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Background: Monitoring and control of PM2.5 are being recognized as key to address health issues
attributed to PM2.5. Availability of low-cost PM2.5 sensors made it possible to introduce a number of
portable PM2.5 monitors based on light scattering to the consumer market at an affordable price. Ac-
curacy of light scatteringebased PM2.5 monitors significantly depends on the method of calibration.
Static calibration curve is used as the most popular calibration method for low-cost PM2.5 sensors
particularly because of ease of application. Drawback in this approach is, however, the lack of accuracy.
Methods: This study discussed the calibration of a low-cost PM2.5-monitoring device (PMD) to improve
the accuracy and reliability for practical use. The proposed method is based on construction of the PM2.5

sensor network using Message Queuing Telemetry Transport (MQTT) protocol and web query of refer-
ence measurement data available at government-authorized PM monitoring station (GAMS) in the
republic of Korea. Four machine learning (ML) algorithms such as support vector machine, k-nearest
neighbors, random forest, and extreme gradient boosting were used as regression models to calibrate the
PMD measurements of PM2.5. Performance of each ML algorithm was evaluated using stratified K-fold
cross-validation, and a linear regression model was used as a reference.
Results: Based on the performance of ML algorithms used, regression of the output of the PMD to PM2.5

concentrations data available from the GAMS through web query was effective. The extreme gradient
boosting algorithm showed the best performance with a mean coefficient of determination (R2) of 0.78
and standard error of 5.0 mg/m3, corresponding to 8% increase in R2 and 12% decrease in root mean
square error in comparison with the linear regression model. Minimum 100 hours of calibration period
was found required to calibrate the PMD to its full capacity. Calibration method proposed poses a lim-
itation on the location of the PMD being in the vicinity of the GAMS. As the number of the PMD
participating in the sensor network increases, however, calibrated PMDs can be used as reference devices
to nearby PMDs that require calibration, forming a calibration chain through MQTT protocol.
Conclusions: Calibration of a low-cost PMD, which is based on construction of PM2.5 sensor network
using MQTT protocol and web query of reference measurement data available at a GAMS, significantly
improves the accuracy and reliability of a PMD, thereby making practical use of the low-cost PMD
possible.
� 2019 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

There has been much research activity concerning potential
adverse health risks and mortality rates associated with environ-
mental and occupational exposures to particulate matter (PM) with
a diameter of 2.5 microns or less (PM2.5) [1e5]. To improve
public health by securing protection from PM2.5 exposure, the
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c-nd/4.0/).
US Environmental Protection Agency [6], World Health Organiza-
tion [7], and European Union [8] set guidelines for daily and annual
exposure standard of PM2.5. A first step to investigate PM2.5 expo-
sure would be to measure either indoor or outdoor environmental
PM2.5 concentration through a network of the PM2.5 monitors.

In practice, PM2.5 can be monitored at fixed locations such as
government-authorized PM monitoring stations (GAMSs) or at
iversity, 116 Samseongyoro-16gil Sungbuk-gu, Seoul, 136-792, Republic of Korea.
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Fig. 1. Functional block diagram of PMD proposed in [11]. PMD, PM2.5-monitoring
device.

Fig. 2. Raw measurement of PMD. PMD, PM2.5-monitoring device.
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multiple locations using portable light scatteringebased PM-
monitoring devices [9]. Equipment used at the GAMS provides
accurate measurements. These devices are, however, large and
prohibitively expensive (50Ke100K USD) to construct a grid of
sensing network. Sparse PM2.5 monitoring data make it difficult to
have a full grasp of ambient PM2.5 concentration resulting from
urban emissions, atmospheric transformations, and transport
mechanism [10].

Small inexpensive PM2.5-monitoring devices (PMDs), relying on
newly available off-the-shelf sensors are cheap and portable and
thus suitable for deployment at large scale. Loh and Choi [11]
developed a portable PMD that incorporates the concept of
internet of things (IoT). Yang Q et al. [12] and Yang X [13] proposed
an open platform for PMD with Wi-Fi and Message Queuing
Telemetry Transport (MQTT) protocol for interdevice communica-
tion. Zhuang et al. [14] designed and implemented a context-
sensing portable device for personal air quality monitoring. Saad
et al. [15] used a server to collect sensor data from a PMD andmake
collected data available through Web.

