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Accuracy of genomic-polygenic estimated breeding value for milk 
yield and fat yield in the Thai multibreed dairy population with 
five single nucleotide polymorphism sets
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Objective: The objectives were to compare variance components, genetic parameters, pre
diction accuracies, and genomicpolygenic estimated breeding value (EBV) rankings for 
milk yield (MY) and fat yield (FY) in the Thai multibreed dairy population using five single 
nucleotide polymorphism (SNP) sets from GeneSeek GGP80K chip.
Methods: The dataset contained monthly MY and FY of 8,361 firstlactation cows from 
810 farms. Variance components, genetic parameters, and EBV for five SNP sets from the 
GeneSeek GGP80K chip were obtained using a 2trait singlestep averageinformation 
restricted maximum likelihood procedure. The SNP sets were the complete SNP set (all 
available SNP; SNP100), top 75% set (SNP75), top 50% set (SNP50), top 25% set (SNP25), 
and top 5% set (SNP5). The 2trait models included herdyearseason, heterozygosity and 
age at first calving as fixed effects, and animal additive genetic and residual as random effects. 
Results: The estimates of additive genetic variances for MY and FY from SNP subsets were 
mostly higher than those of the complete set. The SNP25 MY and FY heritability estimates 
(0.276 and 0.183) were higher than those from SNP75 (0.265 and 0.168), SNP50 (0.275 and 
0.179), SNP5 (0.231 and 0.169), and SNP100 (0.251and 0.159). The SNP25 EBV accuracies 
for MY and FY (39.76% and 33.82%) were higher than for SNP75 (35.01% and 32.60%), 
SNP50 (39.64% and 33.38%), SNP5 (38.61% and 29.70%), and SNP100 (34.43% and 31.61%). 
All rank correlations between SNP100 and SNP subsets were above 0.98 for both traits, except 
for SNP100 and SNP5 (0.93 for MY; 0.92 for FY).
Conclusion: The high SNP25 estimates of genetic variances, heritabilities, EBV accuracies, 
and rank correlations between SNP100 and SNP25 for MY and FY indicated that genotyping 
animals with SNP25 dedicated chip would be a suitable to maintain genotyping costs low 
while speeding up genetic progress for MY and FY in the Thai dairy population.
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INTRODUCTION 

Genomic selection refers to selection of animals based on genomic estimated breeding values 
(GEBV) [1,2]. Current genomic selection procedures utilize a combination of phenotypes, 
pedigree, and genotype information to improve accuracy of genetic predictions [3]. An 
important advantage of genomic selection is that it can be implemented to evaluate ec
onomically important traits that are difficult to measure such as traits that are expensive 
to measure in a large number of animals (e.g., feed efficiency), expressed very lateinlife (e.g., 
length of productive life), and sexlimited traits (e.g., milk yield). In addition, because 
genomic selection can be performed early in life, it can decrease generation interval, increase 
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intensity of selection, and reduce the cost of proving dairy bulls 
[1]. Genomic selection is currently widely used for dairy ge
netic evaluation in many countries. The Thai dairy genomic
polygenic evaluation for economically important traits started 
in 2015 [4]. Implementation of the genomicpolygenic eval
uation system increased EBV accuracies for milk yield (MY) 
and fat yield (FY) from 5.2% to 7.2% in the Thai multibreed 
population [4]. Continued genotyping and selection of parents 
based on genomicpolygenic EBV is expected to accelerate 
the rate of genetic progress for MY and FY and other eval
uated traits in this population.
 Prices for highdensity genotyping chips are still too high 
for widespread use in the multibreed dairy cattle population 
in Thailand. The current option in the Thai dairy popula
tion of genotyping sires and highly represented dams in the 
pedigree with highdensity chips and the rest of the cow popu
lation with lowdensity chips may need to remain in place 
until a suitable cheaper and effective option is found. One such 
option would be to design lowdensity chips with small num
bers of single nucleotide polymorphism (SNP) that account 
for a reasonable percentage of the genetic variation for the traits 
of interest. Use of these lowdensity assays containing selected 
SNPs could potentially be as effective as highdensity chips 
for a fraction of the price [5,6]. Determination of an appro
priate set of SNP needs to consider the genetic architecture 
of the traits of interest, population structure, amount of link
age disequilibrium, proportion of ancestors genotyped with 
highdensity SNP genotypes, and genetic relationships be
tween animals used to estimate SNP effects [5]. However, the 
optimal number of SNP for a lowdensity chip for dairy cattle 
in Thailand as well as an appropriate strategy for selecting 
these SNP have not been studied. Thus, the objectives of this 
research were to compare estimates of variance components, 
genetic parameters, accuracies of prediction, and rankings of 
genomicpolygenic animal EBV for MY and FY in the Thai 
multibreed dairy population computed using five sets of SNPs 
from GeneSeek GGP80K chip. 

