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Classification of breast cancer subtypes using multi-omics profiles is a difficult problem since the data
sets are high-dimensional and highly correlated. Deep neural network (DNN) learning has demonstrated
advantages over traditional methods as it does not require any hand-crafted features, but rather automat-
ically extract features from raw data and efficiently analyze high-dimensional and correlated data. We
aim to develop an integrative deep learning framework for classifying molecular subtypes of breast can-
cer. We collect copy number alteration and gene expression data measured on the same breast cancer
patients from the Molecular Taxonomy of Breast Cancer International Consortium. We propose a deep
learning model to integrate the omics datasets for predicting their molecular subtypes. The performance
of our proposed DNN model is compared with some baseline models. Furthermore, we evaluate the mis-
classification of the subtypes using the learned deep features and explore their usefulness for clustering
the breast cancer patients. We demonstrate that our proposed integrative deep learning model is superior
to other deep learning and non-deep learning based models. Particularly, we get the best prediction result
among the deep learning-based integration models when we integrate the two data sources using the
concatenation layer in the models without sharing the weights. Using the learned deep features, we iden-
tify 6 breast cancer subgroups and show that Her2-enriched samples can be classified into more than one
tumor subtype. Overall, the integrated model show better performance than those trained on individual
data sources.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is a disease characterized by the uncontrolled cell
growth in an organ, i.e. the site where cells have originated from.
Breast cancer begins in the breast tissue and may start in the duct
or lobe of the breast. When the ‘‘controls” in breast cells are not
working properly, they divide continually and result in a lump or
tumor. It is a complex, heterogeneous disease at both the cellular
level and molecular level with differing prognostic and clinical out-
comes. In clinical practice, breast cancer is classified based upon
receptor expression. It is known as estrogen-receptor-positive
(ER+) if the cancer cells, like normal breast cells, have receptors
for the hormone estrogen that they rely on in order to promote
their growth. Statistics have shown that approximately 67% of
breast cancers test positive for hormone receptors [1]. Testing
whether a patient is hormone receptor positive or negative is cru-
cial in clinical diagnosis as the results can help physicians in deter-
mining whether the cancer is more likely to respond to hormonal
treatments or chemotherapy.

A study done in 2000 has emerged a new genomic paradigm [2]
in discovering the intrinsic subtypes of breast cancer. When they
looked at the gene expression profiles of breast cancers, they found
that the cancers segregated into 5 clusters: luminal A and B, Nor-
mal, Basal-like group and the HER-2 enriched. A genome-wide
gene expression profiling using microarray data was developed
into a PCR-based test with a curated list of 50 genes known as
the PAM50 signature. The PAM50 signature measures the expres-
sion levels of these 50 genes in tumor samples and classifies breast
cancers into one of the four intrinsic subtypes (Luminal A, Luminal
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B, HER-2 enriched and Basal-like). This classification has shown to
be prognostically independent of clinicopathologic factors and can
determine the sub-group of patients who are more likely to benefit
from adjuvant chemotherapy [3].

Machine learning approaches have been previously applied to
identify the molecular subtypes (such as PAM50 subtypes) of
breast cancer using microarray-based gene expression profiles
[4]. As we know, cancer progression is impelled by the accumula-
tion of somatic genetic mutations, which consist of single nucleo-
tide substitutions, translocations and copy number alterations
(CNA) [5]. CNAs are somatic changes in the copy numbers of a
DNA sequence that arise during the process of cancer development.
This results in changes to the chromosome structure in the form of
gain or loss in copies of DNA segments, and has been found to be
prevalent in many types of cancer [6]. Genes in the CNA regions,
if mutated, can create abnormal proteins and functions which
may lead to uncontrollable growth of cancer cells. Therefore, it will
be useful to predict the molecular subtypes of breast cancer by
integrating both patient-specific CNA profiles and gene expression
profiles.

Generally speaking, both of the CNA profile- and gene expres-
sion profile-based feature vector for supervised machine learning
algorithms includes majority of the genes in the human genome.
That is, each sample is represented by almost twenty thousands
of genes. Supervised machine learning methods, such as support
vector machine (SVM) and random forest (RF), work well to draw
a decision boundary between two classes or the decision bound-
aries among multiple classes, but this becomes challenge when
the size of the feature vector is much larger than the number of
training samples in many bioinformatics applications. Yeung and
Ruzzo used a classical method named as principal component anal-
ysis (PCA) for dimension reduction [7]. However, PCA linearly
reduces the dimension of the data and fails to capture the non-
linear relationship of the data. Recently, deep learning (DL) based
models demonstrate advantages to handle high-dimensional data
and extract linear and non-linear relationships of the data.

With the improvement of GPU hardware and availability of
massive training datasets, Krizhevsky et al. [8] has rekindled the
interest in deep learning models such as convolutional neural net-
works (CNNs) by achieving a significant gain over existing methods
in image classification using data sets from the ImageNet chal-
lenge. Recently, many advancements and improvements have been
made on deep learning. Razavian et al. [9] adapted deep features
from CNN to build a pre-trained CNN called OverFeat and achieved
remarkable performance improvement by simply applying the
model to a variety of visual recognition tasks in which OverFeat
was not trained for [10]. Yi et al. developed a Siamese network
[11], which includes two subnetworks with two different inputs
at the same time. The two subnetworks share the same configura-
tion with the same parameters and weights. The network can learn
a unified representation of the inputs from the two subnetworks.
Hinton et al. introduced a technique called Dropout as a form of
regularization by selecting a random set of activations during
training in order to set their weights as zero within each layer
[12]. The output is an averaged result of predictions of several
other grouped models. Wan et al. proposed DropConnect to gener-
alize the Dropout model [13] and it achieved state-of-the-art per-
formance on the benchmark datasets as compared to Dropout.
Another DL architecture is deep belief network (DBN). DBNs can
be trained in a layer-by-layer approach and these layers are made
of restricted Boltzmann machines (RBMs). Hinton proposed an
approach called contrastive divergence to learn the weights of
RBM using maximum likelihood method [14].

A deep neural network (DNN) can be pre-trained using a DBN.
That is, a DBN network is first trained and the learned weights from
this pre-trained DBN are then used to initialize the weights of the
DNN. This is useful when the number of training data is small
because the random initialization of weights can significantly
hamper the performance of the learned model. Since the learned
DBN weights are usually close to the optimal values of the best
model, this approach not only improves the performance of the
model but also minimizes the duration of fine-tuning [15]. Stacked
autoencoder is another variant of DL-based approach to produce a
good representation of input data. This network can capture the
ordered grouping of the input in an unsupervised fashion. Vincent
et al. proposed this idea to produce robust representation of the
corrupted input data to recover the corresponding input data
[16]. This was also referred as feature extraction for the represen-
tation of the input data. A DNN can be built to stack an autoen-
coder on the top of another. They demonstrated that this
approach can improve classification performance in many
applications.

DNN models have been applied for different bioinformatics
domains. Denas and Taylor preprocessed their genomic data as a
two-dimensional matrix, where rows are the transcription factor
activity profiles of genes and columns are the positions of different
genome elements [17]. They applied a deep convolutional neural
network (DCNN) model to predict DNA-binding sites. Zeng and Gif-
ford introduced a DNN to predict the DNA methylation level of a
single CpG from the corresponding sequence [18], which showed
improved performance than all previous models. Leung et al. used
mouse RNA-Seq data to build a DNN-based model to predict splic-
ing patterns in individual tissues and achieved the best result
among the other available methods such as Bayesian methods [19].

