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Abstract

An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human
diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown
genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which
require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes)
instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current
scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the
genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In
this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble
of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple
biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to
integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation
experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-
the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for
training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias
and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene
predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and
computational resources for better disease gene predictions.
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Introduction

While high-throughput genomic studies have led to the

discovery of hundreds and thousands of candidate disease genes,

the identification of genes involved in specific human diseases has

remained a fundamental challenge, requiring time-consuming and

expensive experimentation. Computational approaches that can

reliably predict novel disease genes from the vast number of

unknown genes will provide a useful alternative to speed up the

long and arduous searches for the genetic causes of various human

disorders.

Given that an increasing number of genes have been

experimentally confirmed over the years as causative genes to

various human diseases, it will be useful to develop machine

learning methods to identify novel disease genes from the

confirmed disease genes as positive training examples, based on

the observation that genes associated with similar disease

phenotypes are likely to share similar biological characteristics.

For example, proteins involved in hereditary diseases tend to be

long, with more homologs with distant species, but fewer paralogs

within human genome [1]. They are also likely to attach together

to form functional modules such as protein complexes [2]. In fact,

various studies have shown that genes associated with similar

disorders tend to demonstrate similar gene expression profiling [3],

high functional similarities [4] [5] and physical interactions

between their gene products [6] [7].

In addition, with disease phenotype similarity data, genes

associated with same/similar disease phenotypes are likely to share

similar biological functions. Given a phonotype phi, we can infer its

potential disease genes from those disease genes associated with

phenotypes phj (phi and phj are very similar) [8].

A number of methods above have thus been proposed to

prioritize candidate genes based on different kinds of biological

data, such as gene sequence data, gene expression profile,

evolutionary features, functional annotation data and PPI dataset.

Adie et al. [9] employed a decision tree algorithm based on a

variety of genomic sequence and evolutionary features, such as

coding sequence length and evolutionary conservation, presence,

and closeness of paralogs in the human genome. Topological

information on PPI network has also been demonstrated to be

useful for disease gene prediction. Smalter et al. [10] applied

support vector machines (SVM) classifier using PPI topological

features in addition to sequence-derived and evolutionary features,

while Radivojac et al. [11] built three individual SVM classifiers

using three types of features2PPI network, protein sequence and

protein functional information2and then built a final classifier to
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combine the predictions from three individual classifiers for

candidate gene prediction.

The research work mentioned above employed classical

machine learning methods to build a binary classifier where the

confirmed disease genes are used as positive training set P and

unknown genes as negative training set N. However, these

machine learning techniques hardly perform as well as they could

because the negative set N that they used contained unconfirmed

disease genes (false negatives). In light of aforementioned

limitation, recently positive unlabeled learning (PU learning)

methods have been proposed for the task by building a

classification model in which unknown genes are appropriately

treated as an unlabeled set U (instead of a negative set N). For

example, Mordelet et al. proposed a bagging method ProDiGe for

disease gene prediction. It iteratively choosed random subsets (RS)

from U and then trained multiple classifiers using bias SVM to

discriminate P from each subset RS. The multiple classifiers were

subsequently aggregated to generate the final classifier [12]. Given

that the RS’s were likely to contain less noise (unknown disease

genes) than the original set U, it was able to perform better than

classical binary classification models that inappropriately used U as

negative training data. More recently, Yang et al. designed a novel

multi-level PU learning algorithm PUDI to build a classifier with

better performance for disease gene identification where the

unlabeled set U was partitioned into multiple positive and negative

sets with confidence scores for building the classifier [13].

The prior works have clearly shown that integration of various

biological data sources is not only desirable but also essential for

robust disease gene prediction, since using only a single source of

data for prediction is susceptible to incompleteness and noise in

the genomic data. It is also advantageous to employ an ensemble

approach for prediction, since using a single machine learning

predictor is similarly in risk of potential bias caused by inherent

limitations of individual prediction models. In this paper, we

propose an effective PU learning framework to integrate multiple

biological data sources and an ensemble of powerful machine

learning classifiers for disease gene identification. In our proposed

framework, we first extract multiple positive and negative samples

from unlabeled set U through performing random walk with

restart on different biological networks. We use three biological

networks for this paper: protein interaction network, gene

expression similarity network, and GO similarity network. Then,

we build multiple independent PU learning models that utilize the

extracted positive and negative samples as training data with

different confidence scores. Finally, we design a novel ensemble

strategy called EPU (Ensemble Positive Unlabeled learning) giving

optimized weights to base PU learning models to minimize the

overall error rate for accurate disease gene predictions.

We compare EPU with multiple state-of-the-art techniques,

namely, multi-level example based learning [14], Smalter’s

method [10], Xu’s method [15] and ProDiGe method [12]. The

experimental results show that EPU outperforms the existing

methods significantly for identifying disease genes on 6 disease

groups. In addition, our proposed EPU algorithm also achieves

better results when it is compared to three base PU learning

classifiers, demonstrating that our proposed ensemble-based

approach is able to effectively utilize individual classifiers for

better performance. Finally, we also conduct a case study to show

how our proposed EPU algorithm can discover novel disease genes

for endocrine and cancer diseases.

Materials and Methods

In this section, we begin with the description of the experimen-

tal data used and briefly introduce how the protein interaction

network, gene expression similarity network, and GO similarity

network [16] [17] [18] are constructed. Then we will present the

schema of our proposed EPU algorithm.

