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Abstract

Although poorly positioned nucleosomes are ubiquitous in the eukaryotic genome, they are

difficult to identify with existing nucleosome identification methods. Recently available

enhanced high-throughput chromatin conformation capture techniques such as Micro-C,

DNase Hi-C, and Hi-CO characterize nucleosome-level chromatin proximity, probing the

positions of mono-nucleosomes and the spacing between nucleosome pairs at the same

time, enabling nucleosome profiling in poorly positioned regions. Here we develop a novel

computational approach, NucleoMap, to identify nucleosome positioning from ultra-high res-

olution chromatin contact maps. By integrating nucleosome read density, contact distances,

and binding preferences, NucleoMap precisely locates nucleosomes in both prokaryotic and

eukaryotic genomes and outperforms existing nucleosome identification methods in both

precision and recall. We rigorously characterize genome-wide association in eukaryotes

between the spatial organization of mono-nucleosomes and their corresponding histone

modifications, protein binding activities, and higher-order chromatin functions. We also find

evidence of two tetra-nucleosome folding structures in human embryonic stem cells and

analyze their association with multiple structural and functional regions. Based on the identi-

fied nucleosomes, nucleosome contact maps are constructed, reflecting the inter-nucleo-

some distances and preserving the contact distance profiles in original contact maps.

Author summary

Nucleosomes are the conservative building blocks of the chromatin, and their array regu-

larity and positioning level correlate with transcription activity, but their underlying dis-

tributions in eukaryote genomes have not been comprehensively studied due to the

poorly positioned ones. Recently available high-throughput enhanced chromatin confor-

mation capture techniques such as Micro-C, DNase Hi-C, and Hi-CO provide informa-

tion of nucleosome-level chromatin proximity, including the positions of

mononucleosomes and the spacing between nucleosome pairs, enabling identifying nucle-

osomes in poorly positioned regions. Here, we present NucleoMap, a nucleosome
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identification approach from ultra-high resolution chromatin contact maps. In this paper,

we provide an overview of NucleoMap’s workflow and capabilities. We benchmark

NucleoMap with popular baseline methods in multiple datasets. Next, we rigorously char-

acterize genome-wide association between the spatial organization of mono-nucleosomes

and their corresponding histone modifications, protein binding activities, and higher-

order chromatin functions in eukaryotes. Based on the identified nucleosomes, we also

construct more precise and more interpretable nucleosome contact maps, which preserve

the inter-nucleosome distances.

Introduction

Nucleosomes are the conservative building blocks of the hierarchical chromatin structure, on

which higher-order structures are formed [1]. Genome-wide approaches revealed that nucleo-

somes are regularly spaced and organized into arrays on a single chromatin fiber, but the varia-

tion between fibers, defined as the positioning level, may vary in different species [2]. Almost

all nucleosomes are well-positioned in yeast, meaning that the arrays occupy the same location

of the chromatin fiber in the majority of a cell population [3], but the positions of the nucleo-

some arrays are much more flexible (poorly-positioned) in animals and plants [4–6]. The posi-

tioning level of nucleosomes are reflected by the patterns of chromatin accessibility, which is

captured by sequencing techniques such as MNase-seq [7], DNase-seq [8], and ATAC-seq [9].

By definition, well-positioned nucleosomes are stable between chromatin fibers and thus yield

narrow peaks. On the contrary, poorly-positioned nucleosomes have broad and flat peaks.

Current nucleosome identification methods rely on calling peaks from MNase-seq [10–13],

ChIP-seq [14, 15], or ATAC-seq data [16, 17]. However, because the patterns of neighboring

broad peaks are largely overlapped, it is difficult to locate poorly-positioned nucleosomes accu-

rately using these methods [4, 18]. One promising approach is to separate the merged signal

into single peaks using the nucleosome repeat length (NRL) [19]. NRL is the average distance

between the centers of neighboring nucleosomes, which remains unchanged within a nucleo-

some array. By matching the distribution of local NRLs, it is possible to align the nucleosome

arrays in poorly-positioned regions. Therefore, in addition to the mono-nucleosome occu-

pancy along the chromatin fiber captured by the aforementioned sequencing techniques, it is

necessary to integrate information regarding inter-nucleosome distances from other data

sources.

