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Abstract
Despite the outstanding advances in understanding the biology underlying the pathophysiology of acute myeloid 
leukemia (AML) and the promising preclinical data published lastly, AML treatment still relies on a classic 
chemotherapy regimen largely unchanged for the past five decades. Recently, new drugs have been approved for 
AML, but the real clinical benefit is still under evaluation. Nevertheless, primary refractory and relapse AML 
continue to represent the main clinical challenge, as the majority of AML patients will succumb to the disease 
despite achieving a complete remission during the induction phase. As such, treatments for chemoresistant AML 
represent an unmet need in this disease. Although great efforts have been made to decipher the biological basis for 
leukemogenesis, the mechanism by which AML cells become resistant to chemotherapy is largely unknown. The 
identification of the signaling pathways involved in resistance may lead to new combinatory therapies or new 
therapeutic approaches suitable for this subset of patients. Several mechanisms of chemoresistance have been 
identified, including drug transporters, key secondary messengers, and metabolic regulators. However, no 
therapeutic approach targeting chemoresistance has succeeded in clinical trials, especially due to broad secondary 
effects in healthy cells. Recent research has highlighted the importance of lysosomes in this phenomenon. 
Lysosomes’ key role in resistance to chemotherapy includes the potential to sequester drugs, central metabolic 
signaling role, and gene expression regulation. These results provide further evidence to support the development 
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of new therapeutic approaches that target lysosomes in AML.
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INTRODUCTION
Relapse and refractory diseases are major clinical challenges during the management of acute myeloid 
leukemia (AML) patients, and they prevent an optimized response to current treatments. As relapse refers 
to reappearance of the disease, relapse episodes are strongly related to refractoriness, both of them leading 
to poor prognosis[1]. For the last five decades, the standard AML therapy consisted of a combination of 
cytarabine and an anthracycline[2], and improvements in the survival rate are mainly due to optimization of 
the supportive care and hematopoietic cell transplantation protocols. Recently, new targeted drugs have 
been approved, incorporating the notion of personalised treatments for AML. Continuous assessment of 
newly approved drugs over time will provide valuable complete efficacy and safety data that will result in an 
optimal drug regime, as current clinical benefit is controversial[3,4]. Thus, acquisition of new biological 
insight in AML pathophysiology represents an unmet need necessary to expand the targetable therapeutic 
mechanism repertoire to overcome chemoresistance and, then, significantly improve clinical outcomes for 
AML patients.

Primary and secondary chemoresistance have been widely explored using conventional approaches, 
searching for gene mutations, chromosomal aberrations, and dysregulated signaling pathways[5-8]. Changes 
in the multidrug resistance gene family affect the intracellular concentration of drugs by either reducing the 
active transport into the tumor cells or increasing the efflux out to the extracellular space. Other 
mechanisms of action that affect the response to chemotherapy include: modifications in the chemotherapy 
molecular targets, preventing the pharmacologic action, increased ability to repair tumor DNA damage, 
defective response to proapoptotic stimuli, and changes in the tumor microenvironment[8]. Although several 
inhibitors targeting drug-resistance mechanisms have been reported, their clinical development is still 
under evaluation.

Oxidative phosphorylation function, metabolic plasticity, and mitochondrial adaptation contribute to 
chemoresistance in AML, especially towards cytarabine, as resistant AML cells rely more on mitochondrial 
oxidative phosphorylation and less on glycolysis[9,10]. Increased mitochondrial mass, mitochondrial 
membrane potential, reactive oxygen species production, and a characteristic gene signature associated with 
oxidative phosphorylation are hallmarks of chemoresistance AML cells[9,11]. Indeed, inhibition of oxidative 
phosphorylation induces chemosensitivity[9,11-13]; and mitochondrial oxidative phosphorylation and 
respiratory capacity correlate with a better response to cytarabine treatment in AML cells[11]. This metabolic 
reprogramming might have an important therapeutic implication and metabolic vulnerabilities might be 
exploited pharmacologically.