Experimental data and gene network modeling
In this paper, we have exploited the following biological data

human protein interaction data, gene expression data, gene

ontology, and phenotype-gene association data.

Human protein interaction data (PPI) is downloaded from the

Human Protein Reference Database (HPRD) [19] and Online

Predicted Human Interaction Database (OPHID) [20]. The

combined PPI dataset contains 143,939 PPIs among a total of

13,035 human proteins. We build a protein interaction network

GPPI = (VPPI, EPPI) where VPPI represents the set of vertices

(proteins) and EPPI denotes all edges (detected pairwise interactions

between proteins). GPPI can be represented as its matrix format, i.e.

WPPI = [wij] where wij = 1 if the corresponding protein pair

vi,vj

� �
[EPPI ; 0 otherwise.

Gene expression data is obtained from RNASeq data which is made

publicly available in the EBI ArrayExpress, by the Illumina

Human BodyMap 2.0 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc = GSE30611). The dataset comprises Fastq reads from

the paired-end sequencing of cells from 16 human tissue types,

including colon, heart, kidney, white blood cells and so on, using

the Illumina HiSeq next generation sequencing platform. This

dataset represents the expression values of 17,652 human genes on

16 human tissue types. Suppose gene gi and gj are represented as

their gene expression profile vectors (xi1, xi2,…, xin) and (xj1, xj2,…,

xjn) respectively where xik (k = 1, 2, …, n) denotes the expression

value of gene i in the k-th tissue. Pearson correlation coefficient is

employed to measure the similarity between gi and gj:

simGE gi,gj

� �
~

Pn
k~1 xik{�xxið Þ xjk{�xxj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k~1 xik{�xxið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k~1 xjk{�xxj

� �2
q ð1Þ

where �xxi~
1
n

Pn
k~1 xik, �xxj~

1
n

Pn
k~1 xjk.

We build a gene expression similarity network GGE = (VGE, EGE),

where VGE represents a set of genes occurring in the gene

expression data and EGE represents a set of edges between the

genes in VGE. For each gene gi, we ranked all genes gj in VGE where

i?j according to decreasing order of simGE(gi, gj), and add an edge

(gi, gj) to EGE if gj is in the top 5 of the list. This helps to filter low

similarity pairs and potential noise in gene expression data. Then

we transform the gene expression network GGE to its matrix format

where the edges of two genes are reformatted to their gene

expression similarity in equation (1).

Gene Ontology (GO, http://www.geneontology.org/) is a set of

controlled vocabulary used to annotate genes and gene products

[21]. Gene Ontology provides three sub-ontologies, namely,

biological process (BP), molecular function (MF) and cellular

components (CC) [21]. For each gene, we build a feature vector

using its annotations from three sub-onotolgies, i.e.

{MF1,…,MF|SMF|, BP1,…,BP|SBP|, CC1,…,CC|SCC|}. For exam-

ple, a gene gi is represented as gene vector gi = (mfi1, …, mfi|SMF|,

bpi1, …, bpi|SBP|, cci1, …, cci|SCC|), where mfij (similar for bpij, ccij) is

GO term similarity between gi and the feature MFj. Since the GO

terms of BP, MF and CC are organized into DAG structure, we use

the computational method in [22] to measure the similarity of two

GO terms. And |SMF| is number of selected MF term features.
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We choose the GO features that could help distinguish disease

genes from non-disease genes with strategy in [13] and top 1000

scored features were selected for each of three feature groups, i.e.

BP, MF and CC, respectively. We then build GO similarity

network GGO = (VGO, EGO), where VGO is the gene set annotated in

GO dataset and EGO is a set of edges between the genes in VGO.

Similarly to the gene expression similarity network, we keep those

top 5 edges which have highest similarities to each gene and other

edges. GGO can be represented as its matrix format, i.e.

WGO = [wij]. Given a gene gi, if gj is one of top 5 lists of gi, wij is

normalized as:

wij~1{
Dis(gi,gj){mingk[VGO

Dis(gi,gk)

maxgk[VGO
Dis(gi,gk){mingk[VGO

Dis(gi,gk)
ð2Þ

otherwise, wij = 0, where Dis(gi, gj) denotes Euclidean distance

between gi and gj and 0#wij#1.

Phenotype-gene association data. 4260 phenotype-gene

association data, spanning 2659 known disease genes and 3200

disease phenotypes, are obtained from the latest version of OMIM

(http://omim.org/) [23]. Goh et al. [6] have categorized the 3200

disease phenotypes in OMIM database into 22 disease groups/

classes, i.e. Cancer, Metabolic, Neurological, Endocrine, etc,

based on the physiological system affected. For example, the

Endocrine disease group comprises 62 OMIM phenotypes,

including OMIM 241850 (Bamforth-Lazarus syndrome) and

OMIM 304800 (Diabetes insipidus, nephrogenic) etc.

Phenotype similarity network. Disease phenotype similar-

ity network [24], is defined as GPH = (VPH, EPH), where VPH

denotes the set of disease phenotypes and EPH denotes relevant

phenotype pairs. Disease phenotypes in VPH are represented as

feature vectors in which feature terms are Medical Subject

Headings (MeSH) controlled vocabulary, and phenotype similar-

ities in EPH are evaluated underline concept relevance and

frequency of MeSH terms appearing in text description of OMIM

documents. According to Vanunu et al. [8], phenotype pairs with

high similarities are regarded as informative and reliable.