Zhou et al. were the first to propose the DCNN based approach
to predict the effects of noncoding-variants from large-scale
chromatin-profiling data and achieved state-of-the-art predictive
performance [20]. They named their method as the deep
learning-based sequence analyzer (DeepSea). Experimental results
showed that DeepSea could also precisely predict the consequence
of specific SNPs on TF binding. Analyzing gene expression data is
very important in discovering tumor-specific biomarkers and clin-
ical diagnosis [21], but high-dimensionality and the noisiness in
the gene expression data pose a great challenge to biologists for
cancer detection using traditional machine learning methods.
Dananee et al. proposed a deep learning based approach which
implemented a stacked denoising autoencoder (SADE) to analyze
high dimensional gene expression data [22]. This SADE network
condensed the high-dimensional gene expression data into a lower
dimension and produced a new eloquent illustration of its input.
The SADE identified a set of gene regulatory targets, which has
the potential to be used in cancer diagnosis. Somatic point muta-
tion based cancer classification (SMCC) is very important in deter-
mining the patient-specific cancer conditions so that personalized
therapy can be provided. However, existing SMCC methods do not
generate satisfactory cancer type or subtype classification results
due to the high sparsity and small sample size of the used datasets.
Yuan et al. [23] proposed a new DNN based model called DeepGene
to overcome these issues. This model first filtered the genes by
mutation rate to remove irrelevant genes from their data. It then
indexed the genes by their non-zero elements, allowing DeepGene
to overcome the data sparsity problem. Finally, the outputs of
these two steps were fed into a DNN which performed automatic
extraction of features for SMCC. DeepGene achieved 24% better
prediction performances than the existing methods. Liang et al.
also proposed a model which used DBN for the purpose of cluster-
ing cancer patients by integrating multimodal data [24]. They inte-
grated gene expression data and clinical data (e.g. survival time)
and fed the output into the DBN model. This model can capture
intra- and cross-modality correlations and learn a unified repre-
sentation of the input. As a result, this model outperformed exist-
ing methods in clustering cancer patients.
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With the availability of more and more multi-omic data, inte-
gration of multiple omic datasets to train a network becomes
essential as this technique may incorporate biological knowledge,
which may be complimentary in the datasets, into one unified
model. For example, Gevaert et al. used a Bayesian network to inte-
grate clinical data and patient-specific gene expression data to pre-
dict the prognosis of breast cancer [25]. Van Vliet et al. proposed a
new nearest mean classifier to integrate these two types of data to
achieve the same goal [26]. A kernel-based method has also been
developed to integrate different types of biological data [27].
Kernel-based approach first found the kernel of each of the original
datasets represented as matrices via a specified kernel function.
Then these kernel matrices were combined into one single kernel
matrix by performing a linear sum of these kernel matrices. Finally,
SVM was used for classification using the combined kernel matrix.
The kernel-based data integration method provided better predic-
tion performances in genomic data analysis than other traditional
data integration approaches. Wang et al. used the kernel-based
method to integrate three types of biological data: molecular struc-
ture, molecular activity, and phenotype data to predict novel drug-
disease interactions using SVM [28]. Daemen et al. showed that
clinical data and microarray data can be efficiently integrated
using the kernel-based method to provide patient-specific therapy
[29].

Recently, Eser et al. proposed a new integrative deep learning
based framework called FIDDLE (Flexible Integration of Data with
Deep Learning) to integrate multiple types of genomic data to pre-
dict yeast Transcription Start Site sequencing (TSS-seq) [30]. FID-
DLE demonstrated improved prediction performance when its
input was the integration of multiple datasets (i.e. RNA-seq and
DNA sequence) instead of only one dataset (i.e. RNA-seq or DNA
sequence). Dutil et al. [31] used a graph neural network based
approach to capture complex spatial context to answer biological
questions i.e. prediction of clinical attributes. They have used gene
expression data from the Cancer Genome Atlas (TCGA) project [32]
to perform their experiments. Ma and Zhang [33] and Jurman et al.
[34] introduced DCNN based methods to transform omics data into
abstract level in order to get final inferencing output.

Ismailoglu et al. [35] integrated gene expression and protein
expression data to classify molecular subtypes of breast cancer.
They have 12% improved prediction performance than the model
that was trained using only protein data. However, there are no
DNN models built for classifying molecular subtypes of breast can-
cer by integrating both CNA profiles and gene expression profiles.
In this paper, we propose to build our CNA profile- and gene
expression profile-based classification model for molecular sub-
types of breast cancer by using an integrative deep neural network
learning approach. The molecular subtypes of breast cancer we aim
to predict include the status of estrogen-receptor (ER+ and ER�),
which is a binary classification problem, and the status of subtypes
(luminal A, luminal B, HER-2 enriched and basal-like), which is a
multi-class classification problem.

This paper is organized as follows: Section 2 describes our pro-
posed and baseline DNN architectures, and the datasets that were
used during the experiments, then following that Sections 3 and 4
present and discuss our experimental findings, and finally Section 5
presents our conclusions.
2. Materials and methods

2.1. Datasets

We used copy number alteration data and gene expression data
from METABRIC (Molecular Taxonomy of Breast Cancer Interna-
tional Consortium) project [36]. The group collected around 2000
clinically annotated primary fresh frozen breast cancer specimens
along with a portion of normal specimens from different North
American and European tumor banks. The primary tumors could
be categorically linked to DNA and RNA specimens. The authors
performed quality control assessment and excluded the mis-
matches between DNA and RNA. Paired DNA and RNA profiles were
created by collecting tumour samples from 991 female patients,
which was called a discovery set (we call it as a training set). A sec-
ond group of 984 cases was collected in a later stage which
included low cellularity tumors, DCIS (Ductal carcinoma in situ),
and three benign cases. This group represents a validation set
and was used to test reproducibility of the integrative cluster
and clinical outcome associations. We use this as an independent
test set to evaluate our models.

To determine copy number alteration events in each breast can-
cer patient, we focus on gene-specific CNA events as shown in
Fig. 1. We use the set of discrete copy number calls: �1 = copy
number loss, 0 = diploid, 1 = copy number gain. For each CNA
region in each patient, we retrieve its gene information based on
its chromosome positions using the biomaRt R package.

Gene expression data was generated from Illumina BeadArrays
(i.e. Illumina HT-12 v3 platform). The data was preprocessed (in-
cluding quantile normalization) using the beadarray R package
by Curtis et al. [36]. For our experiment, we focus on the gene
expression profiles of the 16,289 genes common in both CNA and
gene expression data sets.

For the binary class classification, we take 991 patient samples
from the discovery set as our training set and 984 patient samples
from the validation set as our test set. In this training set, we have
794 samples for the ER+ class and 197 samples for the ER� class. In
the test set, we have 716 samples for the ER+ class and 268 sam-
ples for the ER� class. However, for the multi-class classification,
we take 935 patient samples from the discovery set as our training
set and 842 patient samples from the validation set as our test set
since some of the patients in the whole discovery and validation
sets have no the tumor subtype information. In this training set,
we have 464, 268, 87 and 116 samples for Luminal A, Luminal B,
HER-2 enriched and Basal-like classes respectively. Besides, in
the test set, we have 255, 224, 153 and 210 samples for Luminal
A, Luminal B, HER-2 enriched and Basal-like classes respectively.
It should be noted that the separation of training and test sets
was done in original study [35], which was based on the samples
collected at different periods. The labels of the molecular subtypes
of these patients are extracted from the Supplementary Tables 2
and 3 of [36]. The gene expression data and copy number variation
data used for the analysis can be accessed from European Genome-
phenome Archive [37].

