors of
≤3 weeks in the validation set.

For generating heat maps, 87.5% overlapping HPF were
extracted, and attention and EGA values were produced on
a per-HPF basis. Attention was colored with minimum and
maximum values scaled based on variation in the validation
set. EGA was colored as H&E (appearing pink at low
power) for absolute error ≤3 weeks, red if >3 weeks high
and blue if >3 weeks low.

This study was approved by the institutional review
board (STU00211333). WSI are available upon execution
of a data use agreement.

Results

Interobserver variability

29,943 placentas were examined over 9.5 years by eight
pathologists. Given a GA determined by clinical para-
meters, pathologists diagnose whether maturation is
appropriate, accelerated, or delayed for the stated GA.
Overall, 17,806 (60%) placentas were diagnosed with
appropriate maturation, 5108 (17%) with accelerated
maturation and 1024 (3.4%) with delayed maturation
(Fig. 4). 6005 placentas (20%) received multiple diagnoses,
for example, “appropriate for GA with regionally delayed
maturation,” or had no description of maturation, which
may occur when maturation is obscured by other findings
like chorangiosis or post-mortem changes. The percentage
of cases diagnosed as normal varied from 51 to 77%, as
accelerated from 8.2 to 27%, and as delayed from 0.2 to
13%. Assuming a random distribution of placentas among
pathologists, this represents significant interobserver
variability.

Deep learning model performance

In the test set, the GestaltNet and baseline models showed r2

of 0.9444 and 0.9220, respectively (Fig. 4a–b). After cali-
bration, the mean absolute error (MAE) was 1.0847 weeks
for the GestaltNet model and 1.4505 for the baseline model.
An error of ≥3 weeks is significant in evaluating GA. By
this standard, both the GestaltNet and baseline models
adequately estimated GA 24/24 test cases (Fig. 5).

Attention and estimation of GA across whole slides

The GestaltNet technique simulates a pathologist’s cognitive
process of incorporating information across multiple regions of
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interest. However, it still relies on hand-annotated regions of
interest selected to include representative, high-quality areas of
tissue. To explore variation across tissue and emulate the
pathologist attention and gestalt formation process across the
whole slide, we obtained attention and EGA across 36 WSI
that were unannotated and not part of the existing training,
validation, or test sets. This resulted in an r2 of 0.8859 and an
MAE of 1.3671 weeks. The model estimated GA was within
3 weeks of the actual GA in 35/36 (97.22%) cases (Fig. 6). To
illustrate and further examine how WSI attention and predic-
tion relate, we generated whole-slide attention and predictions

for one WSI using overlapping HPF (Fig. 7). Perhaps sur-
prisingly, given that we did not train our model to discriminate
between different regions of the placenta, terminal villi show
the highest attention, while stem villi, basal plate, and chorionic
plate showed lower attention. GA estimation was variable
within the villous region; however, the most accurate areas
tended to be away from large stem villi or other masses. Some
non-villous areas, including chorionic vessels, are attended to
with divergent and inaccurate predictions.

Discussion

GA is the most significant factor in neonatal well-being.
However, practicing pathologists rely on GA derived from
other factors and show considerable inter-rater variability
even in identifying whether the villous appearance is
appropriate for the stated GA. We show that GA can be
predicted with extraordinary accuracy from the beginning of
viability (24 weeks) to post-term (42 weeks) using a deep
learning approach. In practice, pathologists examine several
regions across multiple whole slides, looking for different
features that are either concordant or discordant with the
chronological GA.

Developing a model for this task requires a solution to
what we call “The Problem of Aggregation.” Our solution is
to analyze multiple HPF in a glimpse. Aggregation occurs at
the feature map stage. Feature maps are weighted based on
the attention generated by an independent multilayer per-
ceptron. The model takes the form of a single end-to-end

Fig. 4 Interobserver variability in clinical diagnoses. Despite well-
defined patterns of maturation, pathologists are inconsistent in their
diagnoses of whether the villous maturation is normal (green), accel-
erated (red), or delayed (yellow) for the stated gestational age. Each
column represents one pathologist.
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Fig. 5 Test results. a In the test set, the baseline model shows an r2 of 0.9220 with a mean average error (MAE) of 1.4505 weeks. b The
GestaltNet shows an r2 of 0.9444 with an MAE of 1.0847 weeks.
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network in which all sub-networks are trainable. We show
that the integration of image features at an early stage with
weighting and end-to-end trainability provides superior
accuracy compared to post hoc averaging used in the
baseline model. The improvement is highlighted by the
stress test of calculating EGA without the regularization
provided by human annotation.

One of the characteristics of deep learning algorithms
that has made them so successful in digital pathology is
their end-to-end learning approach. These adaptive algo-
rithms learn to predict labels directly from pixel values in
contrast to prior approaches that seek to incorporate a-priori
knowledge in algorithm design. The unbiased end-to-end
learning method is often credited as enabling deep learning
models to learn latent predictive features in histology that
may not be appreciated by human pathologists, but at the
cost of algorithm interpretability.

End-to-end learning becomes practically difficult when
labels correspond to an entire slide or a large region rather
than a high-power field due to the scale of data corre-
sponding to a single label and the limitations of computer
hardware used to train deep learning algorithms. In this
scenario, end-to-end learning requires that the mechanism
for aggregating over multiple fields be incorporated into the
learning model and be adaptive. In applications like tumor
detection, a single positive field gives the whole-slide label,
and have been solved using approaches like multiple
instance learning. Other applications may be more

compositional, requiring the interpretation and weighting of
several tissue patterns, or learning to perform a weighted
averaging over regions of the slide.