Therefore, we apply logistic function to filter out low phenotypic

similarities in EPH, following [2] [8].

The proposed technique EPU
The schema of our EPU algorithm is presented in Figure 1.

EPU first selects candidate positives from positive genes and

reliable negatives from unlabeled genes. It then builds three gene

similarity networks using PPI data, gene expression data and Gene

Ontology data and applies random walk on the three networks to

propagate weights to unlabeled genes that reflect likelihoods of

belonging to positive/negative class. We then exploit the weighted

genes to build three diverse classification models to predict ‘‘soft’’

labels for test genes. Finally, an ensemble learning algorithm

combines the prediction results from the classifiers to make a final

prediction for the classification of the unknown test gene.

Suppose all disease genes from OMIM are stored into a disease

gene set DIS. All the other genes that are not a member of DIS will

be treated as unknown/unlabeled genes and be stored into a set

UG (contains 16,570 genes) [25]. Each gene in DIS and UG is

represented as a feature vector, namely, g!~ff1,:::,fmg where m is

the total number of features from GO terms, protein domains and

PPI topological features, following our previous work [13].

In the next section, we describe how to predict novel disease

genes given the confirmed disease genes for a particular disease or

disorder. The confirmed disease genes for the given disorder group

are treated as positive set P (P5DIS) while randomly selected

unknown genes from UG are treated as unlabeled set U (U5UG,

|U| = |P|), following the settings in [9] [10] [15].

Weighting unlabeled genes by integrating multiple
biological evidences

Given a particular disease class and its known associated disease

genes, we first build the training data sets for machine learning by

prioritizing the candidate positives and reliable negatives based on

their similarity to the query disease class. We build three gene

similarity networks using PPI, gene expression and GO as

described above, and perform a random walk with restart

algorithm on these three gene similarity networks to estimate the

likelihood of the unlabeled genes belonging to disease class or non-

disease class. The details are as follows.

Extracting candidate positives and reliable

negatives. As a typical positive set P is relatively small, we

want to find a set of candidate positive genes CP to complement P.

Given that recent studies have shown that similar phenotypes are

often caused by functionally related disease genes [4] [6], we could

populate the set of candidate positive genes CP with genes

associated to similar/relevant phenotypes, based on the principle

of guilt-by-association. In other words, given a query disease

group/class, we can use its associated phenotypes to uncover

similar disease phenotypes, as shown in Figure S1.

Having identified the candidate positive genes CP, let us now

describe how to extract reliable negative gene set RN. We consider

reliable negatives as those unlabeled genes that are very different

from positive set P. To identify such genes, we first build a

‘‘positive representative vector’’ (pr) by summing up gene vectors in

P and normalizing it. Then, we compute the average Euclidean

distance [26] of every unlabeled gene gi in U from pr. To extract the

reliable negative genes for RN, we regard an unlabeled gene gi as a

member of RN if its distance from pr is longer than the average

distance (of all the genes in U) from pr, formalized as follows:

RN~fgijdis(pr,gi)w�DDg ð3Þ

where dis(pr,gi) is the Euclidean distance between gene gi and

positive representative vector pr. We compute an average distance �DD

of all the unlabeled gene in U from pr as: �DD~ 1
DU D

PDU D
i~1 dis(pr,gi):

Ensemble weighted unlabeled genes via performing label

propagation on multiple networks. We now have the given

positive set P, a candidate positive set CP, a reliable negative set

RN and a remaining unlabeled set U
0
~U{RN for machine

learning. To build a robust classification model, we will extract

those genes with reliable labels that are near the decision boundary

between the positive and negative classes. We adapt the Random

Walk with Restart algorithm [27] to perform flow propagation

which spreads the label information from P, CP and RN to the

unlabeled genes in U
0

on the biological networks that we have

constructed, namely the PPI network GPPI, the GO similarity

network GGO and the gene expression similarity network GGE as

described earlier.

Formally, let R0 be an initialization vector where primitive scores

are assigned to all genes in three networks to indicate the genes’

potential classification labels. Let p0, p
0

0 and n0 denote the initial

values for genes in P, CP and RN respectively, as follows. The genes

gi[P are all given a score p0(gi) = +1, indicating their disease gene

status. Each candidate positive gene gi[CP is assigned a score that

computes its maximal phenotypic similarity to the known disease

genes in P,p
0

0 gið Þ~maxVphi[PH(gi),Vphj[PH(P)sim(phi,phj), where

PH(gi) denotes disease phenotypes caused by gene gi, and PH(P)

Ensemble PU Learning for Disease Gene Prediction
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denotes disease phenotypes caused by disease set P. For genes in

reliable negative set RN, to balance total amount of flows between

positive genes and negative genes, the initial score for negative gene

gi is assigned with

n0 gið Þ~{
X

gi[P
p0 gið Þz

X
gi[CP

p
0
0 gið Þ

� �.
DRN D ð4Þ

where
P

gi[P p0 gið Þz
P

gi[CP p
0
0 gið Þ is a total amount of positive

gene set. The remaining unlabeled genes in U
0

are assigned an

initial score of 0.

