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This paper presents a data-driven multiscale entropy measure to reveal the scale dependent information quantity of electroen-
cephalogram (EEG) recordings. This work is motivated by the previous observations on the nonlinear and nonstationary nature
of EEG over multiple time scales. Here, a new framework of entropy measures considering changing dynamics over multiple
oscillatory scales is presented. First, to deal with nonstationarity over multiple scales, EEG recording is decomposed by applying
the empirical mode decomposition (EMD) which is known to be effective for extracting the constituent narrowband components
without a predetermined basis. Following calculation of Renyi entropy of the probability distributions of the intrinsic mode
functions extracted by EMD leads to a data-driven multiscale Renyi entropy. To validate the performance of the proposed entropy
measure, actual EEG recordings from rats (𝑛 = 9) experiencing 7min cardiac arrest followed by resuscitation were analyzed.
Simulation and experimental results demonstrate that the use of the multiscale Renyi entropy leads to better discriminative
capability of the injury levels and improved correlations with the neurological deficit evaluation after 72 hours after cardiac arrest,
thus suggesting an effective diagnostic and prognostic tool.

1. Introduction

Electroencephalogram (EEG) has been exploited in connec-
tion with functional brain mechanisms as a potential tool
for the identification of brain disorder such as hypoxic-
ischemic brain injury and epileptic seizure [1, 2]. Despite
the effectiveness of EEG as a clinical diagnostic tool, most
interpretations are based on subjective measures such as
visual inspection, limiting precise interpretation. Thus, the
need for objective measures gives rise to the development
of quantitative EEG measure to uncover neurological states.
Recently, quantitative EEG analyses based on novel signal
processing techniques have shown promising results for
deriving quantitative patterns that may correspond to diag-
nostic information and cognitive deficits [3–8].

Among those, information theoretic analyses such as
entropy measure have been successfully used to quantify
the degree of irregularity of injured brain rhythm [9–
12]. These studies founded on assumption that the larger

the information content of EEG, the better the neurological
status of brain. More recently, it has been reported that
informative content in EEG spans and varies over multiple
frequencies through injury and recovery phases [11, 13, 14].
Thus the single scale based entropy measures are lacking in
reflecting the changing dynamics overmultiple scales in EEG.

To address this obstacle, this paper presents a multiscale
based entropy measure by incorporating the empirical mode
decomposition (EMD) method into computing entropy. The
EMDmethod, which has been recently introduced as a data-
driven and adaptive technique, is known to be appropriate
for analyzing nonstationary and nonlinear time-series [15].
It decomposes a time-series into a number of narrowband
components, called intrinsic mode functions (IMFs), by
empirically identifying the physical time scales intrinsic to
the signal. Thus, due to the potential of EMD, it has been
gradually used to analyze neurophysiological recordings such
as EEG [16–18] and field potential [19, 20]. In addition, since it
is known that EMD behaves as a dyadic filter bank [21, 22], it
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is well fit for detecting the dynamics of the frequency bands of
interest in EEG study [17]. Upon the results of EMD of EEG,
the proposed measure computes Renyi entropy [23] using
the probability distributions of IMFs at each scale, followed
by averaging Renyi entropies over multiple scales. Thus, the
resultant multiscale Renyi entropy reflects distinct features
over multiple scales which are derived from a data-driven
way.

To demonstrate the performance of the proposed mul-
tiscale Renyi entropy, simulation and experimental studies
using a synthetic signal and an animal model during brain
injury and recovery after cardiac arrest have been carried
out. The performance of the multiscale Renyi entropy was
demonstrated by comparing with the conventional single
scale one in terms of both howwell it discriminates the degree
of uncertainty and predicts neurological outcomes.

The remainder of the paper is organized as follows.
Section 2 provides a brief description on EMD and the
multiscale Renyi entropy measures. Sections 3 and 4 validate
the proposed approach via simulation and experimental
studies. Section 4 presents the discussion and conclusion.