MATERIALS AND METHODS 

Animals, data and traits
Cattle used in this research were from the Thai multibreed 
dairy population, a Holsteinupgraded population composed 
of purebred and crossbred cows, sires, and dams. Breeds repre
sented in Thai dairy cattle are Holstein, Brahman, Jersey, Red 
Dane, Red Sindhi, Sahiwal, and Thai Native [7]. The largest 
breed fraction for most animals in the population is Holstein. 
Although, percentage Holstein per animal ranged from 46.9% 
to 100%, 91% of cattle in the population was over 75% H plus 
small percentages of other breeds. The dataset contained mon
thly testday MYs and FYs of 8,361 firstlactation cows that 
calved from 1989 to 2014. These cows were daughters of 1,210 

sires and 6,992 dams located in 810 farms across five regions 
in Thailand (North, Northeastern, Western, Central, and 
Southern). Traits were 305d firstlactation MY (kg) and 
305d firstlactation FY (kg). Testday MYs were measured, 
and milk samples were taken from each individual cow once 
a month from calving until drying off. Cow testday milk 
samples were sent to a laboratory (Artificial Insemination 
and Biotechnology Research Centre laboratory, Saraburi pro
vince, Thailand) to determine fat percentages. Testday FYs 
were computed as the product of testday MYs times testday 
fat percentages. Monthly testday MYs and FYs were used 
to compute MY and FY using the testinterval method [8,9].

Climate, management, and nutrition
The majority of Thailand is hot and humid most of the year. 
Thailand’s climate is highly influenced by the seasonal mon
soon weather characterized by wind pattern changes and 
heavy precipitation. Seasons are classified as winter (Novem
ber to February), summer (March to June), and rainy (July 
to October). Yearly means across regions and seasons range 
from 17°C to 36°C for temperature, 1,200 to 1,600 mm/yr 
for rainfall, and 73% to 80% for relative humidity [10]. Cows 
were housed in open barns and milked twice a day (morning 
at 5 to 6 am; afternoon at 2 to 3 pm). Farmers used either a 
bucket system or a pipeline system for milking. Morning 
and afternoon raw milk was collected in bulk tanks before 
transporting it to a collection center owned by either dairy 
cooperative or a private organization. Cows were fed a com
bination of roughage and concentrate aimed at a rate of 1 kg 
of feed (16% protein) per 2 kg of milk. Roughage consisted 
mainly of fresh grasses including Guinea grass (Penicum 
maximum), Ruzi grass (Brachiaria ruziziensis), Napier grass 
(Pennisetum purpureum), and Para grass (Brachiaria mutica). 
Other sources of fiber were rice straw and agricultural by
products (corn cobs, cassava leaves, corn silage). 