2.2. Deep neural network architectures

2.2.1. Base network architecture
The network architecture of our base DCNN model to predict

the molecular subtypes of breast cancer using individual datasets
is shown in Fig. 2. Each of our samples is represented by 16,289
genes in both datasets (i.e. CNA and gene expression datasets).
We treat each of these genes as a feature of the sample. This means
that there are 16,289 features for each of the samples.

This network takes the single data source (such as CNA or gene
expression) of a sample as an input feature vector (X) which goes
directly to a convolutional layer. A filterF (also known as kernel),
which is an array of numbers (also known as weights), slides over
all the positions of X. The height of F and X must be the same and
here it is 1 as we are dealing with one-dimensional input vector.
The regionR over which the F is currently moving is known as
receptive field. An elementwise multiplication is performed
between F and R, which produces a single number to represent R.



Fig. 1. Representation of copy number alteration events. Patient-level individual copy number alterations are matched to gene regions in human genome (hg19). (a)
Recurrent copy number alteration events. The blue segments are copy number loss, the black segments are copy number diploid and the orange segments are copy number
gain. (b) Representation of copy number alteration events with numeric values. ‘‘�1” represents copy number loss, ‘‘0” represents copy number diploid and ‘‘1” represents
copy number gain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Individual data source-based DCNN architecture. A backpropagation
approach is used to train the multi-layer network. The size of input feature vector,
the size of the resulted vectors from fully connected layers and the size of different
kernels at different layers are listed. Here, 1� 20� 1 ! 10represents a kernel of
size 1� 20and the height of all 10 feature maps is 1. We use a stride of size 1� 5 for
convolutional layers and 1� 10 for the max pooling layer.
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In this way, we can capture the correlation among the neighboring
genes of the input data under the weight filter. This process contin-
ues until it covers every position of X and the resulted vector is ter-
med as activation or feature map. So, if X is a Q-dimenstional
vector, then the size of the activation map would be 1� ðQ � FÞ.
One can have any number of feature maps by using different Fs.
For our base DCNN model we take 10 convolutional feature (CF)
maps and the size of our input feature vector is 1� 16289 and
the size of the convolutional kernel is 1� 20. These CFs represent
the local patterns of our input feature vector X. This convolutional
operation is well known as a robust pattern finder of local features
[20,30,38]. If this input data has any pattern, it will be captured by
this convolutional operation.

The output of our convolutional layer (CFs) goes to the Relu
(Rectified Linear Units) layer. Relu is an activation function, which
is useful to model the complex non-linear relationship between
the input and output of the model. For our experiment, the input
can be either gene-specific CNA profiles or gene expression profiles
and the output is the prediction score for a patient assigned to one
of the molecular subtypes. Unlike other activation functions (e.g.
tanh or sigmoid), Relu implements a simple thresholding function
rather than an expensive exponential function. Relu function is
expressed as follows:

f rð Þ ¼ r; r � 0
0; r < 0

�
ð1Þ

Here, r represents an input into a neuron
We know that a DCNNmodel with large number of neurons can

model any complex relationship between its input and output.
However, here we have a small number of training samples for
our DCNN model, which can be easily overfitted over the training
data. Hence, the Relu layer is followed by a max pooling layer to
reduce the size of the input feature vector, which is also known
as downsampling. A filter goes over its input and takes the maxi-
mum value of the receptive field. Although pooling may cause loss
of information, such kind of loss is useful because we will have
fewer numbers of parameters to be learned which helps the model
overcome the curse of overfitting problem. This layer also helps the
model become invariant in terms of translation, rotation and scal-
ing of the input data. Therefore, the pooling layer leads the DCNN
model to have better generalization over the test data.

The output of our pooling layers is then input to a fully con-
nected ðFC1) layer. This layer has a connection to its previous layer
for each of the neurons and the output of this layer is a simple
matrix multiplication which is a one-dimensional vector. For our
experiment, the size of this vector is 1� 250. This FC1 layer is then
followed by another fully connected (FC2) layer to get higher level
features of our input feature vector X. However, since our network
trains huge number of parameters using only a few hundreds of
training samples, we pass this output to another fully connected
layer (FC3) via a Relu layer and a Dropout layer. Dropout layer
implements a regularization technique to prevent the DCNNmodel
from overfitting. This layer randomly drops different units with its
associated connections.

The output of FC3is a vector of size 1� 2or1� 4, where 2 and 4
represent the number of classes of estrogen-receptor and tumor
subtypes, respectively. FC3 takes the high-level features of X from
the output of FC2 and regulates each of the features mostly corre-
lates with a specific class. Each of the values of FC3 represents a
prediction score for a particular class, which is then converted into
a probability score using a softmax classification layer. This layer
implements the softmax function using two parameters from the
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output of FC3: prediction scores (x) and weights (y). So, we can cal-
culate the probability of the p-th class using the following formula:

P z ¼ pjxð Þ ¼ ex
TypP4

k¼1ex
Tyk

ð2Þ

Here, xTy represents an inner product between x and y.
Finally, we use backpropagation to train our DCNN models.

2.2.2. DNN models for data integration
We propose a deep convolutional neural network-based data

integration model, which first trains each data source separately,
and then the trained deep features are concatenated for the final
prediction. This proposed model is called as DCNN_Concat as
shown in Fig. 3. We also compare this model with other deep
learning-based models. The first model is similar to our proposed
DCNN_Concat, but it shares the training weights from each of the
two data sources as shown in Fig. 4, which is called as DCNN_Sia-
mese. The second model uses a fully-connected DNN with weights
initialized by stacked autoencoder as shown in Fig. 5, which is
called as DNN_SE. Below we briefly describe the integration
techniques.

2.2.2.1. DCNN_Concat model. This method takes two feature vectors
as inputs: one from the CNA data and another from the gene
expression data. Both of these vectors represent information from
the same patient and have the same label.
Fig. 3. Concatenation-based data integration for DCNN architecture. The DCNN model
respectively. The high-level features from the two data sources are then concatenated. T
prediction of the breast cancer subtypes.
The outputs of fully connected layers from the left branch (FC L)
and right branch (FC R) represent the DCNN feature vectors of the
inputs. To integrate the knowledge of the same patient from these
two different sources we use a concatenation layer. This takes the
outputs of these two fully connected layers and performs a con-
catenation operation between them. We call this architecture as
DCNN_Concat (Fig. 3).

Suppose, C represents the CNA data of patient X and G repre-
sents the gene expression data of X and the label (tumor subtype)
is the same for both C and G. Now, C goes as an input to the left
branch and G to the right branch. Then both C and G go through dif-
ferent layers of left and right branches. So, the outputs of FC L and
FC R layers, which are named as k L and k R, respectively, are con-
sidered as the higher-level representation of C and G. Both C and G
are 250-dimensional vectors so the concatenation layer takes k L
and k L as inputs and produces a 500-dimensional vector (V):

V ¼ k Lkk R ð3Þ
Here, k represents the concatenation operation. Then V goes

through other different layers of the DCNN to provide the final
higher-level reasoning from the integrated data. The final output
is the predicted probability for a particular class of molecular sub-
types of breast cancer.