Closely related to mitochondria, lysosomes have attracted special interest in oncology due to their growing 
importance in transformation processes. The traditional view of lysosomes has been challenged by the 
recognition that lysosomes are not only “degradative organelles”, but also metabolic sensors and regulators, 
becoming legitimated as intracellular signaling hubs[14]. Additionally, recent findings highlight the physical 
and functional interaction of mitochondria and lysosomes, suggesting that this crosstalk plays a major role 
in metabolic regulation, based on the transfer of Ca2+ between organelles[15,16], affecting the cellular response 
to treatment. In this review, the role of lysosomes in chemoresistance in AML is discussed and an overview 
of the potential therapeutic approaches for overcoming refractoriness in leukemia is provided.
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LYSOSOMES
Lysosomes were first described in the 1950s as organelles responsible for the degradation of biological 
macromolecules from extra- and intra-cellular origins[17]. Their central role in cellular recycling and 
homeostasis was revealed later when autophagy was discovered[18,19]. Recent discoveries confirm lysosomes 
as crucial modulators of cell homeostasis, regulating both cellular metabolism and clearance (reviewed in 
Ref.[20]).

Structurally, lysosomes are acidic organelles surrounded by a phospholipid bilayer. The acidic lumen is 
maintained by vacuolar-type H+ ATPase (V-ATPase) on the lysosomal membrane[21]. Other key proteins on 
lysosomal membrane are: lysosome-associated membrane protein, soluble N-ethylmaleimide-sensitive 
factor activating protein receptors, toll-like receptors, and mammalian target of rapamycin (mTOR)[22]. 
Luminal hydrolytic enzymes of lysosomes include proteases, sulfatases, nucleases, lipases, phosphatases, and 
nucleases, which degrade macromolecules.

Lysosomes belong to the endolysosomal system, a dynamic network of organelles consisting of early, late, 
and recycling endosomes and lysosomes. Primary lysosomes originate from the Golgi apparatus. Early 
endosomes formed from the plasma membrane might also progress to late endosomes and lysosomes, as a 
result of a maturation process. Alternatively, a contact site between lysosomes and late endosomes can be 
formed, followed by cargo transfer and dissociation (kiss-and-run model), or late endosomes can fuse with 
lysosomes, creating a hybrid organelle that subsequently evolves in lysosomes (fusion and fission 
process)[23].

During malignant transformation, cancer cells adapt their physiological processes to sustain their intrinsic 
anabolic and catabolic needs. Both lysosomal mass and subcellular localization are widely changed to enable 
the acquisition of cancer cells’ idiosyncratic feature of uncontrolled growth. Recycling of exogenous 
material provides energy and key molecular components, while autophagy enhances catabolism and, 
consequently, energy and metabolite precursors are supplied. Nutrient sensing is tightly regulated by 
lysosomes, based on the activation and translocation of the mTORC1 complex to the lysosome membrane, 
enhancing lipid catabolism under starving condition in transformed cells (reviewed in Ref.[24]).

Lysosomes in AML
During leukemogenesis, AML cells increase their lysosomal mass, although their number is not significantly 
affected[25]. As AML relies on fatty acids for energy supply, lysosome-dependent fatty acid oxidation rate is 
higher, inducing an augmented lysosomal mass to support this process[26]. The gene network that regulates 
the lysosomal biogenesis is also upregulated, similarly to the expression of key lysosomal enzymes[27-37]. 
Indeed, the lysosomal matrix enzyme activity is enhanced in AML, as compared to healthy myeloid cells, 
probably due to an increase in the quantity of enzymes and the influx rate[38]. As a consequence of these 
lysosomal changes, AML cells contain fragile lysosomes due to destabilization of the lysosomal limiting 
membrane and lower pH.

V-ATPases play both direct and indirect roles in the control of cellular signaling. Growth, survival, and 
differentiation signaling pathways frequently rely on these ATP-dependent proton pumps. Control of 
vesicular pH by V-ATPase is essential for proper signaling by many plasma membrane receptors that traffic 
through the recycling networks, including Notch and Wnt[39]. Canonical Wnt is required for the 
development and maintenance of AML[40-42]. Inhibition of V-ATPase prevents the activating 
phosphorylation of the Wnt receptor upon ligand binding and dysregulates ligand-mediated internalization 
of the receptor[43,44]. Although the importance of Notch as a therapeutic target in AML is still controversial, 
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this signaling pathway regulates proliferation and cell survival[45-47]. Activation of the Notch receptor induces 
the intracellular domain to be cleaved and translocated to the nucleus, a process requiring V-ATPase 
function[48-50]. Similarly, PI3K/Akt/mTOR signaling pathway is crucial to many physiological processes, such 
as proliferation, gene expression regulation, differentiation, cell death, metabolism, cell survival, and 
migration, and it is frequently hyperactivated in AML[51-55]. While the precise mechanism involved in the V-
ATPase-mediated modulation of mTOR remains widely unknown, inhibition of V-ATPase represses 
mTOR activation[56], and mTOR inhibition leads to AML cell death[57,58].