Samples and genotypes 
Blood or semen samples were collected from 2,661 animals 
(89 sires and 2,572 dams). Genomic DNA was extracted from 
semen samples using a GenElute Mammalian Genomic DNA 
Miniprep Kit (SigmaAldrich, St. Louis, MO, USA), whereas 
a MasterPure DNA Purification Kit (Epicentre Biotechnologies, 
Madison, WI, USA) was used for blood samples. Concen
tration and purity of DNA per sample was measured using 
a Thermo Fisher NanoDrop 2000 spectrophotometer (Thermo 
Fisher Science Inc., Wilmington, DE, USA). The minimum 
acceptable DNA concentration was 15 ng/μL with an absor
bance ratio of 1.8 at 260/280 nm. 
 The DNA samples were dried using a Freezedry machine 
for 12 hours Dried DNA samples of 50 μL were airmailed 
to GeneSeek (Lincoln, NE 68521, USA) for genotyping with 
GeneSeek Genomic Profiler BeadChips (GGP). Budgetary 
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restrictions determined the type of genotyping chip used 
for each DNA sample. The GeneSeek Genomic Profiler 80K 
chip (GGP80K) was used to genotype sires and highly repre
sented cows in the pedigree (n = 139), and lower density chips 
were used to genotype the remaining cows ([4]; 1,412 with 
GGP9K; 570 with GGP20K, and 540 with GGP26K). The 
numbers of SNP markers were 8,590 for the GGP9K, 19,616 
for the GGP20K, 25,979 for the GGP26K, and 76,519 for 
the GGP80K. Nighty five percent of SNP from GGP20K, 
47% of SNP from GGP20K, and 54% of SNP from GGP26K 
were present in GGP80K. Cows genotyped with the three 
lowdensity GGP chips were imputed to GGP80K using 
FImpute 2.2 [11]. The genotype file included SNPs with 
call rates ≥90% and minor allele frequency ≥0.04 from the 
29 autosomes and the X chromosome. After these control 
restrictions, the genotype file contained 74,148 SNPs per 
genotyped animal. 

Estimation of variance components for five single 
nucleotide polymorphism sets
The five SNP sets were defined in terms of the values of SNP vari
ances for MY and FY [12] estimated with program POSTGSF90 
(a member of the BLUPF90 Family of Programs) [13]. Firstly, a 
2trait singlestep genomicpolygenic model [3,14] was used 
to estimate variance components for MY and FY using the 
complete dataset (phenotypes, pedigree, and genotypes) with 
program AIREMLF90 [15]. Secondly, SNP variances for 
MY and FY were computed using program POSTGSF90 
and ordered from largest to smallest. Then, the following 5 
SNP sets (Table 1) were defined: i) complete SNP set (SNP100; 
76,519 SNPs); ii) top 75% set (SNP75; 57,390 SNPs); iii) top 
50% set (SNP50; 38,260 SNPs); iv) top 25% set (SNP25; 19,130 
SNPs); and v) top 5% set (SNP5; 3,826 SNPs). 
 Estimates of variance components for MY and FY for the 
five sets of genotypes were computed with AIREMLF90 [15] 
using the same 2trait genomicpolygenic model. This model 
contained herdyearseason, heterozygosity of the cow, and 
age at first calving as fixed effects, and animal additive genetic 
and residual as random effects. The mean of the animal ad
ditive genetic and the residual effects was assumed to be zero. 
The variance of the animal additive genetic effects was equal 
to H
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Ve, where I is an identity 
matrix, and Ve is a 2×2 matrix of environmental variances 
and covariances between MY and FY. The convergence cri
terion for program AIREMLF90 was 10–12. The estimates of 
additive genetic and environmental variances and covariances 
at convergence for MY and FY were used to compute phe
notypic variances and covariances, heritabilities, and genetic, 

environmental, and phenotypic correlations using the usual 
expressions. Standard errors of additive genetic and environ
mental variances and covariances were computed as square 
roots of diagonal elements of the inverse of the average infor
mation matrix computed at convergence. Standard deviations 
of phenotypic variances and covariances, heritabilities, and 
genetic, environmental, and phenotypic correlations were 
computed with a repeated sampling procedure [17] using a 
set of 5,000 samples. 

