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Background. We determined the feasibility of using computer vision and depth sensing to detect healthcare worker (HCW)-
patient contacts to estimate both hand hygiene (HH) opportunities and personal protective equipment (PPE) adherence.

Methods. We used multiple Microsoft Kinects to track the 3-dimensional movement of HCWs and their hands within hospital
rooms. We applied computer vision techniques to recognize and determine the position of fiducial markers attached to the patient’s
bed to determine the location of the HCW’s hands with respect to the bed.

To measure our system’s ability to detect HCW-patient contacts, we counted each time a HCW’s hands entered a virtual rectan-
gular box aligned with a patient bed. To measure PPE adherence, we identified the hands, torso, and face of each HCW on room
entry, determined the color of each body area, and compared it with the color of gloves, gowns, and face masks. We independently
examined a ground truth video recording and compared it with our system’s results.

Results. Overall, for touch detection, the sensitivity was 99.7%, with a positive predictive value of 98.7%. For gowned entrances,
sensitivity was 100.0% and specificity was 98.15%. For masked entrances, sensitivity was 100.0% and specificity was 98.75%; for
gloved entrances, the sensitivity was 86.21% and specificity was 98.28%.

Conclusions. Using computer vision and depth sensing, we can estimate potential HH opportunities at the bedside and also
estimate adherence to PPE. Our fine-grained estimates of how and how often HCWs interact directly with patients can inform a
wide range of patient-safety research.
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In recent studies, several approaches have been developed to
electronically monitor hand hygiene adherence [1–3]. It is rela-
tively straightforward to determine whether a healthcare worker
has practiced hand hygiene on entering or leaving a room.
However, it is much more difficult to monitor what is happen-
ing inside a patient room at the bedside, where most of the op-
portunities to spread pathogens from the hands of healthcare
workers to patients occur. Accordingly, much infection control
attention has been focused on observing such opportunities
(eg, the World Health Organization [WHO] 5 moments [4]).

If we could determine, in an automated fashion, when a
healthcare worker’s hands come close enough to touch a patient
or the patient’s immediate environment, we could produce
more informed estimates of hand hygiene opportunities and

ultimately adherence. Moreover, if we could analyze color infor-
mation related to healthcare workers’ hands, torsos, and faces, we
could determine whether they were wearing gloves, masks, and
gowns, respectively. Thus, we could measure personal protective
equipment (PPE) adherence, a common intervention designed to
prevent the spread of healthcare-associated infections [5, 6].

The purpose of this study is to determine the feasibility of
using computer vision and depth sensing to measure not only
direct patient contacts, but also compliance with recommenda-
tions for healthcare workers to wear gloves, gowns, and masks.

METHODS

To measure healthcare worker movement we used a Kinect
placed on either side of a patient’s bed. A Kinect is a motion-
sensing device developed by Microsoft to enable the use of body
movements for controlling video games. However, the Kinect
can be also be used for other purposes via custom software
that controls and communicates with the Kinect through its
software development kit (SDK) [7, 8].

Each Kinect includes a color video camera combined with
a depth sensor, enabling analysis of both color and distance
of objects. The Kinect’s proprietary software processes these
fine-grained range and color data to provide high-level SDK
functions for tracking 3-dimensional (3D) movements of
individuals. Because the Kinect was designed for multiple
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simultaneous users, it can recognize up to 6 axial skeletons. At
any moment, 2 skeletons can be tracked in full detail, meaning
the Kinect provides 3D positions of 20 predefined skeletal points
on each skeleton. The Kinect tracks only a representative “center”
position of any additional skeletons in view. In addition to the
SDK-provided functionality, we apply standard computer vision
techniques to raw Kinect data to recognize and accurately deter-
mine the position of fiducial markers attached to key locations or
equipment; this enables our software to locate the Kinect relative
to room features of interest.

To protect patient privacy, our software does not capture any
human interpretable image or video data for more than a few mil-
liseconds before deleting it. The only data saved are in the form of
Cartesian (x, y, and z) coordinates from which we can compute
distances and recreate skeletal paths and the locations of fiducial
markers. None of the saved data could be used to reconstruct rec-
ognizable images of faces or anatomic detail above the level of a
stick figure with 20 skeletal points.