2.2.2.2. DCNN_Siamese model. Similar to DCNN_Concat (Fig. 3), the
weight-sharing network also contains two different branches to
take patient-specific CNA data and gene expression data respec-
is first learned for CNA data (left branch) and gene expression data (right branch),
he DCNN model is further learned based on the concatenated results to make final



Fig. 4. Weight sharing-based data integration for DCNN architecture. Weight sharing-based network is similar to the concatenation network except that the two branches for
learning models from CNA and gene expression data share the same weights or kernels. To integrate the high-level features from the two data sources, concatenation
operation is used in this study, but other operations can be performed.

Fig. 5. Stacked autoencoder-based data integration for DCNN architecture. (a) Build stacked autoencoder from integrated data; (b) Build classification model fine-tuned from
the pre-trained stacked autoencoder in (a).
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tively. However, the architecture of this approach involves sharing
information (i.e. weight) between layers of the two branches for
the two data sources (Fig. 4).

This type of network is termed as Siamese network. Hence, we
call this architecture as DCNN_Siamese. This network takes two
feature vectors for the two data sources as inputs: CNA data (left
branch) and gene expression data (right branch) of the same
patient with the same class label. Both convolutional layers of
the two branches use the same sized kernel with the same weights.
This has been performed in the same way for the fully connected
layers of the two branches. However, the Relu and max-pooling
layers do not have any weight parameters to learn and they per-
form only mathematical operations, so they are not involved in
weight sharing. This means the model needs to learn fewer param-
eters which help the model not to be overfitted over the training
data. We merge the outputs from k L and k R by a concatenation
layer. This concatenation and the rest of the architecture of
DCNN_Siamese is the same as the architecture of our DCNN_Con-
cat (Fig. 3).

We then pass the combined vector to other different layers of
the DCNN to provide the final higher-level reasoning from the inte-
grated data to get the final prediction of a particular class label of
molecular subtypes of breast cancer.
2.2.2.3. DNN_SE model. We first train a deep neural network in an
unsupervised fashion. This creates a set of feature detector layers
without using the labels of the samples. To do this we use a stacked
autoencoder (SE) approach.

We concatenate CNA data and gene expression data for each of
the samples, which results in a 32,578-dimensional vector as an
input to the SE network (Fig. 5(a)).

This architecture includes encoder and decoder two parts. Each
of the encoder layers has a corresponding decoder layer. The pur-
pose of learning this network is to reconstruct the raw inputs in
the corresponding decoder layers. Each of the encoder and decoder
layers is followed by a sigmoid neuron except the last decoder
layer. We use sigmoid neuron layer so that small changes in one
of the encoder or decoder layers do not make large changes to their
outputs since such small changes can sometimes flip the output
such as 0 to 1. The output of sigmoid function can be defined as:

r xð Þ ¼ 1
1þ e�x

ð4Þ

Here, x represents an input to a neuron. Sigmoid function
squashes the real numbers to range between 0 and 1. Therefore,
the network becomes non-linear.

We use sigmoid cross entropy loss function (Eq. (5)) to train our
SE network in a backpropagation style. This loss function takes the
output of a fully connected layer as its input and it uses a sigmoid
function to provide a gradient estimation.

Loss Y;Xð Þ ¼ �
Xn
i¼1

XilogðYiÞ ð5Þ

Here, n is the total number of training inputs, X is the label,
which is the input itself and Y is the prediction of the network.

After training the SE, we train another deep neural network
(Fig. 5(b)) which contains the same layers as the encoder layers
of this SE but has an additional layer on the top to get the final pre-
diction of a particular class label of molecular subtypes of breast
cancer. Here, the weights of all layers except the additionally
added layer are fine-tuned from the encoder layers of the SE. In this
way, the weights of the network are initialized with much more
practical values which may lead to better training and classifica-
tion results. We call this DNN architecture as DNN_SE.
2.2.3. Software and parameters
We build our DNN models using CAFFE [39], which is a C++

based deep learning library. We use all the 16,289 genes common
to both data sources as input vectors to each of our DNN models
(Figs. 2–5). To investigate the effects of the selection of different
hyperparameter values on the prediction performance of our best
DCNN model (DCNN_Concat), we consider different values for
two hyperparameters: learning rate (0.1, 0.01, 0.001, 0.0001 and
0.00001) and dropout rate (0.1, 0.3, 0.5, 0.7 and 0.9). We report
the parameter values (learning rate 0.001 and dropout rate 0.5)
with the best prediction performance.

2.3. Model performance evaluation and traditional baseline models

We use two methods to measure the performance of our DNN
classifiers. The first one is overall accuracy, which is the proportion
of patients with correctly predicted molecular subtypes. The sec-
ond one is Receiver Operating Characteristics (ROC) curve, which
depicts the pattern of sensitivity (1-FNR) and specificity (1-FPR)
of a classifier at several different discrimination thresholds, such
as the probability assigning a given sample to a given molecular
subtype of breast cancer. Here, FNR means false negative rate
and FPR means false positive rate. The quantitative index used to
evaluate a classifier based on ROC is the area under the ROC curve
(AUC). We use a R function called multiclass.roc [40] to generate
multiple ROC curves for computing the multiclass AUC.

The performance of our proposed DNNmodel (DCNN_Concat) is
compared to that of other two state-of-the-art supervised classifi-
cation models: SVM and RF. We build these models using R pack-
ages e1071 for SVM and randomForest for RF. Since we have more
than 16,000 genes or features and only approximate 1000 samples
in training set, besides using all of the genes, we also select top sig-
nificant genes to build the baseline SVM and RF models. We calcu-
late the significance of each of the genes using different supervised
approaches. For CNA data, we use v2 test since it is category data
while for gene expression data, we perform parametric ANOVA
test. The selected top significant genes and all of the 16,289 genes
are used to build the traditional baseline models.

RF is suitable for both binary and multiclass classification of
microarray data because of the following reasons [41]: RF is suit-
able when the number of predictors is very large than the number
of observations, RF is not sensitive to the enormous number of
irrelevant genes while selecting important genes for final predic-
tion, RF includes the relations among predictors and RF does not
require extensive fine-tuning as default parameters often lead to
the outstanding prediction performances [42]. Besides, Díaz-
Uriarte [43] et al. used experimental evaluation of RF with cancer
microarray gene expression data and concluded that RF has com-
parable prediction performance to the SVM based classifiers of
omics data. Therefore, in this study, we have chosen SVM and RF
as our traditional baseline models.

For SVM models, we use Radial kernel function and optimized
the cost parameter of SVM in the range of 1–50 using 10-fold
cross-validation on the training data and the optimized parameter
value is 1. We have also fine tuned the hyperparameters of our RF
models using 10-fold cross-validation: the number of available
variables during node splitting in the range of 2–6, maximum
number of nodes in a tree in the range of 2–10 and the number
of trees in the range of 50, 100, 200, 300, 400, 500, 1000, 2000.
The optimized parameter values are: the number of available vari-
ables during node splitting is 2, maximum number of nodes in a
tree is 6 and the number of trees is 500. We run each model
(SVM and RF) with the best found parameter for 10 times and
report the mean accuracy and AUC. In addition, we also report
the standard deviation (SD) for the accuracies and AUCs from these
10 models.