The low-cost PMDs frequently use a static calibration curve or
equation because of its ease of use. However, deviceedevice var-
iations and lack of standard calibration method typically lead to
substantial measurement errors. If a consistent and practical
method to calibrate the low-cost PMD can be implemented, wide
use of it would be, therefore, possible. Holstius et al. [10] per-
formed field calibration of a PMD at a regulatory monitoring site in
the USA and found a good correlation between the measurement
of the PMD and that of the official stationary PM2.5 monitor. Cheng
et al. developed a cloud-based air quality monitoring system using
cloud air quality analytic engine for calibration [16]. Manikonda
et al. [4] compared well-characterized reference instruments with
low-cost PMDs and concluded that if properly calibrated and
deployed at scale, the PMDs could be applied for high-spatial
temporal monitoring of PM2.5 over extended time intervals and
offer useful exposure estimate for health effect research. Sousan
et al. [17] also evaluated low-cost PMDs and demonstrated that
once calibrated, low-cost PM2.5 sensors can be used in the
occupational settings.
In this study, a method to calibrate a low-cost PMD using hourly
measurements at a GAMS in the Republic of Korea available in the
form of RESTful web service was proposed. The calibration method
is based on machine learning (ML). Four ML algorithms were tested
for Web-based calibration of the PMD, and individual performance
of each ML was evaluated in comparison with the linear regression
model.

2. Materials and methods

2.1. Construction and working principle of low-cost PMD

The PMD developed by Loh and Choi [11] was used for investi-
gating the calibration analysis. It is comprised of the PM2.5 sensor
module (DN7C3CA006 [18]; Sharp, Japan), a signal processing unit,
temperature and humidity sensors, and a Wi-Fi microprocessor
(CC3200 LaunchPad, Texas Instrument, USA). The PMDmeasures 80
mm in width, 80 mm in height, and 200 mm in length, and the
measurements of the PMD can be sent to a cloud server through a
gateway for data collection and analysis as illustrated in Fig. 1.

To measure PM2.5 concentration, air is drawn into an air conduit
by a motorized fan in the sensor module. With input voltage of the
sensor module set to 5 V, the motorized fan rotates at a fixed
rotational speed. Flow rate is specific to the sensor module, and no
change in the flow rate is allowed. In the particle separation
chamber called a virtual impactor, only particles smaller than 2.5
mm are introduced from the air into the light scattering unit, while
particles greater than PM2.5 pass through the main air flow cavity.
As PM2.5 in the air enters the light scattering unit consisting of an
infrared light source and a photodiode, it scatters infrared light
rays. Intensity of scattered light is measured by the photodiode
placed at an angle of 120 degrees from the light source, resulting in
voltage proportional to PM2.5 concentration via nephelometric
detection [19].

2.2. Preprocessing of PMD-measured signal

Themeasured voltage from the sensor module was sampled at a
frequency of 100 Hz and then moving-averaged with a 60-sample
moving window to remove high-frequency noises as shown in
Fig. 2. The preprocessed measurement requires calibration
with respect to the reference measurements to convert the mea-
surement of the PMD in voltage into mg/m3. A flowchart of pre-
processing of the measured signal and calibration of the PMD is
shown in Fig. 3. The PMD is equippedwithWi-Fi network capability



Fig. 3. Flowchart of PM2.5 signal processing and calibration.

Fig. 5. An example of PM2.5 XML data measured at a GAMS and obtained from the
open data portal using HTTP protocol. GAMS, government-authorized PM monitoring
station; HTTP, Hypertext Transfer Protocol; PM, particulate matter; XML, Hypertext
Markup Language.
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by which the preprocessed voltage is transmitted to the cloud
server via the local Wi-Fi network at every minute.