2. Materials and Methods

2.1. EmpiricalMode Decomposition. This section summarizes
a data-driven decomposition method, that is, EMD, which
has been developed by Huang et al. in 1998 [15]. The EMD
method is a novel signal processingmethod which represents
a time-series into a finite set of amplitude and frequency
modulated oscillating components which are bases of the
decomposition scheme. The decomposition procedure of
EMD is an adaptive signal-dependent technique. In an itera-
tive manner, termed a sifting process, EMD extracts the
highest frequency oscillation (finest temporal scale) from
the underlying time-series, referred to as an intrinsic mode
function. The remaining part after the extraction contains
lower frequency oscillatory components. The resultant IMFs
represent the oscillatory patterns over multiple scales. This
gives rise to the followingmajor feature of EMD: EMD results
in basis functions which are derived from the time-series
in self-originated way, whereas other conventional methods
such as Fourier and wavelet analyses rely on the use of
predefined basis functions.

An IMF has to meet the following two criteria: (1) the
number of extreme and zero crossings are either equal or
differ by at most one and (2) the mean value of the envelope
defined by the local maxima and local minima is zero.

Here, we describe the principle of EMD as follows. Let
𝑠(𝑖) denote the raw sampled EEG signal. Then EMD method
consists of the following steps.

(1) Identify all the local maxima and minima of 𝑠(𝑖).

(2) Interpolate between local maxima and minima,
respectively, getting an upper envelope 𝑒

𝑢
(𝑖) and a

lower envelope 𝑒
𝑙
(𝑖).

(3) Compute the mean between 𝑒
𝑢
(𝑖) and 𝑒

𝑙
(𝑖); that is,

𝜇(𝑖) = [𝑒
𝑢
(𝑖) + 𝑒

𝑙
(𝑖)]/2.

(4) Subtract the mean from the original signal

𝑑 (𝑖) = 𝑠 (𝑖) − 𝜇 (𝑖) . (1)

(5) Repeat steps (1)–(4) until 𝑑(𝑖) satisfies the above two
criteria to be an IMF. If 𝑑(𝑖) satisfies conditions,
it becomes the first intrinsic mode function that
contains the finest temporal scale in the signal. Also
it is denoted by 𝑑

1
(𝑖).

(6) Compute the residue 𝑟
1
(𝑖) = 𝑠(𝑖) − 𝑑

1
(𝑖).

(7) Iterate through steps (1)–(6) with 𝑟
1
(𝑖) instead of 𝑠(𝑖)

until the residue satisfies some stopping criterion as

SD =
∑ |𝑑 (𝑖) − 𝑠 (𝑖)|

2

∑𝑠2 (𝑖)
< 𝛼, (2)

where 𝛼 is an arbitrary value in the range of 0.2–0.3 as
recommended in [15].

Through the sifting process, the raw EEG signal 𝑠(𝑖) is
decomposed as follows:

𝑠 (𝑖) =

𝐾

∑
𝑘=1

𝑑
𝑘
(𝑖) + 𝑟

𝐾
(𝑖) , (3)

where 𝐾 is the number of all extracted intrinsic mode
functions, 𝑑

𝑘
(𝑖) is the 𝑘th intrinsic mode function, and 𝑟

𝐾
(𝑖)

is the final residue.The last residue 𝑟
𝐾
(𝑖) can be considered as

the last IMF and thus (3) can be rewritten as

𝑠 (𝑖) =

𝐾+1

∑
𝑘=1

𝑑
𝑘
(𝑖) . (4)

In addition, from (3), it is obvious that EMD is complete;
that is, 𝑠(𝑖) can be reconstructed from the resulting IMFs and
the final residue. Also it is known that the resulting IMFs are
nearly orthogonal; thus they can be considered as the basis to
represent the underlying time-series [15, 21, 22].

2.2. Computing Time-Dependent Multiscale Entropy. In the
proposed method, we utilize the distribution of the time-
varying individual oscillatory components, that is, 𝑑

𝑘
(𝑖),

obtained in (3) in evaluating the multiscale Renyi entropy. To
cope with the temporal evolution of entropy, EEG recording
is divided into a number of segments using a sliding temporal
window, leading to a time-dependent entropy measure [24].
For a given {𝑠(𝑖) : 𝑖 = 1, . . . , 𝑁}, a sliding temporal window
𝑤 ≤ 𝑁 and a sliding intervalΔ ≤ 𝑤 are defined.Then, the 𝑛th
sliding window of the raw EEG signal is defined by

s
𝑛
(𝑖) = {𝑠 (𝑖) : 𝑖 = 1 + 𝑛Δ, . . . , 𝑤 + 𝑛Δ} , (5)

where 𝑛 = 0, 1, . . . , [(𝑁−𝑤+1)/Δ], and [𝑥]denotes the integer
part of 𝑥.