Recently available high-throughput enhanced chromatin conformation capture (Hi-C)

techniques such as Micro-C [20–22], DNase Hi-C [23] and Hi-CO [24] provide information

of nucleosome-level chromatin proximity. These ultra-high resolution chromatin contact map

data capture both mono-nucleosomes’ positions characterized by the read alignments and the

spacing between nucleosome pairs characterized by contact distances. Integrating nucleosome

positioning and spacing information enables identifying nucleosomes in poorly-positioned

regions. With the increasing availability of the data, identifying nucleosomes from ultra-high

resolution chromatin contact maps becomes meaningful. However, no computational

approach has been specifically designed to identify nucleosome positions from ultra-high reso-

lution chromatin contact maps to our best knowledge.

In this work, we present NucleoMap, a nucleosome position characterization approach

from ultra-high resolution chromatin contact maps. By integrating genomic sequence specific-

ity, read density, and pairing information, NucleoMap precisely locates both well-positioned

nucleosomes and poorly-positioned nucleosomes, outperforming existing nucleosome
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identification methods in both precision and recall. We rigorously characterize genome-wide

association in eukaryotes between the spatial organization of mono-nucleosomes and their

corresponding histone modifications, protein binding activities, and higher-order chromatin

functions. We find evidence of two tetra-nucleosome folding motifs, α-tetrahedron and β-

rhombus, in human embryonic stem cells. The association between preferences on folding

motifs and genome structure is investigated. Based on the identified nucleosomes, nucleosome

contact maps are constructed, which preserve the inter-nucleosome distances. In this way,

nucleosome contact maps capture the original contact distance profile, making them more

concentrated and more interpretable than traditional fixed-bin-based contact maps.

Results

NucleoMap algorithm

Existing methods detect nucleosomes either by identifying genomic regions with enriched

reads [11–14] or by calculating normalized nucleosome occupancy profiles [10, 15]. As a

result, these models are not sensitive to identifying nucleosomes in poorly-positioned regions

where peaks are broad and largely overlapped. To overcome the limitation, we develop an

approach called NucleoMap, separating neighboring peaks using local NRLs. NucleoMap

identifies nucleosomes at different positioning levels from ultra-high resolution chromatin

contact maps, including Micro-C [20, 21], DNase Hi-C [23] and Hi-CO [24]. Different from

MNase-seq or ATAC-seq, these ultra-high resolution chromatin contact maps capture both

the positions of mono-nucleosomes and the inter-nucleosome distances on the chromatin

fiber, allowing modeling nucleosome occupancy and local NRLs at the same time.

NucleoMap uses a parametric model to separate the read density into multiple local distri-

butions, each representing the positioning of an individual nucleosome. In particular, every

nucleosome’s position is explicitly characterized by a Gaussian distribution, and NucleoMap

identifies them by minimizing an objective function integrating the distribution of read align-

ments, inter-nucleosome distances, and nucleosome binding preferences (Fig 1).

The first information is the aligned read density, which is also used by traditional peak-call-

ing approaches (Fig 1 step 2). Based on the fact that every alignment (one end of a contact) rep-

resents a mono-nucleosome from an individual cell, NucleoMap optimizes the expected

positions of mono-nucleosomes following a constrained k-means paradigm. Due to the

unknown number of nucleosomes in a region, the value of k is adaptively determined using a

Dirichlet process (DP) prior. As a result, the positions of nucleosomes are defined as the mean

of local read densities (Fig 1 step 3).

Uniquely captured by ultra-high resolution contact maps, the inter-nucleosome distances

are also utilized to adjust the positions of identified nucleosomes (Fig 1 step 1). To ensure that

the distance between neighboring nucleosomes resembles local NRLs, two ends of every con-

tact are assigned to different nucleosomes. Specifically, two ends of every contact are consid-

ered as cannot-link elements in the constrained k-means optimization (Fig 1 step 6) [25]. In

this way, the distances between identified nucleosome centers are adjusted by the inter-nucleo-

some distances from the data.