2.3. Framework of PMD calibration with web query

The hourly PM2.5 measurements are available from the open
data portal www.data.go.kr which is connected to the GAMSs
across Korea in a form of RESTful web service as shown in Fig. 4.
Using Hypertext Transfer Protocol (HTTP) Get protocol allows for
obtaining the PM2.5 measurement along with other atmospheric
environment measurements in Hypertext Markup Language (XML)
format as shown in Fig. 5. The measured PM2.5 can be retrieved
using XML parser (see xml tag <pm25Value> in Fig. 5) and used as
reference data to calibrate the PMD.

2.4. Construction of PMD sensor network using MQTT

There exist only 191 GAMSs in the Republic of Korea with the
capability of measuring PM2.5. The number is far smaller than that
required to provide sufficient amount of measured data across the
country. Properly calibrated PMDs can be used to form a PM2.5
sensing network in conjunction with the GAMS using the Message
Queuing Telemetry Transport (MQTT) protocol [16]. The MQTT is
publishesubscribeebased message protocol that works on trans-
mission control protocol/Internet protocol (TCP/IP), suitable for
connections with remote locations and limited bandwidth. To
Fig. 4. PM2.5 data fetch using HTTP protocol from the open data portal www.data.go.kr conn
Hypertext Transfer Protocol; PM, particulate matter.
create a sensor network, a MQTT PM2.5 server retrieves hourly
PM2.5 data via RESTful HTTP from the open data portal and peri-
odically publishes fetched data to the MQTT broker through which
the PMD receives PM2.5 data using the MQTT subscribe protocol as
shown in Fig. 6. It is noted that under the MQTT model, the PMDs
are not allowed to directly communicate with each other and inter-
PMDs communication is possible solely through the MQTT broker.

The publisher in Fig. 6 publishes data to the broker under the
self-descriptive topics, and the subscriber can subscribe to the
topics of interest to receive data when new data for the subscribed
topic are available. MQTT topics are hierarchically constructed in a
similar way to a file systemwith the forward slash (/) as a delimiter.
In building topic hierarchy, a preferred approach would be the se-
mantic method in which things are named for where they are first
and what they measure subsequently [20]. Following the semantic
topic hierarchy, the PMD can publish its PM2.5 measurement under
the topic “Country code/Postal code/Latitude Longitude/PM2.5.” A
publish topic example of the PMD located at Hansung University in
Seoul, Korea, is illustrated in Fig. 7. The first topic in the hierarchical
topic tree is the country code, and the second is the postal code of
the PMD. Because the postal codes are usually assigned to
geographical areas, they can be conveniently used for identifying
the areas in the country. The third topic represents the latitude and
longitude of the PMD location which not only provides the exact
location but also serves as the unique device identifier. The last
topic is the type of measurement, PM2.5 in mg/m3. Any PMDs
ected to GAMSs in Korea. GAMS, government-authorized PM monitoring station; HTTP,

http://www.data.go.kr
http://www.data.go.kr


Fig. 6. Illustration of PM2.5 data sharing among PMDs using MQTT protocol. MQTT, Message Queuing Telemetry Transport; PMD, PM2.5-monitoring device.
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subscribing the topic receive the PM2.5 data when new data are
published under the topic.

Simultaneous subscription to multiple topics is possible with
wild card #, enabling to receive PM2.5 measurements from the
multiple PMDs. For example, subscribing to the topic “Korea/
02786/#” allows PM2.5 data to be received from all PMDs located in
the area with Korean postal code of 02786, as shown in Fig. 8. Data
aggregation can be conveniently achieved for analysis in the IoT
clouds, personal computers, and mobile phones depending on the
needs. To validate the concept of calibration based on the sensor
network using MQTT, two PMDs were built. The MQTT PM2.5 server
was implemented using Amazon Web Service [21], and Eclipse
Mosquitto open-source MQTT broker [22] was used. It was found
Fig. 7. MQTT hierarchical topic tree example for publishing PM2.5 data from PMD.
that MQTTmessage transmission latency was less than 500ms, and
the PM2.5 server latency based on HTTP protocol was on the order
of seconds. As the PM2.5 data from the GAMS are updated every
hour, the effect of transmission latency on the performance of
calibration using the sensor network is negligible. Calibration was
performed off-line for the study because of low computing capa-
bility of the CC3200 processor of the PMD. However, real-time
built-in calibration can be readily implemented in the gateway.