For each of the three biological networks GPPI, GGE and GGO,

prior influence from the seed nodes in P, CP and RN are

propagated to their direct neighbors, and then continue to spread

to other adjacent nodes iteratively across the network. Given R0

the initial score vector (step 0), Rt, the score vector at step t, can be

calculated as follows:

Rt~ 1{að ÞWRt{1zaR0, t§2ð Þ ð5Þ

where R1 = R0 and W = D21W is a normalized format of matrix

W, W[fWPPI ,WGO,WGEg. Here D is the diagonal matrix and

Dii~
P

k Wik. a represents the percentage of flow back to original

seed nodes in P, CP and RN during each iteration. The default

value of 0.7 is used for a, following [16].

Eventually, the information flow will converge to a steady state

[27]. In our case, the Random Walk with Restart algorithm will

stop its iterative process when the difference between two steps Rt

and Rt-1 is less than 1026 [16], measured by L1 norm. The scores

for unlabeled genes from the three gene networks are combined

into one integrated score:

Int score(g)~
1

3
Rt g,WPPIð ÞzRt g,WGOð ÞzRt g,WGEð Þð Þ ð6Þ

Figure 1. Overall schema of EPU learning algorithm. EPU is a framework that utilizes positive and ‘weighted’ unlabeled examples to build an
ensemble classifier for disease gene identification. First of all, EPU extracts candidate positives (CP) and reliable negatives (RN) from unlabeled set.
Then it applies random walk algorithm to weight remaining unlabeled genes on genetic networks. To achieve reliable and robust measure on U, EPU
consults three biological networks, PPI network, GO similarity network and Gene expression network. After obtained ensemble weighted genes, EPU
builds three PU learning classifiers. Finally, a novel ensemble strategy is applied to combines the outputs from these classifiers to make final
predictions.
doi:10.1371/journal.pone.0097079.g001
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where Rt(g,WPPI), Rt(g,WGO) and Rt(g,WGE) are the scores for gene g

in the PPI, GO similarity and gene expression similarity networks

respectively.

Ensemble positive unlabeled learning EPU
Next, we describe how to build three separate PU learning

classification models Support Vector Machine SVM, K-Nearest

Neighbor, and Naı̈ve Bayes classifier2to classify genes into two

classes C = {+, 2}, where ‘+’ denotes positive/disease class and

‘2’ presents negative/non-disease class.

PU learning model 1: Weighted K-Nearest Neighbor

(WKNN). KNN is an instance based learning method, which

classifies an unknown test gene based on the class labels of its top K

nearest training example genes, i.e. based on the majority class

vote of its nearest K neighbors. The distance between the test gene

and other training examples can be computed using common

distance metrics such as Euclidean distance. Given a test gene gi

and its k nearest neighbor set Di, we divide Di into positive and

negative training subsets, namely Di+ = {g|Int_score(g)$0, gMDi}

and Di- = {g|Int_score(g),0, gMDi} based on these neighbors’

integrated scores. The conditional probability of the test gene gi

with respect to disease (+)/non-disease class (2), is measured as

P zDgi,h~KNNð Þ~
P

gz[Diz
DInt score gzð ÞDP

g[Di
DInt score gð ÞD ,

P {Dgi,h~KNNð Þ~
P

g{[Di{
DInt score g{ð ÞDP

g[Di
DInt score gð ÞD

ð7Þ

Note that weighted KNN accumulates both positive and

negative integrated scores in Di and estimates the probability of

gi belonging to positive (or negative) class based on the

accumulated scores in that class.

PU learning model 2: Weighted Naı̈ve Bayes

(WNB). Given a test gene gi, the probability that gene gi belongs

to a class cj (cj[C~fz,{g) can be computed using Bayes’

theorem as:

P Y~cj jgi,h~WNB
� �

~
P gijY~cj

� �
P(Y~cj)

P(gi)
ð8Þ

where the probability P(gi) is a constant for the positive and

negative classes. Here, we define the prior probabilities of the

positive and negative classes as 0.5, i.e. P(Y = +) = P(Y = 2) = 0.5.

Given a gene vector g!~fgf 1
,:::,gfmg, the conditional probability

of feature fk associated with class cj, denoted as P(fk|Y = cj), is

calculated as:

P fkjY~cj

� �
~

P
g[Dcj

g fkð Þ � Int score(g)Pm
k~1

P
g[Dcj

g fkð Þ � Int score(g)
ð9Þ

where g(fk) is the value of feature fk in gene vector g!, Dcj
is

defined as either Dz~fg[Djint score(g)w0g or D{~

fg[Djint score(g)v0g, depending on cj is positive class (+) or

negative class (2).

By assuming that the probabilities of features are independent

given the class Y = cj, we obtain the Naı̈ve Bayes classifier:

P Y~cj Dgi,h~WNB
� �

~

P Y~cj

� �
Pm

k~1 gi(fk)P fk DY~cj

� �
PDCD

j~1 P Y~cj

� �
Pm

k~1 gi(fk)P fk DY~cj

� � ð10Þ

PU learning model 3: Multi-level Support Vector Machine

(MSVM). Based on the integrated score Int_score(g), we further

partition the unlabeled genes g[ U{RNð Þ into three parts: likely

positive set LP (genes get higher positive integrated scores), likely

negative set LN (genes get lower negative integrated scores) and

weak negative set WN (remaining genes) using the following

criteria:

L(g)~

LP Int score(g)w(1{a)

LN Int score(g)v{(1{a)

WN {(1{a)ƒInt score(g)ƒ(1{a)

8><
>: ð11Þ

We then build a multi-level classifier based on positive training

set P, reliable negative set RN, and three newly generated sets LP,

LN, and WN, via weighted support vector machine technique [28]

[29], to take into account of the inherently different levels of

trustworthiness of labels in the five gene set.