Animal estimated breeding values, accuracies, and 
rankings
Animal EBV for MY and FY for the five SNP sets (SNP5, 
SNP25, SNP50, SNP75, and SNP100) were computed using 
the estimates of variance components at convergence for each 
set of genotypes. The EBV accuracies for each trait were ob

Table 1. Number of SNP per chromosome and total for the five SNP sets

Chromosomes
SNP sets1)

SNP100 SNP75 SNP50 SNP25 SNP5

1 4,512 3,286 2,043 959 166
2 3,914 2,765 1,775 843 157
3 3,566 2,604 1,692 804 165
4 3,398 2,617 1,774 907 165
5 3,528 2,671 1,755 868 163
6 3,399 2,587 1,748 884 163
7 3,209 2,437 1,686 862 176
8 3,248 2,505 1,704 888 170
9 3,085 2,356 1,599 840 152
10 3,007 2,313 1,564 810 186
11 3,094 2,390 1,668 893 225
12 2,662 2,073 1,422 726 156
13 2,468 1,909 1,268 654 123
14 2,495 1,949 1,364 745 180
15 2,579 1,970 1,315 664 167
16 2,471 1,903 1,320 696 143
17 2,229 1,761 1,187 603 140
18 2,056 1,567 1,072 544 118
19 2,012 1,563 1,068 565 128
20 2,228 1,573 1,038 484 84
21 2,220 1,529 990 460 74
22 1,894 1,262 748 325 49
23 1,732 1,210 768 348 71
24 1,936 1,371 888 420 67
25 1,413 984 640 288 38
26 1,618 1,186 762 365 67
27 1,440 1,131 768 387 80
28 1,488 1,180 813 410 69
29 1,596 1,213 821 396 89
X 2,022 1,525 1,000 492 95
Total 76,519 57,390 38,260 19,130 3,826

SNP, single nucleotide polymorphism.
1) The SNP sets were the complete SNP set: SNP100, all available SNP; SNP75, top 
75% set; SNP50, top 50% set; SNP25, top 25% set; SNP5, top 5% set.
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tained as the correlation between EBV and true breeding 

values computed using the formula: 
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RESULTS AND DISCUSSION 

Variances components, heritabilities, and correlations
Estimates of variances and covariances for MY and FY using 
genomicpolygenic models with five sets of SNP are shown in 
Table 2 for additive genetic effects, Table 3 for environmental 
effects, and in Table 4 for phenotypic effects. Similar estimates 
of additive genetic, environmental, and phenotypic variances 

and covariances for MY and FY were obtained for the five sets 
of SNP. Estimates of additive genetic variances ranged from 
146,440.00±20,231.00 kg2 (SNP5) to 178,510.00±26,620.00 
kg2 (SNP50) for MY and from 201.54±60.91 kg2 (SNP100) to 
231.49±57.71 kg2 (SNP25) for FY, and additive genetic co
variances ranged from 4,041.40±813.25 kg×kg (SNP5) to 
4,758.10±984.95 kg×kg (SNP25). Estimates of environmental 
variances ranged from 467,000.00±22,641.00 kg2 (SNP25) to 
488,910.00±19,276.00 kg2 (SNP5) for MY and from 1,033.30 
±57.18 kg2 (SNP25) to 1,065.90±60.37 kg2 (SNP100) for FY, 
and environmental covariances ranged from 14,780.00±945.30 
kg×kg (SNP25) to 15,590.00±1,046.00 kg×kg (SNP100). Es
timates of phenotypic variances ranged from 635,580.00± 
13,307.00 kg2 (SNP5) to 650,520.00±13,794.00 kg2 (SNP100) 
for MY and from 1,257.00±33.25 kg2 (SNP5) to 1,267.20± 
33.61 kg2 (SNP75) for FY, and phenotypic covariances ranged 
from 19,286.00±566.53 kg×kg (SNP5) to 19,678±580.44 kg×kg 
(SNP75). 
 Estimates of additive genetic variances and covariances for 
MY and FY were higher for models with SNP75 (variances: 