2.5. Characteristics of raw data and linear regression

Fig. 9 shows the measurements of the temperature, humidity,
andvolumetric PM2.5 from the PMDalongwith themeasurements of
MQTT, Message Queuing Telemetry Transport; PMD, PM2.5-monitoring device.



Fig. 8. Multiple subscriptions to MQTT topics to retrieve PM2.5 data from multiple PMDs. IoT, Internet of things; MQTT, Message Queuing Telemetry Transport; PMD, PM2.5-
monitoring device.
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PM2.5 from the GAMS. Unit of PM2.5 is millivolt in PMD measure-
ments and mg/m3 in GAMS measurements. Temperature and
humidity measurements of the PMD were calibrated based on the
sensor manufacturer's conversion formula specified in the sensor's
datasheet [23]. The temperature and humidity measurements
shown in Fig. 9(B) and (C) serve the purpose of showing correlation
between the PM2.5 sensor measurement of the PMD and the tem-
perature and humidity measurements. The measurements were
performed for 319 hours consecutively from the single PMD,
Fig. 9. Characteristics of measurements from PMD and GAMS. (A) Comparison of PMD m
Variation of PMD measurements of PM2.5 in millivolt with temperature in degree Celsius. (C
measurements of PM2.5. GAMS, government-authorized PM monitoring station; PMD, PM2
resulting in 319 data samples for regression analysis. Temperature
was measured in degree Celsius, and humidity, in %. The geograph-
ical distance between the locations of the PMD and GAMS is 3.2 km,
as shown in Fig. 10, and no significant air pollution sources exist
between them.

A strong linear correlation between the PMD and GAMS
measurements of PM2.5 is observed in Fig. 9(A). Temperature and
relative humidity also show moderate correlation with the PMD
measurements, as shown in Fig. 9(B) and (C), respectively. PM2.5
easurements of PM2.5 in millivolt with GAMS measurements of PM2.5 in mg/m3. (B)
) Variation of PMD measurements of PM2.5 with humidity in %. (D) Histogram of PMD

.5-monitoring device.



Fig. 10. Locations of PMD and GAMS in Seoul, Korea, for data measurements. GAMS, government-authorized PM monitoring station; PMD, PM2.5-monitoring device.

Table 1
R2 and adjusted R2 of Cases I and II for linear regression analysis

Predictors R2 Adjusted R2

PMD measurement (Case I) 0.682 0.681

PMD measurement, temperature, humidity (Case II) 0.769 0.767
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concentrations appear to increase as both temperature and relative
humidity increase. More specifically, at low temperature and
humidity, a firm linear relationship is seen in Fig. 9(B) and (C), while
more pronounced scatter is observed at an elevated temperature
and humidity. In general, humidity of the air can affect the per-
formance of optical PM sensors in several ways: failure of the
electronic circuits/sensors, overestimated outputs in sensor signals
due to hygroscopic growth of some particles, detection of water
droplets in fog or mist as particles [24e27], and deterioration of
sensor performance due to absorption of infrared radiation by
water [28]. Histogram of PMD PM2.5 in Fig. 9(D) shows the normal
distribution with a mean value of PMD PM2.5 at 50 mV.

To find a correlation between themeasurements of the PMD and
GAMS measurements, the linear regression method was used as a
reference model and subsequently compared with the other
regression models based on four widely used ML algorithms such
as support vector machine (SVM), k-nearest neighbors (KNN),
random forest (RF), and extreme gradient boosting (XGB).