The objective function of Weighted SVM can be defined as

[14]:

Minimize :
1

2
wk k2

zc
0
z

X
i[P

jizc
00
z

X
i[LP

ji

zc
0
{

X
i[RN

jizc
00
{

X
i[LN

jizc
000
{

X
i[WN

ji

ð12Þ

Subject to: yi wT xizbð Þ§1{ji i~1,2,:::,nð Þ
where the values of parameters c

0
z, c

00
z, c

0
{, c

00
{ and c

000
{ can be

decided by using cross-validation techniques. Finally, we apply our

MSVM model P Y~cj jgi,h~MSVM
� �

to compute the proba-

bility of test gene gi belonging to class cj (cj[C~fz,{g) for its

classification.

Note that while the candidate positive set CP plays a role in

assigning the genes in U - RN to one of the 3 subsets LP, LN and

WN, it does not overlap with the training set P|U and hence is

not used in the construction of the MSVM model.

Ensemble-based algorithm for integration of individual

classifiers. In order to perform more robust classification, we

design a novel ensemble learning model to integrate the three

classification models constructed above.

Suppose xij~P Y~cjgi,hj

� �
denotes the probability of gene gi

belonging to class c as predicted by the jth classifier. We can

organize the genes in D in the following matrix:

x11 ::: x1k

..

.
P

..

.

xDDD1 ::: xDDDk

2
664

3
775 ð13Þ

where k is the number of individual classifiers (here, k = 3), and

|D| is the size of training set D.

Our ensemble model o ~xxið Þ integrates the outputs from the

multiple classification models as follows:

Ensemble PU Learning for Disease Gene Prediction
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o xi1,:::,xikð Þ~sgn w!: x!i

� �
~

1, if w0zw1xi1z:::zwkxikw0

{1, otherwise

(
ð14Þ

where w! is a weight vector that indicates the importance of

individual models. The final output value ‘‘1’’ denotes disease/

positive class and ‘21’ denotes non-disease/negative class.

The classifier weight ~ww can be learned from training set D as

follows. We define E ~wwð Þ as training error of the hypothesis of our

ensemble model:

E ~wwð Þ~ 1

2

X
i[D

yi{oið Þ2 ð15Þ

where yi (yi [{21,1}) and oi (oi [{21,1}) are the actual class and

predicted class by our ensemble model for training gene gi

respectively. E ~wwð Þ is a linear square error function that evaluates

the difference between yi and oi. We minimize E ~wwð Þ to guarantee

the classification output o with minimal error rate and calculate the

weight vector ~ww.

Here, gradient decent is applied to search the probable weight

vectors in error surface. The gradient of E for ~ww, denoted as

+E ~wwð Þ~ LE

Lw0
,
LE

Lw1
,:::,

LE

Lwk

� �
, is the derivative of E with respect to

each component of the vector~ww. From above equation, we obtain

each component of +E ~wwð Þ as follows:

LE

Lwj

~
L

Lwj

1

2

X
i[D

yi{oið Þ2

~
1

2

X
i[D

L
Lwj

yi{oið Þ
2

~
X

i[D
yi{oið Þ L

Lwj

yj{w!: x!i

� �
LE

Lwj

~
X

i[D
yi{oið Þ {xij

� �

ð16Þ

The following training rule guarantees that ~ww is adjusted in the

direction of steepest descent along the error surface: ~ww/~wwzD~ww,

where D~ww~{g+E ~wwð Þ. g is a small positive constant, called

learning rate, to determine the step size in gradient decent

exploration. We set g = 0.001, following previous work [30]. The

negative gradient {+E ~wwð Þ gives the direction of steepest

decrease. According to equations above, we update the gradient

descent rule as follows:

Dwj~{g
LE

Lwj

~g
X

i[D
yi{oið Þxij ð17Þ

The overall ensemble learning method is summarized in

Figure 2. First, we assign an initial random weight vector for ~ww.

The ensemble model is then applied to all training genes and each

weight is then updated by adding Dwj computed according to

equation (17) above. This process is repeated until ~ww converges.

Note that if g is a large number, the search exploration might

overstep the minimum point in the error surface rather than

settling into it. Therefore, the value of g should be gradually

reduced as the number of iteration grows.

Experimental Results

For evaluation, we benchmark our proposed EPU algorithm

against four state-of-the-art techniques for disease gene prediction:

PUDI method, Smalter’s method, Xu’s method and ProDiGe. In

addition, we also compare the performance of EPU with its base

learning models, namely MSVM, WKNN and WNB. Finally, we

demonstrate novel disease gene prediction using the EPU

algorithm.