Table 2. Additive genetic variances and covariances for MY and FY estimated with five SNP sets using genomic-polygenic models

Variance  
 component

SNP sets1)

SNP100 SE SNP75 SE SNP50 SE SNP25 SE SNP5 SE

Var (MY, kg2) 163,320.00 28,138.00 172,120.00 27,651.00 178,510.00 26,620.00 177,080.00 24,794.00 146,440.00 20,231.00
Cov (MY, FY, kg × kg) 4,088.40 1,094.10 4,430.80 1,081.60 4,694.80 1,049.60 4,758.10 984.95 4,041.40 813.25
Var (FY, kg2) 201.54 60.91 213.55 60.71 227.67 60.01 231.49 57.71 212.37 50.40

MY, milk yield; FY, fat yield; SNP, single nucleotide polymorphism; SE, standard error.
1) SNP100, complete SNP set (76,519 SNPs); SNP75, top 75% SNP (57,390 SNPs); SNP50, top 50% SNP (38,260 SNPs); SNP25, top 25% SNP (19,130 SNPs); SNP5 =  top 5% 
SNP (3,826 SNPs).

Table 3. Environmental variances and covariances for MY and FY estimated with five SNP sets using genomic-polygenic models

Variance  
 component

SNP sets1)

SNP100 SE SNP75 SE SNP50 SE SNP25 SE SNP5 SE

Var (MY, kg2) 486,970.00 25,730.00 477,830.00 25,161.00 469,800.00 24,179.00 467,000.00 22,641.00 488,910.00 19,276.00
Cov (MY, FY, kg × kg) 15,590.00 1,046.00 15,251.00 1,029.70 14,950.00 998.36 14,780.00 945.30 15,248.00 818.88
Var (FY, kg2) 1,065.90 60.37 1,054.40 59.95 1,039.90 59.08 1,033.30 57.18 1,045.40 51.53

MY, milk yield; FY, fat yield; SNP, single nucleotide polymorphism; SE, standard error.
1) SNP100, complete SNP set (76,519 SNPs); SNP75, top 75% SNP (57,390 SNPs); SNP50, top 50% SNP (38,260 SNPs); SNP25, top 25% SNP (19,130 SNPs); SNP5, top 5% 
SNP (3,826 SNPs).

Table 4. Phenotypic variances and covariances for MY and FY estimated with five SNP sets using genomic-polygenic models

Variance  
 component

SNP sets1)

SNP100 SD2) SNP75 SD SNP50 SD SNP25 SD SNP5 SD

Var (MY, kg2) 650,520.00 13,794.00 650,190.00 13,796.00 648,550.00 13,748.00 644,310.00 13,612.00 635,580.00 13,307.00
Cov (MY, FY, kg × kg) 19,674.00 580.06 19,678.00 580.44 19,641.00 579.37 19,534.00 575.38 19,286.00 566.53
Var (FY, kg2) 1,266.70 33.57 1,267.20 33.61 1,266.80 33.62 1,264.00 33.52 1,257.00 33.25