Table 1
The overall accuracies (%) and AUCs of our DCNN models for multi-class classification.
CNA_DCNN and Gene_DCNN are based on the architecture of Fig. 2 for CNA data and
gene expression data, respectively. DCNN_Concat, DCNN_Siamese and DNN_SE are
DNN models based on the network architectures described in Figs. 3, 4 and 5,
respectively.

Model (all genes) Datasets Performance
Measurement

Accuracy (%) AUC

CNA_DCNN CNA 50.5 0.677
Gene_DCNN Gene expression 77.3 0.832
DCNN_Concat CNA and gene expression 79.2 0.850
DCNN_Siamese CNA and gene expression 76.7 0.838
DNN_SE CNA and gene expression 77.3 0.838
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Furthermore, we implement two other baseline data integration
approaches. The first approach is implemented for both SVM and
RF. For each specified number of top genes, we first select the genes
based on v2 test for CNA data and ANOVA test for gene expression
data. We then concatenate the selected CNA data and gene expres-
sion data. Finally, we perform the classification analysis using SVM
and RF for the selected gene sets, respectively. This method is
called SVM_Concat and RF_Concat, respectively. The second
method is a kernel-based SVM integration method (named as
BK_SVM_Concat and MK_SVM_Concat for binary class classifica-
tion and multi-class classification respectively) [28,29]. For our
experiments, we first calculate two kernel matrices for CNA data
and gene expression data using the R package called kernlab (de-
fault parameter values used). We then take a linear sum of these
two kernel matrices and use this integrated kernel matrix to build
our kernel-based SVM models.

2.4. Survival analysis

Kaplan-Meier (KM) survival analysis and log-rank test is used to
determine survival significance in breast cancer subtypes from
Kaplan-Meier survival curves, overall survival (OS), and disease-
specific survival (DSS). Cox proportional hazards models are used
to calculate hazards ratio (HR), demonstrating differences in sur-
vival analysis by pairwise comparison between breast cancer sub-
types (P < 0.05). All the analysis is performed using the R package
Survcomp.

2.5. Consensus clustering

k-means clustering and consensus clustering are used to deter-
mine the optimal number of stable breast cancer subtypes using
the R package ConsensusClusterPlus. Cluster robustness is assessed
by consensus clustering using agglomerative k-means clustering
(100 iterations), with Pearson correlation distance and complete
linkage on the 842 breast cancer profiles in the test set using the
top 500 deep features trained from the training set. The optimal
number of clusters is determined from the consensus distribution
function (CDF), which plots the corresponding empirical cumula-
tive distribution, defined over the range [0,1], and from calculation
of the proportion increasing in the area under the CDF curve. The
number of clusters is decided when any further increasing in clus-
ter number (k) does not lead to a corresponding marked increasing
in the CDF area. The breast cancer subtype annotation and heat
maps are generated using the R package ComplexHeatmap.

2.6. Data availability

All data sets used in the study are available from the Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC):
https://ega-archive.org/dacs/EGAC00001000484.
3. Results

3.1. Model performance analysis using the test set

Table 1 presents the accuracies and AUCs of our proposed and
baseline DNN models for multi-class (tumor subtypes) classifica-
tion. It can be seen that the model (Gene_DCNN) using gene
expression data can predict the subtypes more accurately than that
(CNA_DCNN) using CNA data. The prediction performance of the
model ‘‘Gene_DCNN” in terms of accuracy is 77.3% and AUC is
0.832, which is significantly better than the model ‘‘CNA_DCNN”
of accuracy 50.5% and AUC 0.677. Among the DCNN-based integra-
tion models, we get the best result when we integrate the two data
sources using the concatenation layer without sharing the weights
(model: DCNN_Concat). Overall, the proposed DCNN model
(DCNN_Concat) has shown better prediction performance than
the DCNN models trained on individual data sources (CNA_DCNN
and Gene_DCNN) and the baseline DNN-based integration models
(DCNN_Siamese and DNN_SE).

One major advantage of our proposed DNN model than the tra-
ditional methods is that the DNN based model can better handle
high dimensional data. Unlike SVM and RF, the proposed
DCNN_Concat transforms input high-dimensional data into a
lower-dimensional size in order to perform final prediction about
the input data. Besides, unlike SVM and RF, the proposed
DCNN_Concat concatenates transformed CNA and gene expression
data. Intuitively, raw features may have little identifiable pattern,
especially for complex tumor subtype classification. Therefore, it
is important to transform input raw data into abstract level before
using these features for the cancer subtypes classification. Further-
more, our DCNN_Concat shows better performance over the base-
line DCNN_Siamese because the layers in the two branches for the
two data sources in DCNN_Concat model (Fig. 3) learn different
weights but those in DCNN_Siamese model (Fig. 4) learn the same
weights. This gives us the insight that CNA data and gene expres-
sion data need to be treated differently. Furthermore, DCNN_Con-
cat captures the correlation among the neighboring genes in the
input vector using convolutional layers while the baseline DNN_SE
model (Fig. 5) does not consider this correlation. This may cause
the lower performance using DNN_SE over DCNN_Concat.

Performances of our other baseline models (SVM and RF) for the
multi-class classification are shown in Table 2 (accuracies) and
Table 3 (AUCs). Overall, there are no significant changes in the
results of using different number of top selected genes for both
SVM and RF models. Similar to our proposed DNN models, SVM
and RF also provide better prediction results using gene expression
data than CNA data. This may be due to the fact that CNA data is
very sparse. Generally speaking, in terms of both accuracy and
AUC RF models give better results than SVM models for CNA data
while SVM models provide better results than RF models for gene
expression data. The integration of the gene expression and CNA
data using SVM (SVM_Concat, MK_SVM_Concat) and RF (RF_Con-
cat) has not shown significant improvement of the prediction per-
formance over the individual gene expression data (Tables 2 and
3).

Comparison of Table 1 with Tables 2 and 3 shows that when we
use only individual data sources to build their DCNN models
(CNA_DCNN for CNA data and Gene_DCNN for gene expression
data), we get higher accuracy and AUC results than corresponding
SVM and RF models (i.e. CNA_SVM and CNA_RF for CNA data and
Gene_SVM and Gene_RF for gene expression data). It is also seen
that our integrated models (DCNN_Concat, DCNN_Siamese and
DNN_SE) outperform the models (CNA_DCNN, Gene_DCNN) built
on individual data sources in terms of both accuracy and AUC.

https://ega-archive.org/dacs/EGAC00001000484


Table 2
Accuracy of the baseline models and our proposed deep learning model (DCNN_Concat) for multi-class classification. The results are shown for SVM and RF models using
individual CNA data (CNA_SVM, CNA_RF) and gene expression data (Gene_SVM, Gene_RF) as well as the integration of both data sources (SVM_Concat, MK_SVM_Concat and
RF_Concat). We ran each RF model with the best found parameter values for 10 times and reported the mean accuracy because of the stochastic nature of RF. In addition, we also
reported the standard deviation (SD) for the accuracies and AUCs from these RF models. The results for DCNN_Concat using the selected top genes are also shown. The best results
for models with different number of top genes selected by v2 for CNA data and ANOVA for gene expression data are shown in bold color.