Experimental settings
We use the disease classes with at least 50 confirmed disease

genes from the 21 specific disease classes in [6] for evaluating our

classification algorithm. There are six such disease classes:

cardiovascular disease, endocrine disease, cancer disease, meta-

bolic disease, neurological disease, and ophthalmological disease

(See Table S1 for the exact numbers of disease genes for each

class). Given a particular disease class, the positive set P consists of

all its confirmed disease genes, while the unlabeled set U is formed

by randomly selecting from the genes that are not known to be

associated with any disease such that |P| = |U|, following the

setting in [9] [10] [15]. To avoid bias in sampling, we randomly

select 10 groups of unlabeled set U. All experimental evaluations of

the classification models are done on identical groups of training

and test data, and we report the average performance over the 10

groups of (P+U) sets. To evaluate the performance of our

algorithm, 3 fold cross validation is applied where two folds in

P+U as the training set build classifier while remaining one fold is

the test set. Next, positive training genes in P are used as seed

nodes on multiple genetic networks to weight unlabeled training

genes in U via flow propagation. Then, to obtain the ‘soft’ classes

of training genes from component learning models, leave-one-out

cross-validation (LOOCV) is used on 2 fold training samples, from

which each training sample is singled out to evaluate its ‘soft’

Figure 2. Ensemble learning algorithm.
doi:10.1371/journal.pone.0097079.g002
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classes by component classifiers (MSVM, WKNN and WNB),

which are built on the other training samples. After LOOCV,

these training samples with the ‘soft’ classes are as input data to

build an ensemble learning model (as shown in Figure 2) to predict

1 fold test fold. The average results on 3610 groups of (P+U) sets

are reported on experimental part.

Evaluation metrics
We use precision, recall, and F-measure to measure the

performance of our classification models on each of the six disease

classes. The F-measure is the harmonic mean of precision (denoted

as p) and recall (denoted as r), defined as

F~
2pr

pzr
ð18Þ

The value of F-measure is large only when both of p and r are

high, and small when either of them is poor. This is appropriate

for our objective of accurately predicting disease genes, as

deficiencies in either precision or recall will be reflected by a low

F-measure.

Table 1. Overall comparison of classification performance among different techniques.

Disease group Techniques Precision (p) Recall (r) F-measure (F)

Cardiovascular PUDI 82.0% 80.3% 80.4%

ProDiGe 54.3% 96.3% 69.3%

Smalter’s method 75.4% 67.6% 70.6%

Xu’s method 72.1% 60.0% 65.4%

EPU 85.2% 81.0% 84.1%

Endocrine PUDI 83.6% 75.3% 79.2%

ProDiGe 57.3% 87.7% 69.3%

Smalter’s method 76.4% 58.8% 66.5%

Xu’s method 75.4% 62.0% 68.0%

EPU 88.1% 87.7% 87.9%

Neurological PUDI 70.3% 80.1% 74.9%

ProDiGe 63.1% 74.0% 68.1%

Smalter’s method 60.6% 65.9% 63.1%

Xu’s method 59.7% 66.7% 63.0%

EPU 78.2% 80.4% 78.6%

Metabolic PUDI 80.1% 84.8% 82.4%

ProDiGe 58.7% 84.5% 69.3%

Smalter’s method 59.1% 84.7% 69.6%

Xu’s method 65.6% 78.3% 71.4%

EPU 83.3% 93.9% 90.9%

Ophthalmological PUDI 71.6% 78.5% 74.9%

ProDiGe 58.3% 77.7% 66.6%

Smalter’s method 56.7% 77.8% 65.5%

Xu’s method 64.2% 71.3% 67.4%

EPU 89.3% 81.0% 84.7%

Cancer PUDI 76.3% 80.0% 78.0%

ProDiGe 71.1% 79.8% 75.3%

Smalter’s method 73.8% 79.0% 76.3%

Xu’s method 71.0% 79.7% 75.1%

EPU 81.2% 84.5% 82.6%

Average performance PUDI 77.3% 79.8% 78.3%

ProDiGe 60.5% 83.3% 69.7%

Smalter’s method 67.0% 72.3% 68.6%

Xu’s method 68.0% 69.7% 68.4%

EPU 84.2% 84.8% 84.8%

PUDI is a SVM-based approach that partitions unlabeled genes into multiple levels with different associations to confirmed disease genes. ProDiGe is a bagging method
that iteratively chooses random subsets from unlabeled subset and trains multiple classifiers. Smalter’s method integrates multiple biological features, such as
topological features, sequence-derived features, evolutionary age features. Xu’s method employs the KNN classifier to predict disease genes.
doi:10.1371/journal.pone.0097079.t001
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Experimental Results
Benchmarking of EPU ensemble learning algorithm

against state-of-art techniques. First, we compared our

EPU algorithm against four state-of-the-art techniques, namely,

PUDI method [13], Smalter’s method [10], Xu’s method [15] and

ProDiGe [12]. Table 1 shows that our proposed EPU, on average,

is 6.5%, 15.1%, 16.2% and 16.4% better than PUDI, ProDiGe,

Smalter’s method, Xu’s method in terms of F-measure respective-

ly. In particular, EPU can achieve much better precision and

consistently better recall when compared against the recently

proposed method PUDI. It shows that EPU can effectively extract

hidden positive and negative data from the unlabeled data to boost

classification performance.

Comparison of EPU with base classifiers. Next, we

compared the performance of our proposed EPU against its base

classifiers MSVM, WNB, WKNN. As shown in Table 2, on

average, MSVM achieved the highest F-measure (81.3%), much

higher than WNB (69.5%) and WKNN (68.7%). This is not

surprising as MSVM can handle multiple weighted positive and

negative sets when building its classification model. Furthermore,

SVM is known to perform significantly better than NB and KNN

in many real-world applications.

Our proposed ensemble learning method EPU is able to achieve

84.8% in terms of F-measure, which is 3.5%, 15.3% and 16.1%

better than MSVM, WNB and WKNN respectively. Moreover,

EPU consistently outperformed all 3 component classifiers for

every disease class. This strongly demonstrates that EPU can

effectively integrate multiple classification models and minimize

the overall error rate through dynamically assigning different

weights to different classification models.