MY, milk yield; FY, fat yield; SNP, single nucleotide polymorphism; SD, standard deviation.
1) SNP100, complete SNP set (76,519 SNPs); SNP75, top 75% SNP (57,390 SNPs); SNP50, top 50% SNP (38,260 SNPs); SNP25, top 25% SNP (19,130 SNPs); SNP5, top 5% 
SNP (3,826 SNPs).
2) Repeated sampling approach of Meyer and Houle [17].
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5.39% for MY, 5.96% for FY; covariances: 8.37%), SNP50 (vari
ances: 9.30% for MY, 12.97% for FY; covariances: 14.83%), 
SNP25 (variances: 8.43% for MY, 14.86% for FY; covarianc
es: 16.38%) than those estimated using SNP100. However, 
the model with SNP5 yielded lower estimates of additive ge
netic variance for MY (–10.34%) and covariance between MY 
and FY (–1.15%), and higher estimate of additive genetic 
variance for FY (5.37%) than the model with SNP100. Con
versely, environmental variances and covariances for MY and 
FY were lower for the model with SNP75 (variances: –1.88% 
for MY, –1.08% for FY; covariance: –2.17%), SNP50 (variances: 
–3.53% for MY, –2.44% for FY; covariance: –4.11%), SNP25 
(variances: –4.10% for MY, –3.06% for FY; covariance: –5.20%) 
than those estimated using SNP100. The model with SNP5 
produced a higher environmental variance for MY (0.40%), 
but a lower environmental variance for FY (–1.92%) and co
variance between MY and FY (–2.19%) than the corresponding 
estimates from the model with SNP100. Lastly, estimates of 
phenotypic variances and covariances for MY and FY from 
models with SNP75, SNP50, and SNP25 were nearly identi
cal (differences were near zero or below one percent) to the 
corresponding values from model with SNP100, whereas the 
corresponding differences for the model with SNP5 were all 
negative and mostly higher than one percent (variances: –2.30% 
for MY, –0.77% for FY; covariance: –1.97%). 
 The slightly higher additive genetic variances and covari
ances but lower environmental variances and covariances for 
MY and FY obtained with SNP75, SNP50, and SNP25 than 
with the complete SNP set indicated that these SNP subsets 
may have been able to more accurately accounted for MY and 
FY additive variability in this population than the complete 
SNP set. This may have occurred because the SNP markers 
in these subsets were on the average more closely associated 
with quantitative trait locus (QTL) affecting MY and FY than 
the complete set of SNP [18]. 
 Heritabilities and additive genetic, environmental, and 
phenotypic correlations between MY and FY are presented 
in Table 5. Heritability estimates ranged from 0.231±0.030 
(SNP5) to 0.276±0.039 (SNP25) for MY and from 0.159±0.047 

(SNP100) to 0.183±0.044 (SNP25) for FY. The SNP25 MY 
and FY heritability estimates were slightly higher (0.4% to 
20%) than those from SNP100, SNP75, SNP50, and SNP5. 
These differences among heritability estimates across SNP 
sets may be related to differences in linkage disequilibria 
between the SNP in each set and QTL affecting MY and FY 
determined by number of SNP and proximity of SNP in each 
set to MY and FY QTL [18]. Higher SNP25 heritability es
timates for MY and FY indicated that faster selection responses 
for these traits could be expected with SNP25 than with 
SNP100, SNP75, SNP50, and SNP5 in the Thai dairy popu
lation. 
 Heritability estimates for MY and FY across the five SNP 
sets were similar to values estimated in previous studies in the 
Thai dairy population using various SNP sets (0.19 to 0.26 for 
MY; 0.15 to 0.18 for FY [4]). Heritabilities for MY in the Thai 
dairy population were within the range of heritability esti
mated for MY in various Holstein populations in temperate 
regions (0.25 to 0.30 [6,19,20]), but somewhat higher than an 
estimate in Holstein under tropical conditions in Brazil (0.13 
[21]). Conversely, heritability estimates for FY were somewhat 
lower than values obtained for Holstein in temperate regions 
(0.25 to 0.30 [19,20,22]) 
 Estimates of additive genetic, environmental and pheno
typic correlations between MY and FY across the five sets of 
SNP were virtually identical (Table 5). Correlation estimates 
between MY and FY ranged from 0.718±0.115 (SNP100) to 
0.748±0.087 (SNP25) for additive genetic, from 0.673±0.023 
(SNP25) to 0.684±0.023 (SNP100) for environmental, and 
from 0.682±0.009 (SNP5) to 0.686±0.010 (SNP75) for phe
notypic. The positive genetic correlations between MY and 
FY obtained here were similar to values previously reported 
for this Thai dairy population (0.66 to 0.79 [4]), and in agree
ment with estimates for Holstein in other tropical (0.70 to 
0.75 [23,24]), and in temperate regions (0.70 to 0.88 [25,26]). 
 The comparable or slightly higher additive genetic vari
ances and heritabilities for MY and FY from SNP25, SNP50, 
and SNP75 than from SNP100 indicated that selecting a sub
set of SNP genotypes with the approach used here would be 