Lysosomal sequestration of drugs
Lysosomal sequestration or lysosomal trapping is an important mechanism responsible for chemoresistance 
acquisition[59]. Many chemotherapeutics used in clinics (i.e., anthracyclines, taxanes, platinum-based drugs) 
are lipophilic, weak-base drugs and can therefore diffuse freely across lipid membranes, including the 
plasma membrane and lysosomal membrane. Alternatively, lysosomotropic drugs can be actively 
transported by inward turned multidrug efflux transporters of the ATP-binding cassette superfamily, 
embedded in the lysosomal membrane (originally expressed in the plasma membrane and endocytosed into 
lysosomes), particularly ABCB1[60-63] and ABCA3[38]. The acidity of the lysosomal lumen facilitates the rapid 
protonation of weak-base drugs, impairing their ability to cross back across lipid bilayers, resulting in their 
marked lysosomal accumulation and compartmentalization[64,65]. Chemotherapeutics sequestered in 
lysosomes and associated to drug resistance phenomena include tyrosine kinase inhibitors[66-68], 
topoisomerase inhibitors[69-71], antimetabolites[72], alkylating agents[73,74], and microtubule-targeting 
agents[75,76]. Lysosomal sequestration severely affects drug subcellular distribution, significantly reducing 
efficiency, since lysosomes are seldom the target sites for these chemotherapeutics, and the sequestered 
drugs will not reach their targets[77]. Therefore, higher concentrations are required to achieve therapeutically 
relevant concentrations, increasing side effects in patients, and promoting secondary chemotherapy 
resistance. Treatment with these types of drugs induces expansion of the lysosomal compartment, thereby 
enhancing their lysosomal sequestration capacity and further increasing chemoresistance, constituting a 
feedback loop[78-80].

The transcription factor EB (TFEB) is the master regulator of lysosomal biogenesis, by modulating the 
expression of genes bearing the coordinated lysosomal expression and regulation motif. In resting 
conditions, phosphorylated TFEB is retained inactivated in the cytoplasm by the 14-3-3 protein. Calcineurin 
dephosphorylates and activates TFEB, leading to its dissociation from 14-3-3 and subsequent translocation 
to the nucleus. mTOR phosphorylates (and inactivated) TFEB, enabling its binding to 14-3-3 in the 
cytoplasm. The activity of calcineurin is modulated by the release of Ca2+ from the lysosomes through the 
lysosomal Ca2+ transporter mucopilin (MCOLN1)[81]. mTOR can be inhibited by raising the pH, as 
lysosomotropic drugs do[82]. Activation of TFEB induces lysosomal biogenesis which increases lysosomal 
sequestration capacity and exerts a feedback loop.

Clearance of chemotherapeutics sequestered in lysosomes might also provide an additional chemoresistance 
mechanism. Exocytosis has been proposed as the preferred process[83], as drug accumulation induces an 
increase of pH, leading to an activation of exocytosis[84,85]. Moreover, drug sequestration-induced TFEB 
activation partially results in the induction of lysosomal exocytosis and clearance of lysosomal content 
outside the cell[86,87]. However, once drugs have been released to the extracellular space, they can rediffuse 
back into the cells, making the exocytosis-mediated chemoresistance a controversial process that requires 
further clarification.
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The anthracyclin daunorubicin (DNR), a backbone chemotherapeutic agent in first-line treatment of AML, 
displays physicochemical features compatible with lysosomal trapping. Early studies demonstrated that 
DNR intracellular distribution depends on drug treatment response. Sensitive AML cells preferentially 
accumulate DNR in the nucleus, where the pharmacology effect is exerted. In contrast, DNR-resistant AML 
cells tend to sequester DNR in lysosomes[88]. Indeed, expanded lysosomes are observed in response to DNR 
treatment, as well as a diminished nuclear drug uptake, exhibiting a 2.5/3-fold less DNR concentration in 
nucleus in resistant versus sensitive AML cells[69]. In AML, the relevance of ABCB1 in the active 
transportation of DNR into lysosomes is limited[60,69], in contrast to other solid tumor cells[62,63,89]. Instead, in 
AML, DNR is actively influxed by lysosomal ABCA3, a transporter upregulated in chemoresistant patients 
and correlated with poor prognosis[37,38].