Model (top genes) Test Accuracy (Accu: %) based on number of top selected genes

100 150 200 250 300 350 400 450 500

CNA_SVM v2 41.7 43.2 41.9 42.6 42.6 43.2 43.3 42.8 43.2
CNA_RF v2 Accu 46.6 48.1 47.5 47.9 48.5 48.5 49.0 48.9 49.9

SD 0.45 0.24 0.48 0.24 0.31 0.55 0.18 0.52 0.18
Gene _SVM ANOVA 72.4 75.8 75.6 75.6 76.0 75.4 75.9 75.5 75.9
Gene _RF ANOVA Accu 70.1 71.0 71.1 71.0 70.5 70.4 71.2 70.7 70.0

SD 0.34 0.45 0.61 0.78 0.23 0.8 0.82 0.45 0.37
SVM_Concat 72.0 72.7 72.4 72.3 73.4 72.8 73.1 72.9 73.1
MK_SVM_Concat 49.1 52.1 58.1 55.7 56.1 67.1 55.8 58.3 57.8
RF_Concat Accu 70.2 71.4 70.4 71.2 71.0 69.3 71.0 70.2 71.3

SD 0.4 0.14 0.43 0.18 0.61 0.57 0.12 0.88 0.47
DCNN_Concat 72.9 72.9 71.6 72.6 71.5 72.7 74.4 74.8 76.6

Table 3
AUC of the baseline models and our proposed deep learning model (DCNN_Concat as shown in Table 1) for multiclass classification. The results are shown for SVM and RF models
using individual CNA data (CNA_SVM, CNA_RF) and gene expression data (Gene_SVM, Gene_RF) as well as the integration of both data sources (SVM_Concat, MK_SVM_Concat
and RF_Concat). We ran each RF model with the best found parameter for 10 times and reported the mean AUC because of the stochastic nature of RF. In addition, we also
reported the standard deviation (SD) for the accuracies and AUCs from these 10 RF models. The results for DCNN_Concat using the selected top genes are also shown. The best
results for models with different number of top genes selected by v2 for CNA data and ANOVA for gene expression data are shown in bold color.

Model (top genes) Test AUC based on top selected genes

100 150 200 250 300 350 400 450 500

CNA_SVM v2 0.589 0.590 0.632 0.630 0.629 0.636 0.629 0.630 0.633
CNA_RF v2 AUC 0.644 0.647 0.633 0.642 0.649 0.655 0.651 0.655 0.669

SD 0.003 0.002 0.001 0.004 0.003 0.004 0.002 0.006 0.003
Gene _SVM ANOVA 0.804 0.818 0.812 0.799 0.808 0.807 0.814 0.814 0.819
Gene _RF ANOVA AUC 0.805 0.810 0.805 0.802 0.809 0.802 0.803 0.79 0.801

SD 0.003 0.002 0.001 0.003 0.002 0.003 0.002 0.003 0.002
SVM_Concat 0.810 0.815 0.810 0.818 0.810 0.810 0.815 0.814 0.814
MK_SVM_Concat 0.741 0.760 0.753 0.725 0.734 0.820 0.730 0.746 0.792
RF_Concat AUC 0.803 0.808 0.803 0.802 0.801 0.804 0.801 0.807 0.808

SD 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.001
DCNN_Concat 0.810 0.817 0.815 0.817 0.821 0.811 0.829 0.834 0.852
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Table 4 shows the best results from Tables 1–3 and the results
of our baseline data integration models using all genes (SVM_ Con-
cat, RF_ Concat, MK_SVM_ Concat, DNN_DBN). It can be easily seen
that the integration model DCNN_Concat outperforms all baseline
models. This may be due to the fact that the proposed DCNNmodel
consider the correlation among the neighboring genes in the input
Table 4
Performance comparison of multi-class classification. The best results for the models
are extracted from our proposed model (Table 1) and the baseline models using top
selected genes (Tables 2 and 3) and all genes (SVM_ Concat, RF_ Concat, MK_SVM_
Concat and DNN_DBN). The models with the best results are bolded.

Model Accuracy
(%)

Model AUC

DCNN_Concat (all genes) 79.2 DCNN_Concat (all genes) 0.850
DCNN_Concat (top 500

genes)
76.6 DCNN_Concat (top 500

genes)
0.852

Gene_SVM (top 300
genes)

76.0 Gene_SVM (top 500 genes) 0.819

CNA_RF (all genes) 54.4 CNA_RF (All genes) 0.691
Gene_RF(all_genes) 71.1 Gene_RF(all_genes) 0.788
RF_Concat (top 150

genes)
72.1 Gene_RF (top 500 genes) 0.812

SVM_ Concat (all genes) 69.5 SVM_ Concat (all genes) 0.804
MK_SVM_Concat (all

genes)
76.7 MK_SVM_Concat (all

genes)
0.798

RF_Concat (all genes) 70.1 RF_Concat (all genes) 0.781
DNN_DBN (all genes) 49.89 DNN_DBN (all genes) 0.625
vectors and the proposed DNN_SE model is less susceptible to the
undesirable noisiness in the data.

The similar procedure for the multi-class classification is
applied to binary class classification (the classes of estrogen-
receptor) and the results of the accuracies and AUCs of our DCNN,
SVM and RF models are shown in Tables 5–7. Generally speaking,
the integration of the CNA and gene expression data using the
DCNN and SVM models have greatly improved the prediction per-
formance over individual data sources, but this has not been
observed for the RF models (Table 8). Although the proposed DCNN
model have better performance than the baseline DNN model
(B_DNN_DBN), their performance is slightly worse than those
based on integration of the CNA and gene expression data using
kernel-based integration model (BK_SVM_Concat) in terms of
Table 5
The overall accuracies (%) and AUCs of our DNN model for binary (B) classification.
B_CNA_DCNN and B_Gene_DCNN are based on the architecture of Fig. 2 for CNA data
and gene expression data, respectively. B_DCNN_Concat is the DNN model based on
the network architecture described in Fig. 3.

Model (all genes) Datasets Performance
Measurement

Accuracy (%) AUC

B_CNA_DCNN CNA 62.8 0.504
B_Gene_DCNN Gene expression 62.9 0.502
B_DCNN_Concat CNA and gene expression 96.3 0.993



Table 6
Accuracy of the baseline models and our deep learning model (B_DCNN_Concat as shown in Table 5) for binary classification. The results are shown for SVM and RF models using
individual CNA data (B_SVM_CNA, B_RF_CNA) and gene expression data (B_SVM_GENE, B_RF_GENE) as well as the integration of both data sources (B_SVM_Concat,
BK_SVM_Concat and B_RF_Concat). We ran each RF model with the best found parameter for 10 times and reported the mean accuracy because of the stochastic nature of RF. In
addition, we also reported the standard deviation (SD) for the accuracies and AUCs from these 10 RF models. The results for B_DCNN_Concat using the selected top genes are also
shown. The best results for models with different number of top genes selected by v2 for CNA data and ANOVA for gene expression data are shown in bold color.