This paper provides a solution involving exhaustive
random sampling of HPF representing a single case with the
differential weighting of HPF by attention. This strategy is
broadly applicable to any scenario when large amounts of
data are consumed for each sample. However, it is parti-
cularly relevant for image analysis, where the interpretation
of one portion of the image depends on context from other
portions. For example, a pedestrian waving to another
pedestrian on the other side of a street is more likely to enter
the street than one waving to a departing car. In pathology,
injured liver adjacent to a liver tumor represents mass effect,
not cirrhosis. GestAltNet assigns attention weights on a per-
HPF basis. This reflects the variability in information con-
tent between HPF, even within human-annotated ROI.
Within-image attention, for example Grad-CAM, has been
proposed to address the problem of interpretability in AI
[42]. Theoretically, our attention could be used in a similar
fashion, analogous to the use of dotting pens in pathology
practice to annotate key areas for diagnosis. Within-image
attention has been criticized for focusing on edges or
complex structures and using similar patterns of attention to
explain correct and incorrect answers [43]. It is not clear
that a by-HPF system, such as GestAltNet, is immune from
this problem, and the observation that it assigns similar
attention to correct, miss-high, and miss-low regions
(Fig. 7) is concerning.

Our choice of a single end-to-end network is also
appealing in that it reflects human cognition, and all
operations are potentially trainable. This mimics human
thought patterns of aggregating impressions rather than
diagnoses. Features may also be a more worthy area of
focus as they are representations of biological phenomena,
while HPF is arbitrary grids imposed by computer memory
limitations.

Other authors have addressed the aggregation problem in
the placenta with success. Clymer et al. use the multiple-
resolution pyramid of images found in scanned slide files
to identify vessels within placental membranes followed
by clustering to produce a slide-level diagnosis as either
containing healthy or pathologic maternal vessels [44].
However, this study did not use end-to-end training.

The future

This is among the first studies using machine learning in
placental pathology and demonstrates the potential of this
field. The extremely high accuracy in detecting normal
morphology across gestation will allow the classification of
many abnormalities, some currently unknown or with too
low interobserver reliability to be useful.

ideal (estimated=actual)
linear fit

+/- 3 weeks

GestaltNet model

Actual GA

Es
tim

at
ed

 G
A

Slope: 0.9364, y-Intercept: 2.0603

Fig. 6 WSI Level Test Results on Non-Annotated Set: In this set of
not previously seen slides, the model estimates GA with an R2 of
0.8859 with an MAE of 1.3671 weeks. 35 of 36 cases were called
correctly within ±3 weeks (red lines).
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In high-resource settings, GA is usually determined by
first-trimester ultrasound. The system demonstrated is
unlikely to replace this method but could be useful in cases
where the dating of the pregnancy is unclear, or there is a
discrepancy between the stated and apparent GA. In low or
middle-income settings, photomicrographs of relevant areas
taken using a smartphone and adapter could be used in lieu
of WSIs [45]. In this use-case of human-machine coopera-
tion, the small size of captured images means that a cloud-
based network could provide estimated GA in real-time.

Accelerated and delayed villous maturation are among
the most commonly reported placental findings in large data
sets [33]. Nonetheless, they show poor inter-rater reliability,

decreasing the significance of these findings. AI could be
used in a quality assurance/improvement paradigm to
improve interobserver variability in practice and is likely
useful in identifying maturation abnormalities.

Our solutions to the problem of aggregation, as used in
GestAltNet, will have applications far beyond the placenta.
Intratumoral heterogeneity complicates neoplasia classifi-
cation and is a marker for adverse outcomes [46–48]. In
other non-neoplastic diseases, such as idiopathic pulmonary
fibrosis, heterogeneity itself may be a criterion [49]. Beyond
digital pathology, attention and aggregation within large
and complex images remain fundamental challenges of
image analysis.
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Fig. 7 Example whole-slide attention (top left, detail—middle row)
and prediction (top right, detail—bottom row). Terminal villi are
primarily high attention (yellow, regions 1, 5, and 6). Basal plate (left
side of WSI and region 2), stem villi (region 3, intermixed with villous
areas) and chorionic plate (right side of WSI and region 4) are gen-
erally low attention (purple). Estimated gestational age shows var-
iegation with accurate areas (region 1) intermixed with areas with

inaccurate low (blue, region 2) and high (red, region 3) estimates.
Areas with low attention are disregarded (grayscale). The model is not
explicitly trained to recognize tissue types and shows erroneous high
attention to some areas. For example, one chorionic plate vessel
(region 4) is part high- and part low-attention. The attended part of the
vessel wall gives an estimate that misses low. Intravascular blood is
attended and misses high.
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Limitations

From a generalizability standpoint, the most significant
limitations of this work are the use of a single site with
consistent protocols and a single pathologist reviewer.
Further work is necessary to develop and demonstrate
generalizability across institutions and practitioners. Our
demonstration of interobserver variability is limited in that
pathologists are not reviewing the same placenta, but rather
placentas submitted more or less randomly from the same
population. The remainder of this work suggests that
human-machine collaboration to overcome this variability
will be more productive than perseverating on the precise
degree of heterogeneity.

Conclusion

In conclusion, we report the machine learning-based esti-
mation of GA from scanned histologic slides of the pla-
centa. This demonstrates the tractability of this system and
may be useful in diagnostic, quality, and research settings.
We present a novel aggregation and attention model to
manage and utilize the vast quantity of data present in
whole slides.

Data availability

Data are available after the execution of a data use agree-
ment. Interested investigators are encouraged to contact the
corresponding author.
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