Sensitivity study on the parameter g in EPU and

parameter k in genetic similarity networks. We perform

the sensitivity study for parameter g in EPU and coverage of

genetic similarity networks. Parameter g is the learning rate in

EPU algorithm. We perform EPU on six disease groups with g
from 0.001 to 0.03. The result indicates that step size within 0.001

is small enough to move optimal value point in hypothesis space

and our EPU is robust and stable when g is small (Table S3 for the

detailed results). In addition, we study the effect of the parameter k

that determines the number of neighbors of each gene in biological

networks. The results in Table S4 show that EPU consistently

achieved best performance with k in (1, 9).

Comparing EPU with existing ensemble learning

approaches. We also compared our proposed EPU with two

Table 2. Overall comparison to single-expert classifiers.

Disease group Techniques Precision (p) Recall (r) F-measure (F)

Cardiovascular MSVM 74.3% 87.6% 80.4%

WNB 57.3% 72.5% 63.9%

WKNN(3) 60.1% 68.6% 64.0%

EPU 85.2% 81.0% 84.1%

Endocrine MSVM 83.4% 85.2% 84.2%

WNB 61.3% 70.4% 65.3%

WKNN(3) 64.5% 53.1% 57.9%

EPU 88.1% 87.7% 87.9%

Neurological MSVM 69.3% 83.7% 75.8%

WNB 61.1% 74.4% 67.0%

WKNN(3) 62.3% 67.1% 64.6%

EPU 78.2% 80.4% 78.6%

Metabolic MSVM 84.0% 91.3% 87.4%

WNB 68.8% 79.9% 73.9%

WKNN(3) 76.6% 78.8% 77.6%

EPU 83.3% 93.9% 90.9%

Ophthalmological MSVM 78.4% 86.1% 81.9%

WNB 61.2% 78.7% 68.8%

WKNN(3) 67.3% 72.2% 69.6%

EPU 89.3% 81.0% 84.7%

Cancer MSVM 73.4% 83.9% 78.3%

WNB 72.5% 85.1% 78.3%

WKNN(3) 76.4% 81.0% 78.6%

EPU 81.2% 84.5% 82.6%

Average performance MSVM 78.6% 86.3% 81.3%

WNB 63.7% 76.8% 69.5%

WKNN(3) 67.9% 70.1% 68.7%

EPU 84.2% 84.8% 84.8%

EPU is compared with its three component classifiers Multi-level Support Vector Machine (MSVM), Weighted Naı̈ve Bayes (WNB) and Weighted K-Nearest Neighbor
(KNN) on 6 disease groups. WKNN(3) is an instance-based classifier that predicts the class of an unlabeled gene based on its 3 closest labeled genes.
doi:10.1371/journal.pone.0097079.t002
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existing ensemble approaches, majority vote and weighted

majority vote [31], in terms of F-measure across the six disease

classes. EPU was shown to outperform the existing ensemble

methods (see Table S2 for the detailed results), indicating that our

proposed EPU is a superior ensemble strategy for integrating

multiple classification models for disease gene prediction.

Predicting novel disease genes for disease groups. To

demonstrate novel disease gene prediction using the EPU

algorithm, we selected two important disease groups, namely,

metabolic and cancer, as detailed case studies. For each target

disease class, we obtained a set of confirmed disease genes from

OMIM and GENECARD as the positive training set, and applied

our proposed EPU algorithm to prioritize a novel disease gene

from the unlabeled gene set.

We first applied our EPU algorithm to discover novel disease

genes for metabolic diseases. 12 unlabeled genes were detected to

be associated with target disease using our algorithm. For

verification, we searched the literature for evidence that supports

the association of these predicted disease genes to metabolic

diseases. We found that two predicted genes, RHEB and DOK5,

have indeed been reported to be associated with metabolic

diseases. Rheb, a GTP-binding protein, was reported to be

inactivated to protect cardiomyocyte during energy deprivation

via activation of autophagy. This implies that RHEB is a key

regulator of autophagy during myocardial ischemia, which has

implications in patients with obesity and metabolic syndrome [32].

As for DOK5, Tabassum et al. identified that it is a novel candidate

disease genes associated with type 2 diabetes, which is a metabolic

disorder due to obesity [33].

Our EPU model also predicted 32 unlabeled genes as candidate

genes associated with cancer. Seven of them, SIGLEC7, PRDX4,

PRDX5, HNRNPL, SRPK1, ABCB10 and PHF10 have been

reported to be associated with cancer diseases. Table 3 lists these

candidate disease genes and the supporting literature evidence that

we have found.

For other candidate cancer genes without literature evidence

support, seven of them, PMM1, SRCIN1, ISY1, KDM4A, CIR1,

PPP2R5A and NOL3 have been shown to associate with cancer

diseases in GO similarity network, GE similarity network and PPI

network. From GO similarity network, PMM1 is one of top 5

nearest neighbours of cancer disease gene PPM1D and SCRIN1 is

one of neighbours of disease gene CTNNB1. In GE similarity

network, ISY1 is linked to disease gene P2RX7, KDM4A and

CIR1 are interacted with disease genes CTNNB1 and MSH2

respectively, indicating that three suspicious genes are highly

correlated with cancer disease genes in terms of gene expression.