Classifier (top genes) Accuracy based on the top selected genes from CNA and gene expression data

100 150 200 250 300 350 400 450 500

B_SVM_CNA 76.8 76.7 76.4 76.3 76.0 75.9 75.4 75.7 75.7
B_RF_CNA Accu 81.9 82.2 82.5 81.0 82.4 81.1 81.2 82.2 82.4

SD 0.43 0.3 0.25 0.36 0.15 0.14 0.24 0.21 0.3
B_SVM_GENE 73.4 74.6 73.6 74.0 73.4 74.2 73.7 73.3 73.2
B_RF_GENE Accu 96.1 96.3 97.0 96.5 96.6 96.3 97.0 96.8 96.6

SD 0.33 0.37 0.22 0.4 0.53 0.42 0.31 0.21 0.14
B_SVM_Concat 95.7 95.5 95.2 95.2 95.3 95.2 95.1 95.4 95.4
BK_SVM_Concat 97.1 96.4 97.0 97.1 97.1 97.1 96.9 96.9 97.0
B_RF_Concat Accu 97.0 96.0 96.8 97.3 97.2 96.8 96.3 96.6 96.8

SD 0.23 0.48 0.27 0.31 0.58 0.4 0.21 0.57 0.48
B_DCNN_Concat 95.9 96.3 95.5 95.6 95.4 95.6 96.0 95.5 96.1

Table 7
AUC of the baseline models and our deep learning model (B_DCNN_Concat as shown in Table 5) for binary classification. The results are shown for SVM and RF models using
individual CNA data (B_SVM_CNA, B_RF_CNA) and gene expression data (B_SVM_GENE, B_RF_GENE) as well as the integration of both data sources (B_SVM_Concat,
BK_SVM_Concat and B_RF_Concat). We ran each model RF with the best found parameter for 10 times and reported the mean accuracy and AUC because of the stochastic nature
of RF. In addition, we also reported the standard deviation (SD) for the accuracies and AUCs from these 10 RF models. The results for B_DCNN_Concat using the selected top genes
are also shown. The best results for the models with different number of top genes selected by v2 for CNA data and ANOVA for gene expression data are shown in bold color.

Classifier (top genes) Number of the top selected genes from CNA and gene expression data

100 150 200 250 300 350 400 450 500

B_SVM_CNA 0.601 0.589 0.591 0.585 0.576 0.572 0.563 0.568 0.568
B_RF_CNA AUC 0.754 0.785 0.808 0.802 0.805 0.808 0.809 0.809 0.831

SD 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.002
B_SVM_GENE 0.767 0.784 0.803 0.813 0.807 0.805 0.805 0.805 0.805
B_RF_GENE AUC 0.991 0.992 0.993 0.992 0.992 0.992 0.991 0.993 0.994

SD 0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.002
B_SVM_Concat 0.940 0.936 0.931 0.930 0.932 0.929 0.927 0.932 0.932
BK_SVM_Concat 0.951 0.941 0.950 0.952 0.952 0.952 0.947 0.947 0.950
B_RF_Concat AUC 0.992 0.991 0.992 0.993 0.992 0.991 0.993 0.994 0.991

SD 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.003
B_DCNN_Concat 0.991 0.992 0.991 0.991 0.990 0.991 0.991 0.990 0.991

Table 8
Performance comparison of binary classification. The best results for the models are
extracted from our proposed models (Table 5) and the baseline models using top
selected genes (Tables 6 and 7) and all genes (B_SVM_Concat, B_RF_Concat,
BK_SVM_Concat, B_DNN_DBN). The models with the best results are bolded.

Classifier Accuracy (%) Classifier AUC

B_DCNN_Concat
(all genes)

96.3 B_DCNN_Concat
(all genes)

0.993

B_DCNN_Concat
(top 150 genes)

96.3 B_DCNN_Concat
(top 150 genes)

0.992

B_SVM_Concat
(top 100 genes)

95.7 B_ SVM_Concat
(top 100 genes)

0.940

B_RF_CNA (all genes) 81.1 B_RF_CNA (all genes) 0.818
B_RF_GENE (all genes) 96.3 B_RF_GENE (all genes) 0.991
B_RF_Concat

(top 250 genes)
97.5 B_RF_Concat

(top 450 genes)
0.995

B_SVM_Concat
(all genes)

90.4 B_SVM_Concat
(all genes)

0.838

BK_SVM_Concat
(all genes)

96.5 BK _SVM_Concat
(all genes)

0.952

B_RF_Concat (all genes) 95.4 B_RF_Concat (all genes) 0.991
B_DNN_DBN (all genes) 86.4 B_DNN_DBN (all genes) 0.522
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overall accuracy (Table 6) and the RF models (B_RF_Concat) in
terms of both overall accuracy and AUC (Tables 6 and 7).

Our results from Tables 4 and 8 show that RF model with all
genes of the combined gene expression and CNA data has similar
performance to our DCNN model for binary class classification.
However, the B_RF_Concat with top 250 genes from CAN and gene
expression data has achieved best prediction performance in terms
of accuracy, but it has worse performance than our DCNN_Concat
model for multi-class classification. For SVM model with all genes
of the combined gene expression and CNA data, it has worse per-
formance than our DCNN model for both binary and multi-class
classifications.
3.2. The DCNN_Concat model reveals Her2-enriched breast cancer as
more than one subtype

183 out of the 842 breast cancer samples in the test set were
misclassified by our DCNN_Concat model during the multi-class
classification analysis. 50, 13, 80, and 40 were misclassified in
the Lum A, Lum B, Her2-enriched, and basal-like subtypes, respec-
tively. As we can see, the majority (80 out of 153) of the Her2-
enriched samples was incorrectly classified and the majority (58
out of 80) of the misclassified Her2-enriched samples were pre-
dicted as Lum B by our DCNN_Concat model. Closer examination
of the 153 Her2-enriched samples showed that Her2-enriched
breast cancer has more than one subtype (Fig. 6a). The correctly
predicted Her2-enriched group shows HER2 gene copy number
gain and is mainly ER negative while the incorrectly predicted
Her2-enriched group contains many cases without HER2 gene copy
number gain, and is mainly ER positive. The 58 Her2-enriched sam-
ples which were predicted as Lum B samples are mainly ER posi-
tive and show a mixture of HER2 gene copy number gain and null.



Fig. 6. Her2-enriched PAM50 subtype annotation and survival analysis. (a) The annotation bars show (from top to bottom): PAM50 mRNA expression subtype, whether
a Her2-enriched sampler was misclassified by our DCNN_Concat model, the predicted subtype by our DCNN_ConCat model (0, Lum A; 1, Lum B; 2, Her2-enriched;
3: basal-like), ER/PR/HER2 expression status-defined subtype, ER Immunohistochemistry (IHC) expression status, HER2 copy number state, age (>= 45 as defined as old,
<45 as young) and histological grade. Details on color coding of the annotation bars are presented below the bars. (b) 5-year DSS survival analysis. (c) 10-year DSS
survival analysis.
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We further compared the survival curves for the Lum B PAM50,
Her2-enriched PAM50 which were misclassified as Lum B, and
Her2-enriched PAM50 which were correctly predicted groups.
The three groups showed significantly different 5-year (Fig. 6b)
and 10-year (Fig. 6c) DSS. The Lum B group (the dark blue line in
Fig. 6b and c) exhibits the best disease-specific survival at both 5
and 10 years while the correctly predicted Her2-enriched group
(the dark red line in Fig. 6b and c) showed the worst disease-
specific survival at both 5 and 10 years. The misclassified Her2-
enriched group (the green line in Fig. 6b and 6c) had a better sur-
vival than the latter and a worse survival than the former.

3.3. Deep feature-based k-means and consensus clustering reveal 6
breast cancer subtypes

Six breast cancer subtypes were identified from the test set by
using the top 500 deep features extracted from the DCNN_Concat
model trained on the training set. Sample classification robustness
was analyzed by consensus clustering, which involves k-means
clustering by resampling (100 iterations) randomly selected tumor
profiles. The consensus matrix is a visual representation of the pro-
portion of times in which 2 samples are clustered together across
the resampling iterations (Fig. 7a). Groups of samples that
frequently cluster with one another are pictorially represented
by darker shades of blue. To determine the number of clusters pre-
senting in the data, we examined the area under the curve of the
CDF plot (Fig. 7b). The point at which the area under the curve
ceases to show marked increases with additional cluster number
(k) indicates the ideal number of clusters (Fig. 7c). Therefore, the
optimal number of clusters is 6, as defined by the consensus plots
consistent with the k-means clustering.