For this work, we focus on tracking the hand positions of
axial skeletons as they move near the patient, saving only 3D
trajectories of hand center points during contact events. For
PPE compliance, we determine and record only binary decision

information—eg, gloves vs no gloves, mask vs no mask, and
gown vs no gown—based on video and depth data that are ana-
lyzed in real time and discarded immediately. The University of
Iowa’s Institutional Review Board determined our approach to be
nonhuman-subjects research.

Tracking Potential Healthcare Worker-Patient Contacts
We developed custom software that uses the Kinect SDK to ob-
tain data that allow us to do the following: (1) identify axial skel-
etons of up to 6 people within view of each Kinect; (2) track
detailed 3D locations of 20 defined “joint” positions on any 2
of the skeletons; (3) track 3D location of the “center” of any ad-
ditional skeletons; (4) recognize fiducial markers placed at the
foot of a hospital bed and compute the relative position between
these markers and the Kinect devices; (5) compute bed position
and orientation based on known position of the Kinect with re-
spect to fiducial markers; and (6) track position of the skeletal
hands with respect to the patient bed.

We placed the 2 Kinects on opposite sides of a hospital bed,
each near the head facing diagonally across the bed toward the
foot end (see Figure 1). Thus, given that we know the position of
the Kinects in relation to the bed, the size of the bed, the

Figure 1. Two Kinects (Left CTS and Right CTS) comprise the Contact Tracking System that tracks healthcare worker hands near the patient. A third Kinect (PPEDS) gathers data
for the Patient Protective Equipment Detection System that monitors personal protective equipment compliance. The detection zone refers to the bed itself. Bed areas include left
head (LH), right head (RH), left middle (LM), right middle (RM), left lower (LL), and right lower (RL). The buffer zone refers to the area that is within touching range of the bed.
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location of the bed, and the location of skeletal hands, we can
estimate when and for how long a healthcare worker’s hands
are within touching range of a patient. It is important to note
that the software continually monitors the position of the fidu-
cial markers, enabling the system to continue to function cor-
rectly even if the bed or the Kinect is moved.

To determine whether a healthcare worker touched a patient,
we make 2 simplifying assumptions. First, when the hand of a
healthcare worker comes close enough to touch a patient, we
deem the event a contact. Second, we only consider contacts that
would occur while a patient is in the hospital bed. Thus, a con-
tact is defined to occur when the hand of a healthcare worker

crosses the boundary of a virtual rectangular box aligned with the
patient’s bed (ie, having the same length andwidth as the bed and
a height reaching 0.8 m up from the bed surface. See Figure 2).

Tracking Personal Protective Equipment Compliance
Using the video and depth sensor data from the Kinect, our soft-
ware analyzes color and movement information to determine
whether healthcare workers are compliant with use of PPE.

Specifically, to detect compliance with gloves, gowns, and
masks, we place a third tripod-mounted Kinect within a hospi-
tal room facing the entrance (see Figure 3) and proceed as fol-
lows. First, the software determines whether a healthcare worker
is entering or leaving a room by analyzing the motion of an axial
skeleton. The Kinect provides skeletal point position informa-
tion at 30 Hz, which allows us to track point positions relative
to the room entrance over a sufficient period of time to deter-
mine whether a skeleton near the doorway is moving into or out
of the room.

Next, the software samples pixels in regions of the video image
corresponding to the following: the skeleton’s hands, the skele-
ton’s torso, and the mouth and nose of the skeleton. The software
then determines whether the sampled colors match the color of
the gloves, gowns, and face masks, respectively. Thus, if the pixel
colors sampled in location of the hands matches the color of the
gloves, we record that the healthcare worker is wearing gloves; if
the colors do not match closely enough, we record that the
healthcare worker is not wearing gloves. We record gown and
face mask compliance in a similar fashion.

It is important to note that we implemented custom tracking
software in C#, making use of both the Kinect SDK for Windows
and the reacTIVision image processing library for tracking fidu-
cial markers. (http://reactivision.sourceforge.net). Finally, we also
wrote postcollection data processing and visualization software in
Python.

Figure 2. Here, a healthcare worker places both of his hands into the virtual rect-
angular box above the patient’s bed. The box is superimposed on the photo for il-
lustrative purposes. Although we track the motion of healthcare worker hands in the
view of each Kinect, we only count when hands enter the virtual box as a potential
healthcare worker-patient contact. Note that at the foot of the bed, there are fiducial
markers that allow us to “find the location of the patient’s bed” in order to determine
the location of healthcare worker hands with respect to the bed.