The third piece of relevant information comes from nucleosome binding preference

reflected by the nucleosome binding motifs (Fig 1 step 4). It is known that nucleosomes are

enriched for particular DNA sequence motifs on the nucleosomal DNA, most notably�10bp

periodic occurrences of AA/AT/TA/TT 2-mers [26–28]. NucleoMap models the AA/AT/TA/

TT dinucleotide motifs using a dinucleotide position weight matrix (PWM) calculated from

the aligned reads (S1 Fig), and then calculates a motif-based nucleosome-binding score along

the genome using the dinucleotide PWM. By integrating the binding score as a penalty term in
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the computation of distances, NucleoMap considers the sequence specificity in nucleosome

identification (Fig 1 step 6).

Using an objective function integrating the three aforementioned types of information,

NucleoMap characterizes mono-nucleosome positions by solving a constrained k-means prob-

lem with a Dirichlet prior. In the end, the reads are separated into different clusters represent-

ing mono-nucleosomes, while the number of nucleosomes k is automatically learned using a

hyperparameter λ. λ controls the fuzziness threshold of nucleosome calling.

NucleoMap accurately locates well-positioned and poorly-positioned

nucleosomes

To the best of our knowledge, no computational approach has been specifically designed to

identify nucleosome positions from ultra-high resolution chromatin contact maps. To evaluate

the performance achieved by our method, we compare NucleoMap with four popular nucleo-

some callers designed for MNase-seq data [10, 11, 13, 29], and the Micro-C contact maps are

treated as single-end MNase-seq data by ignoring the pairing information between

alignments.

Fig 1. Workflow of the NucleoMap model. NucleoMap locates nucleosome centers with the following steps: 1. Extract the pairing

information of reads from ultra-high resolution chromatin contact maps. Two ends from the same contact are assigned to different

nucleosomes. 2. Extract aligned reads from ultra-high resolution chromatin contact maps. 3. Estimate the number of nucleosomes from

the aligned reads using a Dirichlet prior. 4. Calculate nucleosome-binding preferences from the contact sequences. 5. Identify candidate

nucleosome-binding regions with the binding preference in the previous step. 6. Calculate nucleosome centers in candidate binding

regions by integrating the read positions and pairing information.

https://doi.org/10.1371/journal.pcbi.1010265.g001
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We first compare the precision and recall of nucleosome calling in yeast, where the posi-

tions of nucleosomes are experimentally confirmed [28]. Using these experimentally con-

firmed nucleosomes as the ground truth, the evaluation criteria are calculated as follows. First,

the distance between a nucleosome position identified by the caller and its nearest experimen-

tally confirmed nucleosome d is calculated. Then, nucleosomes with d� dt are considered to

be true-positive, where dt is a certain threshold. True-positives represent nucleosomes that are

validated by the experiment. In the end, the precision and recall are calculated for every

method under different distance thresholds. We have the following observations. First,

NucleoMap achieves the highest recall at dt�90bp, and it has the second-highest recall when

distance threshold dt> 90bp (Fig 2A). Compared with baseline methods, NucleoMap identi-

fies a larger number of ground truth nucleosomes with dt�90bp, measured by the areas under

the curves, suggesting its higher sensitivity in accurately identifying nucleosomes. At dt =

100bp, almost all ground truth nucleosomes are recovered by NucleoMap and DANPOS2,

which recognize 1,554 and 1,622 out of 1,716 ground truth nucleosomes respectively. In com-

parison, 1,492 ground truth nucleosomes are identified by nucleR, 417 identified by NOrMAL

and 346 identified by Nseq. Second, NucleoMap has the highest precision when distance

threshold dt< 80bp and the second-highest precision when dt> 80bp. Compared with

Fig 2. NucleoMap outperforms baseline methods in yeast and hESC. NucleoMap locates nucleosome centers with the following steps: A. (left panel)