The six breast cancer subtypes correlated with PAM50 subtypes
and exhibited distinct associations with other clinical and histolog-
ical features (Figs. 8 and 9). Of note, deep feature-based clusters 4
and 5 showed high overlapping with the PAM50 Lum A subtype
while clusters 1 and 6 showed high overlapping with the PAM50
Lum B subtype. Breast cancer patients in these four clusters are
mainly ER-positive. The deep feature-based cluster 2 was com-
posed of basal-like PAM50 subtype, which contained many young,
ER-negative and high-grade cases. The remaining deep feature-
based cluster 3 was composed of a mixture of basal-like and
HER2-enriched PAM50 defined subtypes.

The six breast cancer subtypes showed significant OS and DSS
differences (Fig. 9a) with p-values 8.1E-06 and 9.7E-08, respec-
tively, which means that the concatenated deep features from
both gene expression and copy number alteration data have



Fig. 7. Deep feature-based identification of breast cancer subtypes. (a) Consensus clustering displaying the robustness of sample classification using multiple iterations (100)
of k-means clustering. (b) The CDF depicting the cumulative distribution from consensus matrices at a given cluster number (k). (c) The optimal cluster number is 6 at the
point in which the relative change in area under the CDF plot does not change with increasing k.
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performed well in predicting the patient’s prognosis. From the
KM plot (Fig. 9a), we can see that the patients in clusters 4 and
5, highly concordant with PAM50Lum A subtype, have the best
prognosis.
4. Discussion

Breast cancer is typically referred to as a single disease due to
the fact that it is originating from the cells in the mammary gland.
However, breast cancer is a complex disease with a high degree of
inter-tumor heterogeneity, which is known as differences among
tumors from different individuals. The heterogeneity in breast can-
cer has a profound impact on disease progression and therapeutic
response, thus making it one of the most important and clinically
relevant areas of breast cancer research. During the last few dec-
ades, molecular classification of breast cancer based on compre-
hensive omics data has been extensively explored.

In this paper, we propose a deep learning-based model
DCNN_Concat) for multi-class classification and B_DCNN_Concat
for binary classification to integrate copy number alteration and
gene expression level data measured on the same breast cancer
patients to achieve this goal. Our experimental results show that
integration of knowledge from these datasets can improve the pre-
diction of the molecular subtypes of breast cancer. The model
DCNN_Concat achieves better prediction performance than the
models (CNA_DCNN and Gene_DCNN) built using individual data
sources.

Comparing with other DNN-based models (DCNN_Siamese,
DNN_SE and DNN_DBN) and two traditional machine learning
models (SVM and RF), our proposed knowledge integration model
achieves improved prediction performance than most of these
baseline models. We also observe that the RF models show higher
predictive performance for binary classification. This is consistent
with previous results that show the RF approach can model high-
dimensional and correlated data efficiently. Furthermore, the bin-
ary subtypes based on ER status is a well-established breast cancer
subtyping system while the multiple subtypes system used for
breast cancer subtyping is still debated. Our results showed that
the deep learning-based models may have advantages over the tra-
ditional models to extract abstract features, which are more useful
to classify the more complex tumor subtypes than the raw features
used in the traditional models.

The Her2-enriched subtype was defined by overexpression of
HER2 gene and multiple HER2-amplicon associated genes. This
subtype tends to be clinically HER2-positive defined by a combina-
tion of HER2 protein overexpression and HER2 gene amplification.
However, the definition of the Her2-enriched subtype is still
debated [44]. The tumors classified as Her2-enriched also vary in
terms of ER IHC (immunohistochemistry) status, CNAs, and muta-
tion profiles. Furthermore, not all Her2-enriched tumors are clini-
cally HER2-positive, and not all clinically HER2-positive tumors fall
into the Her2-enriched subtype [32]. In The Cancer Genome Atlas
(TCGA) study [32], the Her2-enriched subtype captured some but
not all clinically HER2-positive breast tumors. The TCGA study
reported that there existed at least two types of clinically HER2-
positive tumours: Her2-enriched/HER2-positive versus luminal/
HER2-positive. The Her2-enriched/HER2-positive subtype was
associated with high levels of EGF receptor and HER2 protein phos-
phorylation and a tendency to be ER-negative [32]. Whereas the
luminal/HER2-positive subtype had lower level DNA amplification
and lower protein-based signaling and tended to be ER-positive/



Fig. 8. Deep feature patterns within the six breast cancer subtypes. The columns are the 842 patients ordered by the deep feature-based six subtypes and the rows are the 500
deep features. The feature clusters were assigned using the hierarchical clustering with complete linkage and Euclidean distance. The top horizontal annotation bars show
(from top to bottom): deep feature-based BC subtype, DCNN_Concat predicted subtype, PAM50mRNA expression subtype, ER/PR/HER2 expression status-defined subtype, ER
IHC expression status, HER2 copy number state, age (>= 45 as defined as old, <45 as young) and histological grade. Details on color coding of the annotation bars are presented
below the heat map.
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luminal. Therefore, the clinically defined HER2-positive tumors do
not represent a separate subtype but a heterogenous group. Our
DCNN_Concat model correctly predicted the first group to be
HER2-enriched cancers while the second group to be the luminal
B subtype. Our DCNN_Concat model reveals Her2-enriched breast
cancer as more than one subtype. The correctly classified Her2-
enriched samples show HER2 gene copy number gain and are
mainly ER-negative while the incorrectly classified Her2-enriched
samples tend to be cases without HER2 gene copy number gain
and are mainly ER-positive.
5. Conclusions

Collectively, we demonstrate that the proposed integrative
DCNN learning framework can efficiently handle multiple high-
dimensional omics data sets to improve the prediction of breast
cancer subtypes. Although we use only gene expression and CNA
data to classify the subtypes of breast cancer in this study, the
framework is not restricted to integrate only these two data
sources. It can be extended to incorporate many more other data
sources, such as methylation data, clinical data, etc. Our proposed
deep learning model uses all genes, so the results may be hard to
interpret. Sometimes we may be interested in the important genes
used for the classification. Hence, our research opens a few future
directions which are valuable to be explored. The first one is to
develop more efficient deep learning-based data integration
approaches, which can handle the correlation among different data
sources. Although the DCNN model developed here can handle the
correlation among features, but it may not efficiently handle the
correlation among different data sources. The second one is to effi-
ciently perform subtyping of the breast cancer. As we closely
examined the misclassified samples from our deep learning based
classification results, it turned out that many of the misclassified
samples may be from different biological groups of the breast can-
cer. The last one is to develop interpretable deep learning model
for the cancer subtype classification. We will investigate these
issue in the future in more details.



Fig. 9. Deep feature-based 6 breast cancer groups and associated clinical features. (a) Overall survival (OS) and disease-specific survival (DSS) by the deep feature-based
cluster; (b) ER IHC status; (c) HER2 gene copy number state; (d) Tumor grade; (e) Age at diagnosis; (f) PAM50 subtype.
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