LYSOSOME-BASED THERAPEUTIC APPROACHES
The key contribution of lysosomes to chemoresistance raises increasing interest in lysosome-targeting 
therapies to either sensitize tumor cells to current approved chemotherapy or as new pharmacologic 
approaches. The transformation process itself affects the integrity and size of lysosomes, increasing their 
fragility. Sphingolipid metabolism alterations are also often found in cancer cells, leading to changes in the 
lysosomal membrane function and structure[90]. Due to an increased metabolic demand, cancer cells 
upregulate their lysosomal function, resulting in an augmented lysosomal mass[91]. Accumulation of 
lysosomotropic drugs in cancer cells destabilizes lysosomes, causing their failure and eventually activating 
cell death program. However, healthy lysosomes are fully functional and display compensatory mechanisms 
that prevent fatal damage. Consequently, a wide therapeutic window is found due to these differences in 
fragility of lysosomes in cancer cells vs. healthy cells. Several strategies have been explored, including 
lysosomal destabilization. Lysosomotropic compounds can accumulate in lysosomes, causing lysosomal 
membrane-cell permeabilization, release of cathepsins, and consequently, activation of the cell death 
program[92]. Using different screening approaches, the anti-malaria drug mefloquine[25], cationic amphiphilic 
antihistamines[93], and σ2 receptor agonist siramesine[94] were described as lysosomal disruptors in AML cells 
and sensitizers to approved chemotherapeutics. Mefloquine disturbs the lysosomal membrane of AML cells, 
allowing the release of cathepsins to the cytoplasm and inducing apoptosis[25]. Cationic amphiphilic 
antihistamines simultaneously disrupt both lysosomes and mitochondria, based on their physico-chemical 
properties, inducing both apoptosis and autophagy[93]. Both the specific cationic amphiphilic antihistamines 
and mefloquine spare healthy blood cells, confirming the differential effect of lysosomal disruptors in AML 
and the existence of a preclinically-validated therapeutic window. However, reprofiling of these drugs to 
AML is difficult due to their pharmacological profile, and no clinical trials have been successfully 
completed. Medicinal chemistry programs are expected to be necessary to achieve clinically suitable new 
compounds. Nevertheless, to date, targeting lysosomal integrity is the most promising therapeutic approach 
to overcome lysosome-mediated chemoresistance in AML [Figure 1].

Accumulation of chemotherapeutics in lysosomes heavily depends on lysosomal lumen pH. Moreover, in 
resistant AML cells, the pH gradient between the lysosome and cytosol is higher[95]. Treatment with V-
ATPase inhibitor archazolid A induces cell death in leukemic cells, both T-cell acute leukemia and acute 
myeloid leukemia[96]. Similar results were obtained with bafilomycin A, another V-ATPase inhibitor, 
although the mechanism of action responsible for this pharmacological effect is still controversial[97], as 
bafilomycin A is unable to resensitize cytarabine-resistant cells[98]. However, the preclinical data suggest that 
the therapeutic window was narrow, and their clinical significance might be limited.

As for further lysosome regulators, rapamycin and other mTORC1 modulators, have shown promising 
results in preclinical assays, specially in combination therapies[52]. However, mTORC1 regulates key 
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Figure 1. Mechanisms of lysosomal-mediated chemoresistance in acute myeloid leukemia (AML) at a glance. Most chemotherapeutic 
agents get readily sequestered in lysosomes upon entry in AML cells, causing a remarkable expansion of the lysosomal compartment. 
Lysosomal expansion is accompanied by an increase in pH, inducing exocytosis and, consequently, clearance of chemotherapy from 
cells. Both mechanisms prevent chemotherapeutic agents from directly interacting with their molecular targets, commonly located in 
the nucleus. To revert the undesirable sequestration, two main strategies have been proposed, namely, increasing lysosomal pH by 
inhibiting V-ATPase or pharmacologically inducing lysosomal membrane leakiness, thus releasing chemotherapeutics and additionally 
eliciting lysosomal-dependent cell death.  Conversely, mTORC1 inhibition contributes to lysosomal biogenesis and sequestration 
capacity, a mechanism that has been traditionally overlooked in translation of mTORC1 inhibitors and that could partly explain their 
clinical failure. ABCA3: ATP binding cassette subfamily A member 3; CaN: calcineurin; LMP: lysosomal membrane permeabilization; 
MCOLN1: mucolipin TRP cation channel 1; mTORC1: mammalian target of rapamycin complex 1; TFEB: transcription factor EB; V-
ATPase: vacuolar ATPase.