Table 5. Heritabilities and genetic, environmental, and phenotypic correlations between MY and FY estimated with five SNP sets using genomic-polygenic models

Parameter
SNP sets1)

SNP100 SD2) SNP75 SD SNP50 SD SNP25 SD SNP5 SD

Heritability (MY) 0.251 0.041 0.265 0.040 0.275 0.039 0.276 0.036 0.231 0.030
Heritability (FY) 0.159 0.047 0.168 0.047 0.179 0.046 0.183 0.045 0.169 0.039
Genetic correlation (MY, FY) 0.718 0.115 0.736 0.102 0.741 0.094 0.748 0.087 0.674 0.020
Environmental correlation (MY, FY) 0.684 0.023 0.679 0.024 0.676 0.024 0.673 0.023 0.674 0.020
Phenotypic correlation (MY, FY) 0.685 0.010 0.686 0.010 0.685 0.010 0.684 0.010 0.682 0.010

MY, milk yield; FY, fat yield; SNP, single nucleotide polymorphism; SD, standard deviation.
1) SNP100, complete SNP set (76,519 SNPs); SNP75, top 75% SNP (57,390 SNPs); SNP50, top 50% SNP (38,260 SNPs); SNP25, top 25% SNP (19,130 SNPs); SNP5, top 5% 
SNP (3,826 SNPs).
2) Repeated sampling approach of Meyer and Houle [17]. 
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a reasonable alternative to increase the effectiveness of ge
nomicpolygenic evaluation and selection in the Thai dairy 
population. However, reducing SNP genotypes to 3,826 SNP 
(SNP5) or 5% of the SNP in the GGP80K chip would yield 
lower variance component and heritability estimates than with 
the SNP25, SNP50, and SNP75 subsets, or with the complete 
SNP set. Further, the highest genetic variance component and 
heritability estimates for MY and FY obtained with SNP25 
indicated that higher EBV prediction accuracies and selection 
responses for these traits would be achieved using a genomic

polygenic model with SNP25 than with SNP100, SNP75, 
SNP50, and SNP5.

Accuracy of genomic-polygenic estimated breeding 
values and animal rankings with five single nucleotide 
polymorphism sets 
 The accuracies genomicpolygenic EBV for MY and FY 
with the five sets of SNP genotypes (SNP100, SNP75, SNP50, 
SNP25, and SNP5) are shown in Figure 1. The SNP25 had 
the highest mean EBV accuracy for all animals (39.76% for 