Figure 3. Two views of sample trajectories of healthcare worker hands in a virtual rectangular box above the patient bed. In each figure, the rightmost green trajectory (LH)
and red trajectory correspond to an ∼3-second long 2-handed patient contact in which the healthcare worker’s left and right hands entered the region at time t = 47 seconds
and exited the region at near t = 50 seconds. The leftmost green trajectory corresponds to a patient contact with just the healthcare worker’s left hand, beginning at time
t = 52.5 seconds and ending at time t = 54.6 seconds. Abbreviations: LH, left hand; RH, right hand.
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Evaluation of Accuracy
To determine whether our system can detect when and for how
long healthcare workers touch a patient or are close enough to
touch a patient, we tested our system in an empty hospital
room. We also attached a video camera to the room’s ceiling di-
rectly above the hospital bed. Note that this additional video cam-
era is not part of our hand tracking system; it was used solely to
capture “ground truth” to support the evaluation of our system.

Next, we recruited a number of test subjects to approach the
hospital bed and touch or not touch different areas of the bed
repeatedly, as if they were examining a patient. The different
scenarios described below were designed to test whether our
system could detect “contacts” both short and long in all
areas of the virtual box. In addition, we wanted to test situations
mimicking common touch encounters typical of clinical prac-
tice (eg, doing a clinical exam, accessing the patient, washing
or cleaning the patient). It is important to note that the data
produced by our Kinect-based tracking system represent a set
of detailed contact events over time (eg, hand enters the virtual
rectangular box aligned with the patient bed at location a and
time t1 then tracks the hand trajectory until it exits the virtual
rectangular box at position b and time t2). We independently
and visually examined the ground truth video recording, pro-
ducing a manual count and characterization of each contact
event. We compared the tracking system’s results with the man-
ual results to compute sensitivity and precision.

To determine whether we can accurately detect whether sub-
jects were wearing gloves, gowns, or facemasks when entering a
hospital room, we had subjects repeatedly enter and exit either
wearing or not wearing gloves, gowns, and facemasks. We again
compared the tracking system’s results with manual counts
from ground truth video data.

Statistical Analysis
We computed touch-detection sensitivity and also calculated
the precision of our system (positive predictive value). For
this application, specificity is not well defined because there is
no fully satisfactory way to quantify the number of opportuni-
ties for false positives (times when the healthcare workers are
not touching anything within the rectangular box). To evaluate
PPE compliance, we computed the sensitivity and specificity for
detecting gloves, gowns, and facemasks.

RESULTS

Tracking Healthcare Worker Hands
In 4 separate scenarios, we instructed 1 or more subjects to
approach a patient’s bed and place their hands on the bed in
various positions: Scenario 1 comprised 1 subject, both sides
of bed, 60 seconds; Scenario 2 comprised 1 subject 1 side of
bed, 270 seconds; Scenario 3 comprised 3 subjects, both sides
of bed, 135 seconds; Scenario 4 comprised 2 subjects, both
sides of bed, 480 seconds.

In Scenario 1, 1 subject moved from the head of the left of the
bed toward the foot, placing his hands in and out of the bed
zone in various ways. The subject then moved to the right
side of the bed, working from foot to head and then back to
the foot. Finally, the subject returned to left side and moved
foot to head once more. During the 60-second scenario, 10
in-range bed-touching events occurred on the left side and 12
on the right side. All 22 events were detected by our system.

In Scenario 2, 1 subject, a physician, moved back and forth
along the right side placing hands in and out of the bed in var-
ious ways. During the 270-second scenario, 97 bed-touching
events occurred and all 97 were detected by our system. There
were 4 false-positive detections that seemed to be due to win-
dow reflections in the background (these 4 spurious events cor-
respond to noticeably erratic data that could easily be discarded
with appropriate postprocessing).

In Scenario 3, 3 subjects moved back and forth along both
sides of the bed, sometimes on opposite sides, sometimes all
on the same side. During the 135-second scenario, 68 bed-
touching events occurred. On the left side, there were 8 actual
touch events and all were detected by our system. On the right
side, there were 60 actual touches, many of them by 2 subjects at
once, with 61 touches detected by our system. The extraneous
touch detection occurred during a short sequence of 4 touches
involving 2 subjects who were entering/leaving the bedside,
where we falsely detected parts of 2 separate touches as an ad-
ditional touch.