Then,we incorporate EMD to utilize the underlying time-
varying oscillatory components in EEG recording. Assume
that EEG is decomposed into IMFs by a sifting process,
yielding totally𝐾 IMFs and one residual which is considered
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Figure 1: Time evolution of the conventional Renyi entropy and multiscale Renyi entropy for synthetic signal with time-varying frequency
components. (a) Synthetic signal in time domain. (b) Comparison of Renyi entropy and multiscale Renyi entropy.

as (𝐾+1)th oscillatory component. A set of IMFs is obtained
from the EEG signal in a sliding window s

𝑛
(𝑖), which is given

by

EMD [s
𝑛
(𝑖)] = [d1

𝑛
, d2
𝑛
, . . . , d𝐾+1

𝑛
] , (6)

where d𝑘
𝑛
= [𝑑
𝑘
(𝑖) : 𝑖 = 1+𝑛Δ, . . . , 𝑤+𝑛Δ] for 𝑘 = 1, . . . , 𝐾+1

are the 𝑘th IMF after EMD on the 𝑛th sliding window.
In order to compute the probability distributions of the

IMFs, d𝑘
𝑛
is partitioned into 𝑀 disjoint intervals {𝐼

𝑚
, 𝑚 =

1, . . . ,𝑀} spanning the range between the minimum and
maximum IMF with 𝑙

𝑙
= min{d𝑘

𝑛
} and 𝑙

𝑀
= max{d𝑘

𝑛
} where

𝑙
𝑙
< 𝑙
2
< ⋅ ⋅ ⋅ < 𝑙

𝑀
. Using the above definitions, a set of disjoint

intervals {𝐼
𝑚

= [𝑙
𝑚
, 𝑙
𝑚+1

], 𝑚 = 1, . . . ,𝑀 − 1} is obtained
by binning d𝑘

𝑛
. Next, 𝑝𝑘

𝑛
(𝑚) is the probability that the IMF

belongs to the interval 𝐼
𝑚
in 𝑘th IMF d𝑘

𝑛
. It is computed as

a ratio of number of samples of d𝑘
𝑛
within 𝐼

𝑚
and the total

sample number of d𝑘
𝑛
.

To evaluate multiscale based Renyi entropy, the proba-
bilities of each IMF are incorporated into well-known Renyi
entropy as follows.

(1) For each intrinsic mode function, the Renyi entropy
(RE) in each intrinsic mode is calculated as

RE𝑘 (𝑛) = −
1

𝑞 − 1
ln(

𝑀

∑
𝑚=1

(𝑝
𝑘

𝑛
(𝑚))
𝑞

) , (7)

where 𝑘 = 1, . . . , 𝐾 + 1, 0 ≤ 𝑝𝑘
𝑛
(𝑚) ≤ 1, and ∑

𝑀

𝑚=1
𝑝𝑘
𝑛
(𝑚) = 1.

(2)The following averaged Renyi entropies over all scales
lead to the multiscale Renyi entropy (MRE) as follows:

MRE (𝑛) =

𝐾+1

∑
𝑘=1

RE𝑘 (𝑛) . (8)

To compare the multiscale Renyi entropy with the sin-
gle scale based one, that is, Renyi entropy of gross EEG,
computer simulation was carried out. A synthesized signal
consisting of Gaussian distribution and multiple sinusoidal
components was used, which is shown in Figure 1(a). The
sampling frequency for the synthetic signal was 256Hz. For
the first 4 s, the synthetic signal has Gaussian distribution.
Following period of the synthetic signal has different number
of sinusoids in time-dependent manner as follows. From 4 s
to 6 s, it consists of 4 sinusoidswhose frequencies are at 1, 5, 10,
and 20Hz. From 6 s to 8 s, it is composed of 2 sinusoids with 1
and 5Hz. During last 4 s, the random permutation surrogate
of the period between 4 s and 8 s was included. Figure 1(b)
depicts the results of the conventional Renyi entropy and the
proposed multiscale Renyi entropy, respectively. As can be
seen, two entropy measures show similar levels for Gaussian
distribution. From 4 to 8 s, the conventional Renyi entropy
is almost constant regardless of the number of sinusoids,
whereas the multiscale Renyi entropy decreases in accor-
dance with the decrease of sinusoids. During last 4 s, the
multiscale Renyi entropy increased, having comparable level
of the conventional one.