processes implicated in cellular metabolism and growth. The complexity and broadness of the mTOR 
signaling networks increase the risk of toxicity due to off-tumor on-target effects, as the therapeutic window 
is narrow, if existent[99]. Besides, accumulating evidence suggest that mTOR is not the only specific 
molecular target for rapamycin. A quantitative chemical proteomics approach has revealed that the 
rapamycin targetome is extensive, including Stat3, an ubiquitous secondary messenger[100]. In consequence, 
the efficacy of mTORC1 modulators in clinical trials is limited[101-104], probably due to its conserved function 
of mTOR complex in homeostasis mechanisms in all cell types, preventing their further clinical 
development [Table 1].
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Table 1. Summary of the main lysosome-associated chemoresistance mechanisms and therapeutic approaches

CHEMORESISTANCE MECHANISMS RELATED TO LYSOSOMES

Mechanism Cause Effect Solution

Drug 
sequestration[59]

Drug protonation due to lysosomal 
acidic lumen[64,65]

Changes in subcellular 
distribution[77]

Increase drug concentration[78-80]

Exocytosis[83] Drug accumulation due to increased 
pH[84,85] and TFEB activation[86,87]

Clearance of lysosomal 
drug content[86,87]

Drugs can rediffuse back into the cells

LYSOSOME-BASED THERAPEUTIC APPROACHES

Type Actions Examples

Lysosomal 
destabilizers

Lysosomal membrane permeabilization, cathepsins release, and 
cell death program activation[92]

Mefloquine (anti-malaria drug)[25], cationic amphiphilic 
antihistamines[93], and siramesine (σ2 receptor 
agonist)[94]

V-ATPase 
inhibitors

Activation of cell death program[96] Archazolid A[96] and bafilomycin A[98,96]

mTOR modulators Effect on combinatory therapies[52] Rapamycin[52]

Antibody-drug 
conjugates

Release of the therapeutics coupled to the antibody[105] Gemtuzumab ozogamicin[106]

Gemtuzumab ozogamicin (Mylotarg) is an anti-CD33 monoclonal antibody conjugated to the small 
molecule chemotherapy drug calicheamicin, recently reapproved for AML. Upon surface CD33 recognition, 
this antibody-drug conjugate is internalized and translocated to lysosomes. The acidic-labile linker is 
hydrolyzed in the acidic environment of the lysosome, releasing the cytotoxic drug that is exported to the 
nucleus, where the pharmacological effect occurs[105]. Thus, the effectiveness of gemtuzumab ozogamicin 
greatly depends on lysosome functionality. This targeted therapy was expected to represent a new paradigm 
in AML therapy; however, the clinical benefit is limited and severe adverse effects are found in a 
considerable rate[106]. Discrepancies between expectations and clinical efficacy may be explained based on 
the lysosomal impairment in AML cells, partially due to the hyperactivation of PI3K/Akt signaling 
pathway[51,53,54]. A direct correlation between lysosome function and gemtuzumab ozogamicin-induced 
cytotoxicity was observed and forced activation of lysosomes led to a synergistic effect with gemtuzumab 
ozogamicin[106], demonstrating that these lysosomal-dependent conjugate approaches used as monotherapy 
may be of limited interest in AML.

CONCLUSION
Refractory and relapse disease are still the main clinical challenges faced in AML. Although new drugs have 
been approved in the last years, treatment failure and resistance mechanisms remain a major problem in 
patient management. To date, none of the therapeutic strategies designed to overcome chemoresistance has 
succeeded in clinics. The identification of lysosomes as key organelles in resistance acquisition opened a 
new research field and provided new avenues to explore in order to revert the resistant phenotype. The 
leukemic transformation process results in an augmented metabolic demand, associated with the 
upregulation of the lysosome function. Consequently, increase in lysosomal mass, pH, and enzymatic 
activity is induced. Lysosomotropism of several chemotherapeutics enable their sequestration in the 
lysosomes, becoming “drug-safe house” compartments and reducing their cytotoxic effect in molecular 
targets. As a consequence of the lysosomal changes induced during leukemogenesis, AML lysosomes are 
more fragile than those found in healthy cells, with a preclinically demonstrated safe therapeutic window. 
Developing new drugs that target leukemic lysosome integrity may sensitize AML cells to conventional 
chemotherapeutics or even constitute a new pharmacological lysosome-centred strategy for relapse and 
refractory AML patients.
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