3. Results and discussion

3.1. Performance of linear regression as the reference model

The PMD measures PM2.5 volumetric concentration which is
affected by temperature and humidity. In constructing a linear
regression model, two cases were considered with a regression
sample size of 319. For Case I, only the PMD measurement is taken
into account as the predictor, whereas for Case II, the temperature
and humidity along with the PMD measurement were used as the
predictors of the linear regression model. Increase in the number of
the predictor always leads to increase in R2. Therefore, adjusted R2,
which is a modified version of R2 that has been adjusted for the
number of predictors in the model, was instead used to investigate
the effect of the number of the predictor on regression perfor-
mance. As shown in Table 1, inclusion of temperature and humidity
measurements increases the adjusted R2 by 10%. Fig. 11 compares
the predictions of PM2.5 concentration based on the linear regres-
sion model for Cases I and II with the observations made at the
GAMS.

Better evaluation of a linear regression model is achieved when
the linear regression model is verified against data sets unseen to
the model. Therefore, the data set was split into the training and
validation sets with a split ratio of 80% to 20%, respectively. Linear
regression was performed on the training set (255 samples, 80% of
319 data samples) and evaluated against the unseen validation set
(64 samples, 20% of 319 data samples). The value of R2 obtained
from the validation set was 0.75, with root mean square error of 5.6



Fig. 11. Predictions of PM2.5 concentration by linear regression for Cases I and II.
The values of R2 of Cases I and II are 0.68 and 0.77, respectively.

Fig. 13. Mean R2 of linear regression and four different machine learning algorithms.
Machine learning configurations are as follows: number of neighbors ¼ 10 for KNN,
linear kernel and C ¼ 1 for SVM, minimum_samples_leaf ¼ 2 for RF. Error bar repre-
sents the standard error. KNN, k-nearest neighbors; LR, linear regression; RF, random
forest; SVM, support vector machine; XGB, extreme gradient boosting.
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mg/m3. To graphically indicate the degree to which the predictions
agree with observation, the predictions from the verification set are
arranged in an ascending order and shown along with observation
in Fig. 12.

3.2. Regression models using ML algorithms with stratified K-fold
cross-validation

With the linear regression model as the reference model for
calibration of the PMD, four ML algorithms such as the SVM, KNN,
RF, and XGB were studied as the calibration models. The input
parameters of the ML-based calibration model were temperature,
humidity, and PM2.5 sensor measurements. To gauge the perfor-
mance of each ML algorithm, stratified K-fold cross-validation is
used [29]. In stratified K-fold cross-validation, the given sample
is partitioned into K equal size subsamples in a way that each
subsample can be considered as a good representative of the whole
data by maintaining the mean response value of all folds
Fig. 12. Comparison of prediction of PMD from 20% validation set with observations at the
government-authorized PM monitoring station; PMD, PM2.5-monitoring device.
approximately equal. The K-1 subsamples out of the K subsamples
are used as training data for regression, and the remaining sub-
sample is retained as validation data for regression model trained
with the training data. This process continues K times until each of
K subsamples is used exactly once as the test data for the regression
model. Once K results from the processes are obtained, they are
averaged to create a single metric to compare effectiveness of each
ML. In this study, data are evenly split into 5 subsamples and the
number of the total data used for analysis was 319.

The mean coefficient of determination, R2, and mean root mean
squared error (RMSE) were evaluated using fivefold cross-valida-
tion. Among the four ML algorithms investigated, XGB showed the
best result with a mean R2 of 0.78 and standard error of 5.0 mg/m3,
which is 8% increase in R2 and 12% decrease in RMSE in comparison
with the linear regression model, as shown in Fig. 13, Fig. 14, and
Fig. 15.