2.3. Animal Model and EEG Recordings. EEG signals were
recorded from rats during experiments in rodents subjected
to controlled periods of normal circulation and asphyxial
cardiac arrest with the goal of assessing brain dynamics
following such an injury. The experimental model of brain
injury by cardiac arrest has been approved by Animal Care
and Use Committee of the Johns Hopkins Medical Institu-
tions. This rat model has been previously validated to study
multiple aspects of calibrated brain injury after asphyxial car-
diac arrest, including the physiologic parameters, short term



4 BioMed Research International

and long term neurobehavioral outcomes, EEG recovery, and
histology [25, 26].

Nine adult male Wistar rats (300 ± 25 g) were used.
Anesthesia was induced with 4% halothane in 50% N

2
: 50%

O
2
. 10min of baseline trend was recorded including 5min

washout period to ensure that halothane did not influence the
EEG. Subsequently, 7min asphyxia was induced by stopping
and disconnecting the ventilator and clamping the tracheal
tube. The duration of cardiac arrest was determined by the
mean arterial blood pressure being below 10mmHg.The car-
diopulmonary resuscitation (CPR) was carried out by chest
compression until return of spontaneous circulation (ROSC),
which was defined as mean arterial blood pressure (MABP)
higher than 60mmHg. Selected rats received hypothermia
therapy. The therapy involved cooling the core body temper-
ature to 32–34∘C through surface cooling with misted water
immediately (within 15min) after return of spontaneous
circulation and therapeutic hypothermia was maintained for
6 hours. Then, the rats were gradually rewarmed to 37∘C for
2 hours. Four rats under normothermia (37∘C) and others
under immediate hypothermia (32–34∘C)were selected; EEG
signals were recorded using two channels from the right and
left parietal regions of rat’s brain using subdermal needle
electrodes (Plastics One, Roanoke, VA). ECG and arterial
pressure were also recorded simultaneously.

The signals were digitalized using CODAS, a data acqui-
sition package (DATAQ Instruments INC., Akron, OH).
A sampling rate of 250Hz and a 12-bit resolution of A/D
converter were used for digitization of the data. All rats
were resuscitated and neurological outcome was evaluated by
neurological deficit score (ranging from 0 = worst to 80 =
best) consisting of level of arousal, cranial nerves and sensory
motor assessments, reflexes, and occurrence of clinically
appreciable seizures [27]. The neurological deficit score was
calculated by an independent observer 72 h after asphyxial
cardiac arrest injury. Figure 2 shows the time trend of the
experiment, with Phase I being the control period, Phase II
the global ischemic brain injury, and Phase III the recovery
period.

3. Results

Figure 2 shows the EEG recording for a rat during brain
injury and recovery after cardiac arrest. The raw EEG signal
can be divided into three periods as follows: (I) 10min base-
line, (II) 7min CA and silent phase, and (III) recovery. From
Figure 2, it is obvious that the amplitude of EEG decreases
after CA injury and is followed by gradual increase in
recovery period.However, it is difficult to clearly discriminate
difference between the preinjury and the various recovery
phases by visualization alone. Even more difficulty would be
to objectively compare different injury grades or the effects of
hypothermia therapy. Limits of visual investigation stress the
need for a reliable quantitative approach to study EEGs.