Figure 1. Accuracy of estimated breeding value for MY and FY estimated with five single nucleotide polymorphism sets using genomic-polygenic models. MY, milk yield; 
FY, fat yield.
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MY and 33.82% for FY), sires (37.30% for MY and 31.85% for 
FY), and cows (39.98% for MY and 33.99% for FY). Conversely, 
SNP100 yielded the lowest mean EBV accuracies for all ani
mals (35.18% for MY and 28.36% for FY), sires (33.12% for 
MY and 26.94% for FY), and cows (35.36% for MY and 28.49% 
for FY). Further, the mean EBV accuracies from the four SNP 
subsets (SNP75, SNP50, SNP25, SNP5) were mostly higher 
than the mean EBV accuracy from the complete SNP set 
(SNP100) for all animals, sires, and cows. The percentage 
superiority of the mean EBV accuracies of SNP75, SNP50, 
SNP25, and SNP5 over SNP100 for MY were 0.58%, 5.21%, 
5.34%, and 4.18% for all animals, 0.54%, 4.92%, 5.01%, and 
3.76% for sires, and 0.58%, 5.24%, 5.36%, and 4.21% for cows. 
Similarly, the percentage superiority of the mean EBV accu
racies of SNP75, SNP50, and SNP25 over SNP100 for FY were 
0.98%, 1.77%, and 2.21% for all animals, 0.81%, 1.48%, and 
1.84% for sires, and 0.99%, 1.80%, and 2.34% for cows. How
ever, the mean EBV accuracies of SNP5 for FY were slightly 
lower (–1.91% for all animals, –2.18% for sires, and –1.89% 
for cows) than those of SNP100. The mostly higher mean EBV 
accuracies of the four SNP subsets were largely due to the 
higher MY and FY additive genetic variances explained by 
these SNP subsets than by the complete SNP set. Further, the 
fact that SNP25 yielded the highest mean EBV accuracy in
dicated that choosing the top 25% of SNP from GeneSeek 
GGP80K based on percent of additive genetic variance ex
plained for MY and FY (19,130 SNP) would be a suitable 
alternative to the complete SNP set for genomicpolygenic 
evaluation and selection in the Thai dairy multibreed popu
lation.
 The higher mean EBV accuracies obtained with four GG
P80K subsets than with the complete SNP set supported the 
findings from previous research in dairy [5,2729] and in beef 
cattle [30] that SNP subsets can yield comparable or higher 
levels of EBV accuracy than complete SNP sets while lower
ing genotyping costs.
 Pairwise Spearman rank correlations between MY and FY 
EBV from of the complete SNP set and each of the four SNP 
subsets are shown in Table 6. All rank correlations between 

SNP100 and the four SNP subsets were above 0.98 (p<0.0001) 
for both traits, except for the correlation between SNP100 
and SNP5 (MY, 0.93; FY, 0.92; p<0.0001). Rank correlations 
between SNP75 and SNP100 and between SNP50 and SNP100 
for MY and FY were above 0.99 (p<0.0001), followed closely 
by rank correlations between SNP25 and SNP100 for MY (0.98; 
p<0.0001). Rank correlations indicated a high degree of agree
ment between EBV from genomicpolygenic evaluations with 
the four SNP subsets and the complete SNP set. The high 
SNP25 estimates of genetic variances, heritabilities, EBV ac
curacies, and rank correlations between SNP100 and SNP25 
for MY and FY indicated that SNP25 would be expected to 
produce higher selection responses for MY and FY than any 
of the other SNP subsets and the complete GeneSeek 80K set. 
This indicates that a strategy to keep genotyping costs rea
sonably low while speeding up genetic progress for MY and 
FY would be to genotype animals in the Thai multibreed dairy 
population with a de dicated chip constructed with the sub
set of SNP markers in the SNP25 set. Thai dairy producers 
could decrease their genotyping costs before the utilization 
of a dedicated chip likely without reducing their ability to se
lect replacement animals based on genomicpolygenic EBV 
by utilizing lowerdensity commercial genotyping chips. 

CONCLUSION

Estimates of additive genetic variances, heritabilities, and EBV 
accuracies for MY and FY from genomicpolygenic models 
with SNP subsets were higher than those with complete SNP 
set. Genomicpolygenic evaluation with SNP25 had the high
est estimates of additive genetic variances, heritabilities, and 
EBV accuracies for MY and FY. Further, genomicpolygenic 
EBV obtained using SNP subsets and complete SNP set had 
high rank correlations. Thus, utilization of the SNP25 set 
would be a suitable alternative to reduce genotyping costs 
and increase selection response for MY and FY in this dairy 
population.
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