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Determination of the cyanobacterial toxin cylindrospermopsin in algal food supplements
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For the analysis of blue–green algal food supplements for cylindrospermopsin (CYN), a C18 solid-phase
extraction column and a polygraphitized carbon solid-phase extraction column in series was an effective
procedure for the clean-up of extracts. Determination of CYN was by liquid chromatography with ultraviolet
light detection. At extract spiking levels of CYN equivalent to 25–500 mg g�1, blue–green algal supplement
recoveries were in the range 70–90%. CYN was not detected in ten samples of food supplements and one
chocolate product, all containing blue–green algae. The limit of detection for the method was 16mg g�1, and the
limit of quantification was 52mg g�1.
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Introduction

Cylindrospermopsin (CYN) was first obtained from

Cylindrospermopsis raciborskii isolated from a reservoir

in Australia where the water had caused human

hepatotoxicity (Byth 1980; Bourke et al. 1983;

Hawkins et al. 1985; Ohtani et al. 1992; Griffiths and

Saker 2003; Falconer and Humpage 2006). CYN has

been found to be genotoxic in in vitro systems and

carcinogenic in mice (Falconer and Humpage 2006).

It is now known to be ametabolite of several other fresh-

water cyanobacteria belonging to the genera Anabaena,

Umezakia, Raphidiopsis, and Aphanizomenon (Falconer

and Humpage 2006; Spoof et al. 2006) as well as more

recently Lyngbya (Seifert et al. 2007). The related

compounds deoxy-CYN and 7-epi-CYN have also

been isolated as co-metabolites (Norris et al. 2001;

Banker et al. 2000; Li et al. 2001a, 2001b; Seifert et al.

2007). Of particular interest is the formation of CYN by

the species Aphanizomenon flos-aquae isolated from

German lakes (Preubel et al. 2006; Fastner et al. 2007)
and which is harvested from natural blooms in Klamath

Lake (Oregon, USA) to be marketed as a food supple-

ment (Carmichael et al. 2000). Spoof et al. (2006)

reviewed levels of CYN in cyanobacteria;

2.3–6.6mg g�1 of CYN have been found in lyophilized

culture material of A. flos-aquae (Preubel et al. 2006).
More recently, 3.44–9.33mg CYNg�1 was determined

in freeze-dried A. ovalisporum and Cylindrospermopsis

raciborskii (Yilmaz et al. 2008). It was therefore of
interest to analyse algal supplements for CYN.

Procedures for the detection and determination
of CYN isolated from water and cyanobacteria

include enzyme-linked immunosorbent assay (ELISA)

(Bláhová et al. 2009), liquid chromatography (LC)

with ultraviolet (UV) detection (Harada et al. 1994;

Li et al. 2001a, 2001b; Welker et al. 2002; Kubo et al.

2005; Spoof et al. 2006; Kokociński et al. 2009;

Wormer et al. 2009), LC-mass spectrometry (MS)

(Kubo et al. 2005), LC-MS/MS (Eaglesham et al. 1999;

Li et al. 2001a, 2001b; Kikuchi et al. 2007; Bláhová

et al. 2009; Gallo et al. 2009; Kokociński et al. 2009),

hydrophilic interaction LC-MS (Dell’Aversano et al.

2004), and capillary electrophoresis (Vasas et al. 2004).

CYN is not retained by C18 solid-phase extraction

(SPE) adsorbents, but graphite columns do retain it,

so they have been used for clean-up of water, usually

in series with C18 SPE (Norris et al. 2001; Metcalf

et al. 2002; Metcalf and Codd 2005; Wormer et al.

2009). An anion-exchange column was used by

Kikuchi et al. (2007), styrene polymer and anion

exchange cartridges in series by Kubo et al. (2005), and

C18 and HP-20 polymer resin columns by Harada

et al. (1994) for analysis of algal cells.
There is no method previously reported for anal-

ysis of blue–green algal (BGA) food supplements
for CYN. We have adapted a method that incorporates
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both a combined ‘in-series’ SPE system with a C18
column connected to a polygraphitized carbon
(PGC) column and LC-UV. This method uses LC-
UV rather than more expensive LC-MS and should be
useful for screening these products for CYN.