To show the inherent oscillatory components of EEG,
that is, IMFs, the EMD method was carried out, and the
resulting IMFs and corresponding power spectral densities
are shown in Figure 3. Figures 3(a)–3(c) show the EMD
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Figure 2: Raw EEG recording of a rat during brain injury and
recovery after asphyxia cardiac arrest. A 4-hour compressed signal
capturing the entire experiment is presented. (I) 10min baseline, (II)
7min brain injury after cardiac arrest and silent period, and (III)
EEG recovery.

results of three 10 s segments of EEG recording at various
phases in Figure 1 as follows: EEG recordings in baseline,
50min, and 180min, respectively. With the power spectral
density shown in Figures 3(d)–3(f), we could observe that
each intrinsic mode function approximates the clinical bands
of EEG; that is, the first IMF covers 𝛾 and 𝛽 bands (>16Hz),
and the second and third IMFs show 𝛼 and 𝜃 bands (4–
16Hz). As expected, the resulting IMFs over multiple scales
cover the clinical band of interest while maintaining a good
decorrelation property.

For evaluating the multiscale complexities, the following
parameters were used: sliding temporal window length with
𝑤 = 10 s, sliding interval with Δ = 10 s and 𝑀 = 20. In
addition, when computing Renyi entropies, we choose 𝑞 = 3

as suggested in [28]. The resulting multiscale Renyi entropy
values were averaged across left and right brain areas for each
rat. In addition, the entropy measures were normalized with
respect to average values over baseline period (0–10min).

Figure 4 shows the time evolutions of the conventional
Renyi entropy and themultiscale Renyi entropy for 3 rats with
eventual good, medium, and poor outcomes (neurological
deficit score (NDS) = 74, 59, and 50 on a scale of 0 (worst)
to 80 (best)). Figures 4(a) and 4(b) illustrate the results of
the Renyi entropies and the multiscale Renyi entropies of
three rats, respectively. In both plots, after washout around
15min, entropies of 3 rats dramatically fall to approximately
zero. Occurrence of a spike at 22min was due to manual
resuscitation. The Renyi entropies in Figure 4(a) rapidly
increase from 35 to 40min. Renyi entropy values during
recovery (Figure 4(a)) are not highly separable for different
animals with different neurological deficit scores. On the
other hand, the multiscale Renyi entropies in Figure 4(b) for
the 3 rats are consistently separable for those with different
neurological deficit scores. These results indicate that the
higher the neurological score, the higher the entropy value
at the end of the 4-hour recovery period.

To assess above results with a larger sample, the Renyi and
multiscale Renyi entropies of 9 rats including the previous
3 rats were calculated as shown in Table 1. Here, aggregate
data for each rat is organized into rows, arranged, and
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Figure 3: The EMD results of real EEG recording. For three phases of the experiment, that is, (a) baseline, (b) early recovery, and (c) late
recovery, the time domain representations of the resulting IMFs of the 10 s segments of EEG are shown (top: highest scale (𝑑

1
), bottom: lowest

scale (𝑑
5
)). (d)–(f) The power spectral densities corresponding to (a)–(c), respectively.

numbered in order of increasing of the neurological deficit
score. The results of Renyi and multiscale Renyi entropies
are presented together, with Renyi entropy results enclosed
in parentheses. To demonstrate the entire trend, entropies for
each rat were averaged over selected intervals and the average
of recovery phase (30–240min from the start of experiment).
To analyze the capability of entropies as a predictor of neu-
ronal recovery, we evaluate Pearson correlation coefficient
and hypothesis testing using 𝑃 value between neurological
deficit score and entropies over the selected intervals and the
whole recovery period recorded (30–240min). From Table 1,
Pearson correlation coefficients between themultiscale Renyi
entropy and neurological deficit score were more significant
over all given time slots than between Reni entropy and
neurological deficit score. Additional hypothesis testing using
a Student-t distribution (𝑛 = 9) was conducted. The results

of hypothesis testing also support that the multiscale Renyi
entropy is more correlated with neurological deficit score
than the multiscale Renyi entropy’s counterpart, revealing
the improved predictability of multiscale Renyi entropy for
discerning neurological status.

4. Discussion and Conclusion

This work presents a new framework for quantifying infor-
mation quantity in EEG over multiple time scales. Entropy
has been considered to reflect the underlying dynamics in
EEG. Hence, various entropy measures have been success-
fully applied in prognosticating the degree of neurological
states. However, most methods which are based on a sin-
gle scale have limitation in describing information content
spanned over different scales. It leads to a need for multiscale
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Figure 4: Time evolutions of the conventional Renyi and multiscale Renyi entropies for three rats (NDS = 74, 59, and 50). (a) The Renyi
entropies. (b) The multiscale Renyi entropies (𝑞 = 3).