From PPI network, PPP2R5A is directly interacted with two

disease genes, BCL2 and TP53, and NOL3 is linking to two

disease genes, BAX and CASP8.

Conclusions and Discussion

Despite the considerable progress in disease gene discovery,

there are still many unknown disease genes that are yet to be

characterized. Machine learning methods can be used to predict

novel disease genes from the confirmed disease genes, based on the

observation that genes associated with similar disease phenotypes

are likely to share similar biological characteristics. However, there

are two challenging issues for disease gene predictions. Firstly, how

to leverage various biological sources during our model building

process, which could effectively alleviate the bias issues from the

incompleteness and noise in the data. Secondly, how to integrate

Table 3. Novel cancer-related genes predicted by EPU.

Gene ID Supported literatures

SUGLEC7 Ito A. et al. (2001) Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: possible role of disialogangliosides in tumor
progression. FEBS Lett.

PRDX4 Lee S.U. et al. (2008) Involvement of peroxiredoxin IV in the 16alpha-hydroxyestrone-induced proliferation of human MCF-7 breast cancer cells.
Cell Biol Int 32(4): 401–5.

Park H.J. et al. (2008) Proteomic profiling of endothelial cells in human lung cancer. J Proteome Res 7(3):1138–50.

PRDX5 Enqman L., et al. (2003) Thioredoxin reductase and cancer cell growth inhibition by organotellurium compounds that could be selectively
incorporated into tumor cells. Bioorg Med Chem 11(23): 5091–100.

McNaughton M., et al. (2004) Cyclodextrin-derived diorganyl tellurides as glutathione peroxidase mimics and inhibitors of thioredoxin reductase
and cancer cell growth. J Med Chem 47(1): 233–9.

Enqman L., et al. (2000) Water-soluble organotellurium compounds inhibit thioredoxin reductase and the growth of human cancer cells.
Anticancer Drug Des. 15(5): 323–30.

HNRNPL Goehe, R.W., et al. (2010) hnRNPL regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing.
J. Clin. Inves. 120(11): 3923.

Hope N.R., et al. (2011) The expression profile of RNA-binding proteins in primary and metastatic colorectal cancer: relationship of
heterogeneous nuclear ribonucleoproteins with prognosis. Hum Pathol. 42(3): 393–402.

SRPK1 Hayes, G.M., et al. (2007) Serine-arginine protein kinase 1 overexpression is associated with tumorigenic imbalance in mitogen-activated protein
kinase pathways in breast, colonic, and pancreatic carcinomas. Cancer Res. 67(5): 2972–80.

ABCB10 PHF10 Tang, L., et al. (2009) Exclusion of ABCB8 and ABCB10 as cancer candidate genes in acute myeloid leukemiaLetter to the Editor. Leukemia 23:
1000–2.

Wet M., et al. (2010) Preparation of PHF10 antibody and analysis of PHF10 expression gastric cancer tissues. Journal of Xiao Bao Yu Fen Zi Mian Yi
Xue 26(9): 874–6.

Li C., et al. (2012) MicroRNA-409-3p regulates cell proliferation and apoptosis by targeting PHF10 in gastric cancer. Cancer Lett 320(2): 187–97.

SUGLEC7 Ito A. et al. (2001) Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: possible role of disialogangliosides in tumor
progression. FEBS Lett.

EPU is used to discover novel cancer related genes from unlabeled gene set. The table list 12 candidate genes associated with cancer and their corresponding literature
evidences.
doi:10.1371/journal.pone.0097079.t003
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multiple computational models to minimize the potential bias and

errors as individual learning methods has their inherent limitations

and they could predict accurately for some disease genes but could

fail badly for the other ones. In this work, we have designed a

novel ensemble learning method EPU for predicting disease genes

via using a network-based random walk with restart approach on

multiple biological networks, and an ensemble classification

approach on multiple machine-learned prediction models. By

using multiple biological data sources, EPU is less susceptible to

potential bias, incompleteness and noise in individual data source.

In this paper, we choose Nearest Neighbor, Naı̈ve Bayes and SVM

as three base learning models of EPU due to three reasons: they

are the state-of-the-art learning techniques that have been widely

used in disease gene identification filed [10] [11] [15] [17] [34]; 2)

we are combining PU learning models instead of traditional

classification models – we choose the three classification models as

they can be easily adapted to build PU learning models; 3) they are

quite diverse with learning criterions, so that their complementary

nature may contribute a more accurate and robust combinational

result. By employing an ensemble approach for prediction, EPU

also minimizes the inherent limitations of individual prediction

models. Finally, by employing PU learning techniques for building

its ensemble of classification models, EPU is able to treat the

unknown genes appropriately as an unlabeled set U (instead of a

negative set N) for training, thereby resulting in more robust

predictions. Experimental evaluations have confirmed the effec-

tiveness of our proposed approach, with our EPU method

consistently performing much better than the existing state-of-

the-art techniques for disease gene prediction on six disease classes.

As more biological data sources and machine learning classifiers

become available in the future, our EPU method can be an

effective framework to integrate the additional biological and

computational resources for better disease gene predictions. For

further work, we will explore the inclusion of other biological data

sources for disease gene prediction using our framework. Given

that many machine learning problems in biomedical research do

involve ensemble Positive Unlabeled data, we can also adapt our

EPU framework to other applications, such as drug-target

interaction prediction [35] [36].
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