Materials and methods

Extraction

Samples of BGA products with different brand names
and from five manufacturers were purchased through
the Internet. Their ingredient composition was variable
and not all were 100% BGA. They included tablets,
powder, capsules, food bars, and one sample of
chocolates, which were ground with a coffee grinder
and mixed. The BGA in most samples was stated to be
A. flos-aquae or came from Klamath Lake, which
would be this species (Carmichael et al. 2000). For each
sample container, the complete contents were pro-
cessed, and a representative subsample was taken
for extraction. NRC-CRM-CYN stock solution
(12.6 mgml�1) was purchased from the Institute for
Marine Biosciences (National Research Council,
Halifax, NS, Canada). CYN working solutions with
different concentrations were prepared by dilution of
the stock solution with water. Methanol was LC grade.
Formic acid and trifluoroacetic acid (TFA) were of
analytical grade. The aqueous extraction solution was
5% formic acid. Water was doubly deionized. SPE
columns were C18 (500mg/3ml, Supelco LC-18;
Oakville, ON, Canada) and polygraphitized carbon
(PGC) (HyperSep PGC, 100mg/1ml; Thermo
Scientific, Waltham, MA, USA).

BGA products (0.4 g) were weighed into 15ml
polyethylene centrifuge tubes, and 6ml of 5.0%
aqueous formic acid added. The mixture was homog-
enized for 3min using ultrasonication (Sonic
Dismembrator Model 100; Fisher Scientific,
Pittsburgh, PA, USA). After centrifuging at
11,000 rpm for 10min (Eppendorf Centrifuge 5804R
with F-34-6-38 rotor, Mississauga, ON, Canada), the
supernatant was collected and transferred to a 15ml
glass graduated test tube. Another 3ml of extraction
solvent were added to the residue in the centrifuge
tube, vortex mixed and centrifuged. The supernatants
were combined and made up to a final volume of 10ml
with water. The crude extracts were stored in a
refrigerator for repeat use if necessary.

Clean-up

Clean-up of an aliquot of the crude extract was
performed by a combined ‘in-series’ SPE system with
the C18 column connected to the PGC column. The
SPE columns were conditioned with 10ml methanol
containing 0.1% (v/v) TFA, followed by 10ml of

water. A total of 2ml of water were added to 0.25ml
of the crude extract of BGA (0.01 g of BGA powder
equivalent) and the solution loaded onto the combined
SPE system. A reservoir was attached to the top of the
C18 column. The solution was passed through the
columns at a flow rate of approximately 1ml min�1.
Hydrophobic compounds in the solution were removed
by the C18 column. The combined system was washed
with 9ml of water. The columns were not allowed to go
dry at any point. CYN eluted from the C18 column
was adsorbed by the PGC column. After washing the
columns with water, the PGC column was removed
from the first (C18) column and eluted with 4� 4ml
fractions of 0.1% TFA in methanol. On analysing each
fraction, no CYN was found in the first two fractions
(8ml of eluted solvent), but it started to elute in the
third fraction and was completely eluted after the
fourth fraction. The 16ml were collected in a glass
container. A 4ml aliquot of the eluate was evaporated
under nitrogen. The residue was resuspended in 0.4ml
of water for LC-diode array detection (DAD) analyses.
(As an alternative, we propose that the total eluate
could be evaporated to dryness on a rotary evaporator
with a water bath set at 40�C.)

Liquid chromatography (LC)

LC of CYN was carried out on an Agilent 1100 system
which included a quaternary pump, autosampler,
on-line vacuum degasser, and diode array detector
(Agilent Technologies Canada, Mississauga, ON,
Canada) with a 2.1� 250mm Genesis� AQ column
(Grace Jones, 120 Å, 4.0mm; Chromatographic
Specialties, Brockville, ON, Canada) and attached
guard C18 column. The column temperature was 35�C.
The LC gradient consisted of two mobile phases: A,
5mM ammonium acetate in water; and B, 5mM
ammonium acetate in methanol, used under the
following conditions: 5–60% B for 10min, then held
at 60% B for the next 5min; returned to 5% B over
0.5min, then held for another 14.5min with 5% B
before the next injection. The injection volume was
20 ml, and the flow rate was 0.2ml min�1. The detection
wavelength was 262 nm. To make a calibration curve,
CYN standard was added to a cleaned extract of
Klamath BGA then diluted with the cleaned extract
to make a series of concentrations. Calibration
curves in the range 6.0–63 ng injected were linear
(R2
� 0.9980). The LOD was about 2.0 ng CYN

injected (signal-to-noise ratio¼ 3 : 1) and the LOQ
was 6.5 ng CYN injected (signal-to-noise ratio¼ 10 : 1)
in BGA supplements.