Table 1: Statistical results of Renyi and multiscale Renyi entropies.

Rat
ID

Multiscale Renyi entropy (Renyi entropy) NDS
30–60min 60–120min 120–240min Ave.

#1 0.24 (0.51) 0.33 (0.54) 0.50 (0.55) 0.41 (0.54) 46
#2 0.07 (0.30) 0.17 (0.36) 0.40 (0.44) 0.28 (0.40) 50
#3 0.24 (0.29) 0.36 (0.35) 0.63 (0.58) 0.50 (0.47) 59
#4 0.65 (0.75) 0.80 (0.85) 0.78 (0.81) 0.76 (0.82) 74
#5 0.43 (0.40) 0.65 (0.58) 0.88 (0.83) 0.74 (0.69) 74
#6 0.44 (0.56) 0.54 (0.59) 0.76 (0.77) 0.65 (0.68) 74
#7 0.54 (0.60) 0.63 (0.84) 0.65 (0.60) 0.63 (0.67) 75
#8 0.42 (0.52) 0.63 (0.68) 0.74 (0.80) 0.66 (0.72) 78
#9 0.40 (0.50) 0.60 (0.68) 0.61 (0.63) 0.58 (0.63) 80
𝑟 0.79 (0.49) 0.86 (0.69) 0.75 (0.75) 0.84 (0.76)
𝑃 0.01 (0.18) 0.003 (0.04) 0.02 (0.02) 0.004 (0.02)
𝑟: correlation coefficient, 𝑃: 𝑃 value, and NDS: neurological deficit score.

based entropy measure to capture locally changing feature at
various frequencies or scales.

This analysis of experimental EEG signals has been done
in two parts. First, we recognize that the EEG signals,
recorded during experimental interventions (such as global
ischemia brain injury reported here), are inevitably non-
stationary. In addition, their composition is complex, with
different modes or basis components, constituting the EEG
rhythm at any time instant. Therefore, a data-driven analysis
method, namely, EMD, was utilized to decompose the EEG
signal at different time instants during the experimental
investigations. Second, the analysis yields that EEG sig-
nals demonstrate considerable entropy which varies during
different experimental stages. Here, in order to quantify

the information quantity of EEG over adaptive and data-
dependent multiple scales, Renyi entropy of IMFs which are
results of EMD has been incorporated. As the precedent
approaches, the entropy-based EEG analysis methods for
hypoxic-ischemic injury have shown their capability for
evaluating recovery from brain injury [24, 28–30]. In [24,
28], the quantification of entropy depended on a gross EEG
recording, which may lose the multiscale dynamics. Also,
the studies in [29, 30] developed multiple frequency band
analysis based on wavelet transform, which is not sufficient
for representing nonstationary neural data. Comparing to the
previous approaches, this work yields a multiscale analysis
based on EMD, which makes it suitable for analyzing neural
data.

Along this line, somemultiscale entropy works have been
presented in [31, 32]. In [31], an adaptive multiscale entropy
along each scale based on multivariate EMD (MEMD) has
shown promising capability for representing dynamics of
neural data. In addition, Hu and Liang [32] have used an
additional noise channel to identify information-bearing
components in neural data, resulting in a noise-robust anal-
ysis approach.

Through simulation and experimental studies, the results
demonstrated that the multiscale Renyi entropy measures
show a stronger correlation with the clinical measure of
the neurological deficit score than conventional single scale
based Renyi entropy. For asphyxial cardiac arrest model of
rat, the results show that the proposed multiscale Renyi
entropy leads to high correlation with the eventual neuro-
logical deficit score at each phase of the EEG recording. As
a future step, the integration with the approaches in [31, 32]
would increase the efficacy as a quantitative neurological
measure for clinical EEG studies.
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To conclude, a novel multiscale Renyi entropy framework
for analysis of EEG signals has been presented. Analysis of
experimental EEG recording has shown thatmultiscale Renyi
entropy correlates well with clinically relevant measures of
neurological deficits. This study lays the foundation for
applying this novel approach to clinical studies of humanEEG
signals recorded during comparable episodes of brain injury
resulting from global ischemia after cardiac arrest as well as
other clinical situations such as traumatic brain injury.
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