3.3. Calibration of PMD with web query

The number of samples included in regression analysis has a
significant effect on the performance of regression. To investigate
the minimum number of sample data required for calibrating the
PMD using web query, the effect of the number of sample data on
the coefficient of determination was examined as the number of
GAMS. Vertical line represents difference between prediction and observation. GAMS,



Fig. 14. Mean RMSE of linear regression and four different machine learning algo-
rithms. Machine learning configurations are the same as in Fig. 13. Error bar represents
standard error. KNN, k-nearest neighbors; LR, linear regression; RF, random forest;
RMSE, root mean squared error; SVM, support vector machine; XGB, extreme gradient
boosting. Fig. 16. Coefficient of determination (R2) versus the number of regression data

samples.
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sample data increased from 10 to 310 with an increment of 10, as
shown in Fig. 16. The coefficient of determination, R2, oscillates
between 0.1 and 0.6 as the number of the data included in regres-
sion approaches 60, beyond which the R2 progressively converges
to 0.78 with an increase in the number of samples and shows little
variation as the number of the data grows greater than 100. Since
the coefficient of determination of 0.78 indicates a strong correla-
tion, the minimum number of samples of 100 can be safely used for
calibration of the PMD considered in this study [11]. For best cali-
bration of the PMD with web query, initial 100 data samples are
required, which corresponds to 100 hours of lead time before the
PMD is calibrated to its full capacity. For other types of PMDs,
however, the minimum number of data samples required for cali-
bration can vary and, therefore, should be identified by observing a
change in R2 with the number sample data in regression.

The proposed calibration method has a limitation in that the
location of the PMD needs to be in the vicinity of the GAMS. With
Fig. 15. Comparison of predictions made by XGB algorithm with observations at the
GAMS. R2 is 0.78, and RMSE is 5.0 mg/m3. Predictions were made with a validation set
with the size of 64. GAMS, government-authorized PM monitoring station; RMSE, root
mean squared error; XGB, extreme gradient boosting.
only little over one hundred GAMSs in the Republic of Korea, it is
reasonable to assume that PMD readings at a particular location are
most correlated with readings in the GAMS at the nearest location.
To determine the range that a PMD needs to be in relation to the
GAMS, more substantial experiments with a large number of the
participating PMDs at different locations are required. In this study,
however, the primary focus was on establishing a calibration
method based on web query and ML and then evaluating the pro-
posed method. As the number of the PMD participating in the
sensor network increases, however, calibrated PMDs can be used as
a reference device to nearby PMDs that require calibration, forming
a calibration chain through the MQTT protocol. This will signifi-
cantly improve the accuracy of PMDs in the network, thereby
making practical use of these low-cost devices possible.

4. Conclusions

Calibration of a low-cost PMD was studied to improve the ac-
curacy and reliability of the PMD for practical use. The proposed
method is based on construction of PM2.5 sensor network using
MQTT protocol and web query of reference measurement data
available at the GAMS in the Republic of Korea. Four ML algorithms
such as SVM, KNN, RF, and XGB were used as regression models to
calibrate the PMD measurements of PM2.5. Measurements made at
the GAMS provide accurate data and were used as reference data
for calibration. With a linear regression model as a reference,
stratified K-fold cross-validation method was used to evaluate the
performance of these ML algorithms.

Based on the performance of ML algorithms used, regression of
the output of the PMD to PM2.5 concentration data available from
the GAMS through web query appears to be effective, resulting in
the best performance of R2 of 0.78 and standard error of 5.0 mg/m3

with the XGB algorithm. These numbers correspond to 8% increase
in R2 and 12% decrease in RMSE in comparison with the linear
regression model. The result indicates that after calibration, the
PMD can be used to measure PM2.5 with reasonable accuracy in
environmental settings as either an individual device or a partici-
patory device in the sensor network using the MQTT protocol.
A minimum calibration period of 100 hours was required to cali-
brate the PMD to its full capacity. The calibration method proposed
in this study has a limitation in that the location of the PMD needs
to be in the vicinity of the GAMS. As the number of the PMD
participating in the sensor network increases, however, calibrated
PMDs can serve as a reference to adjacent PMDs needing
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calibration, forming a calibration chain through the MQTT protocol.
This will significantly enhance the accuracy of a PMD in the
network, enabling practical use of the low-cost PMD.
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