In Scenario 4, 2 subjects moved back and forth along both
sides of the bed, usually only 1 at the bedside at a time. During
the 408-second scenario, 181 bed-touching events occurred. On
the right side, 45 actual touches occurred and all were detected
by the system. On the left side, there were 136 touching events.
Our system correctly distinguished 134 of them. Two touches
in the same area of the bed with a 1 second gap between them
were reported as 1 continuous touch. These events occurred
in the extreme lower left region of the bed farthest from the ob-
serving Kinect.

Overall, for touch detection the sensitivity was 99.7%, and the
precision (positive predictive value) was 98.7%.

Assessment of Touch Event Time and Trajectory Accuracy
Most touches lasted between 2 and 7 seconds, with the average
being ∼3 seconds. Approximately 90% of the touches, both the
touch start and touch end times determined by the system,
matched those determined by a viewer watching the recorded
overhead video to within 0.25 seconds, with trajectories tracking
well both in position and time. For ∼8% of the touches, the sys-
tem experienced 1 or more short gaps (usually .25–.5 seconds)
in position tracking. For these touches, the total touch time re-
mains accurate, but position data are less detailed. For ∼2% of
the touches, the system reported either too-early-start or too-
late-end times that were incorrect by between .25 and 2 seconds.
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Tracking Personal Protective Equipment Compliance
We instructed 3 different test subjects to enter and leave a patient
room in rapid succession. There were 122 actual entries. The sys-
tem missed 6 entries and detected 2 extraneous entries, reporting
a total of 118 entries. The 2 “false-positive” entries resulted from
other people in the hall who started to enter the room but did go
far enough to qualify an entry. In the remainder of the section,
“entries” refers to entries among the 116 correctly detected actual
entries. For gowned entrances, sensitivity was 100.0% and specif-
icity was 98.15%. For masked entrances, sensitivity was 100.0%
and specificity was 98.75%; for gloved entrances, the sensitivity
was 86.21% and specificity was 98.28%.

DISCUSSION

Our results demonstrate that we can use computer vision and
rangefinding to better understand hand hygiene opportunities
at the patient’s bedside. Although we cannot yet determine
when a healthcare worker is compliant with hand hygiene ac-
cording to the specific WHO 5 moments [4], we can estimate
how often and for how long a healthcare worker’s hands are
within touching distance of a patient in a bed, and we can do
this without the healthcare worker wearing any specialized
badge or equipment. We can use the same computer vision ap-
proach to determine whether healthcare workers are entering or
exiting a room and whether or not they are wearing gloves,
gowns, or facemasks and thus determine compliance with
PPE guidelines.

Historically, hand hygiene data have been both sparse and
coarse. Human observations, although considered the gold stan-
dard [9], suffer from multiple limitations especially in busier
healthcare settings [10]. In most studies, the number of observa-
tions performed by human observers is quite small in compari-
son to the number of true opportunities [11]. Moreover, even
where and when observations occur affect the number and diver-
sity of opportunities observed [11]. Finally, although a host of
new automated monitoring approaches will help inform future
hand hygiene-research efforts, most of these investigations will
likely focus on in- and out-of-room-based measurements.

Computer vision approaches have a number of advantages.
Although they are based on “imaging”, they need not capture
any recognizable images beyond the few milliseconds required
for data extraction, and no saved data can be used to recognize
patients or healthcare workers. Furthermore, because our ap-
proach is automated, we do not need humans to monitor the
data collected or review images, as video-based hand hygiene
approaches have previously required [12, 13]. Because so little
is known about what happens within patient rooms, our ap-
proach could help inform hand hygiene research even without
widespread deployment to answer central questions related to
hand hygiene monitoring. For example, on average, how
many times does a healthcare worker touch a patient while in
a room for 15 seconds vs 30 seconds vs 60 seconds? How

does the number of healthcare worker-patient direct contact
times differ in different healthcare units (ie, intensive care
units, general medical wards)?