Method performance was checked by spiking an
extract of Klamath BGA in which no CYN could be
detected with different levels of CYN (i.e., a certain
volume of CYN stock solution spiked in 0.25ml BGA
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extract and 2ml of water added, then the solution
loaded onto the combined SPE system). The spiking
levels of 25–500mg g�1 (ppm) were calculated based
on the 0.4 g of product which was extracted. Spikes
were carried out in triplicate at 126 mg g�1 (i.e., 100 ml
of CYN standard spiked in 0.25ml BGA extract);
other spiked experiments (19.8–400 ml of CYN stan-
dard spiked in 0.25ml BGA extract) were single at 25,
100, 252 and 504 mg g�1. Recoveries (%) were calcu-
lated by the equation:

ðAx Cs 16Þ=ðAs M Csp 4Þ � 100

where Ax is the peak area of the CYN toxin in the
BGA extract subjected to clean-up and analysed by
LC; As is the peak area of the diluted CYN standard;
Cs is the concentration of the diluted CYN standard
(mgml�1), i.e. 0.525mgml�1; M is the equivalent
amount of BGA (g) carried through the clean-up
procedure, i.e. 0.01 g of dried BGA powder; and Csp is
the concentration of the spiked CYN in the crude BGA
extract, for example, 25, 100, 126, 252, 504mg g�1.

Results and discussion

Recoveries for SPE clean-up were in the range 70–90%
for CYN and the standard deviation (SD) for the
triplicate spike was acceptable (Table 1).

The C18 plus PGC double-column clean-up proce-
dure provided an effective, reasonably accurate, and

useful method for screening CYN in BGA food

supplements by LC-UV. For other SPE columns –

mixed ion exchange polymers (Oasis MCX; Waters),

weak anion exchange (Oasis WAX; Waters) and NH2 –

the breakthrough from these columns either during

application of the extract solution or during the

subsequent wash was unacceptably high. Different

types of LC columns with dimension of 4.6� 150mm,

such as Supelcosil LC-18, C18 Phenomenex Ultracarb

column, and Zorbax C18, were also tried; however,

even with clean-up by the double columns, co-eluted

compounds affected the detection of CYN at 262 nm.

Therefore, a longer column, Genesis AQ 120 Å,

2.1� 250mm, 4.0 mm, was selected for the LC-UV

method development. Typical chromatograms are

shown in Figure 1(a–d). As shown in Figure 1(b)
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Figure 1. LC-UV chromatograms of (a) CYN analytical standard, 10.5 ng injected; (b) crude BGA extract, 0.125mg matrix-
equivalent injected; (c) crude BGA extract spiked with CYN at 126mg g�1, 0.125mg matrix-equivalent injected; and (d) crude
BGA extract spiked with CYN at 126mg g�1, followed by C18 plus PGC clean-up, 0.125mg matrix-equivalent injected.

Table 1. SPE clean-up recoveries of CYN from blue–green
algal food supplement extract.a

Spiking
level (mg g�1) n

Mean recovery (%)
� standard deviation (SD)

25.0 1 74.0
100 1 70.3
126 3 86.3� 3.8
252 1 89.2
504 1 84.0

Note: aThe spiking procedure is described in the text.
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and (c), the chromatograms indicate that quantitative
analysis of CYN in crude BGA is very difficult due
to the interference of co-eluted compounds close to
CYN at Rt¼ 10.85min. In contrast, the chromatogram
in Figure 1(d) indicates most of the interferences close
to CYN were efficiently removed after clean-up by
the double columns. These results showed that this
clean-up was effective for the determination of CYN
in complex BGA matrices.

We analysed ten algal food supplements and
one sample of chocolates containing BGA, all of
which were found to be free of CYN. The LOD of the
overall method was 16 mg g�1 of food supplement, with
LOQ¼ 52 mg g�1. Although we do not know the
concentrations of algae in the supplements, 16 mg g�1

is a useful LOD as CYN can be present at mg g�1

concentrations in dried cyanobacteria, e.g. up to
6.6mg g�1 dry weight in A. flos-aquae (Preubel et al.
2006; Yilmaz et al. 2008).

The clean-up procedure using LC-UV for detection
rather than the more expensive LC-MS should be
useful for screening algal food supplements for CYN.
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