Answers to these questions will also help inform current ob-
server-based monitoring approaches. For example, human ob-
servers often count an opportunity as any entrance into a room
regardless of how long a healthcare worker spends in the room:
should all in-room dwell times be considered equally? Other in-
fection control monitoring is also likely to profit from the kind
of fine-grained information produced by our system. Room
“heat maps” highlighting high-touch surfaces could be used
to better understand the order of operations in daily patient
care as well as to inform cleaning policies and procedures.

Another benefit from computer vision approaches to compli-
ance monitoring is that we can also track adherence to other im-
portant infection control measures, specifically the use of PPE.
The wide-ranging preparedness efforts on the part of hospitals
after the Ebola outbreak in Western Africa [14, 15] highlights
the importance of efforts to improve PPE compliance. Data re-
garding compliance with PPE are sparse relative to data regard-
ing hand hygiene adherence. However, existing reports show
suboptimal adherence [16], and healthcare workers may need
PPE technique training [17]. Furthermore, glove use may actu-
ally contribute to suboptimal hand hygiene [18, 19]. Likewise,
although masks and respirators are important to help prevent
the spread of droplet and airborne infections, respectively [5],
there are few if any ways to monitor compliance with these mea-
sures other than by direct human observations.

The fine-grain movement data collected from our system has
several patient safety applications beyond estimating hand hy-
giene opportunities, monitoring PPE compliance, or even de-
termining the cleaning of high-touch surfaces around patient
beds. First, data from our approach can better inform infection
control modeling. For example, incorporating granular mea-
surements of contact patterns into models affects results [20].
Similarly, modeling efforts that incorporate the probability of
a healthcare worker touching a patient may yield dramatically
different results than simply considering whether the healthcare
worker entered a room. Thus, our approach could inform such
models by providing probability estimates of touches based
upon how long a healthcare worker spent in a room. Second,
we train our system to detect patterns of movement that
might indicate agitation or levels of sedation for a ventilated pa-
tient. It may also be possible to train a system to detect risks for
falls or developing decubitus ulcers.

Our work has several limitations. First, we cannot currently
differentiate between healthcare workers and visitors. We could
address this limitation if healthcare workers wore identifiably
different apparel or fiducial markers. Second, the Kinect can
only detect healthcare workers within its direct field of view;
if another healthcare worker occludes the Kinect’s field of
view, our ability to monitor will be limited as long as the
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obstruction persists. This could be partially overcome by hang-
ing the Kinects from the ceiling. Third, our work focused on the
zone around the patient’s bed. Some hand hygiene opportuni-
ties occur away from patient’s bed; these events would be missed
unless we added additional Kinects. Fourth, we cannot recog-
nize whether healthcare workers are performing specific sterile
or clean procedures, although with suitable training data, it
should be possible to apply machine learning methods to iden-
tify specific healthcare worker events (eg, central line placement,
intubation, bathing a patient). Because some of these proce-
dures are “clean”, it may be possible to differentiate between
specific sterile or clean procedures to better inform hand hy-
giene opportunities. Fifth, the current version of Kinect used
here can only track 2 healthcare workers at one time (although
a new version addresses this limitation). Sixth, our ability to
measure some colors depends upon lighting; although blue
was easy to detect, it was more difficult to differentiate between
yellow and skin colors in low-light situations. Future versions
could automatically adjust for lighting conditions or give ranges
of confidence of estimates depending upon lighting conditions.
Furthermore, we cannot detect the use of skin tone-colored
gloves.

A final limitation to our system is it was designed for an in-
tensive care unit. In units where patients spend more time out of
bed, our current software will not always be able to differentiate
between the hands of healthcare workers and those of patients.
The Kinect was designed to find people with an upright posture
with most of their body visible. Thus, the potential for patient
hands being confused with those of healthcare workers is low
when patients are lying down. We evaluated our system with
both manikins and real people inside our virtual box (data
not shown). The Kinect can detect patients’ hands if patients
are sitting up with their arms exposed, and the hands of patients
could be confused with the hands of healthcare workers as pa-
tients transition from being in bed to being out of bed or sitting
on the side of the bed. Additional processing would need to
occur to control or adjust for such situations.

CONCLUSIONS

Despite our limitations, we demonstrate that we can perform
estimates of hand hygiene opportunities and PPE adherence
using computer vision. Future studies deploying this approach
will help provide fine-grained estimates of how and how often
healthcare workers interact directly with patients. Such data will
not only help inform hand hygiene-monitoring efforts but will
also have other patient safety applications.
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