Recall of nucleosomes identified by different approaches against the corresponding distance thresholds in yeast chrIII. The recall is calculated by n(true-

positive nucleosomes)/n(ground truth nucleosomes). Here “true-positive” nucleosomes refer to nucleosomes located within certain distance thresholds

from a “ground truth” nucleosome, while the “ground truth” nucleosomes are experimentally confirmed nucleosomes. Smaller distance thresholds

correspond to more accurate nucleosome locations, while a higher recall corresponds to more identified ground truth nucleosomes. Therefore, the area

under the curve represents the sensitivity of the corresponding methods in identifying nucleosomes (right panel). The precision of nucleosomes

identified by different approaches against the corresponding distance threshold in yeast chrIII. Precision is calculated by n(true-positive nucleosomes)/

n(identified nucleosomes). A higher consensus nucleosome ratio represents fewer “false-positive” nucleosomes identified, and thus the area under the

curves represents the nucleosome identifying specificity of the corresponding methods. B. Distance between nucleosomes identified by NucleoMap

(NucleoMap nucleosomes) and their nearest nucleosomes identified by DANPOS2 (DANPOS2 nucleosomes) in different regions. Compared with

random regions in the whole genome, NucleoMap nucleosomes are much closer to the nearest DANPOS2 nucleosomes in well-positioned regions,

showing the consistency in well-positioned regions across the two methods. C. Histogram of contact distance (black) and histogram of inter-

nucleosome distance characterized by computational methods (blue) in hESC chr21. The peak patterns of contact distance reflect genome-wide

nucleosome repeating lengths (NRL). Similar histograms between raw contact distance and computationally characterized inter-nucleosome distance

suggest accurate nucleosome identification.

https://doi.org/10.1371/journal.pcbi.1010265.g002
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baseline methods, NucleoMap identifies the second-largest proportion of ground truth nucleo-

somes, suggesting a low false-positive rate achieved by our method. Almost all nucleosomes

identified by NucleoMap (95.2%) are ground truth nucleosomes at dt = 100bp. Ground truth

nucleosomes identified by nucleR (98.1%) and NOrMAL (95.1%) also account for a large pro-

portion, followed by DANPOS2 (88.9%) and Nseq (73.8%). Therefore, NucleoMap achieves

comparable or better performance than baseline models in both precision and recall.

To further demonstrate that our method identifies both well-positioned and poorly-posi-

tioned nucleosomes, we compare the nucleosomes identified by NucleoMap and DANPOS2

in well-positioned regions that are known to us. In total, 42,679 identified nucleosomes in

well-positioned regions are considered. As a control, we randomly select the same number of

nucleosomes from the whole genome. In three types of well-positioned regions (promoters,

insulators, and enhancers), nucleosomes identified by NucleoMap are significantly closer

(� 50%) to their closest neighbors identified by DANPOS2, compared with the random con-

trol. The average distance between nucleosomes identified by NucleoMap and their closest

neighbors identified by DANPOS2 in well-positioned regions is� 20bp (Fig 2B). This result

suggests that NucleoMap performs at least as good as, if not better than, existing nucleosome

calling methods in well-positioned regions.

Finally, to examine the overall performance of our method in the more complex eukaryotic

genomes, we compare the recovered contact profile from the callers with the original contact

profile in hESC Micro-C data. The original contact profile is a histogram of contact distance,

while the recovered contact profile is the histogram of inter-nucleosome distances between the

assigned nucleosome centers. This profile reflects the real nucleosome spacing in the genome.

In eukaryotic genomes where most nucleosomes are poorly-positioned, this comparison effec-

tively evaluates the accuracy of poorly-positioned nucleosome arrays identified by computa-

tional methods. We calculate their recovered contact profiles in two steps. First, two ends of a

read are assigned to their nearest called nucleosomes, forming a recovered contact, and the dis-

tance between the assigned nucleosome pair is considered as the recovered contact distance.

Next, the recovered contact profile is built using these recovered contacts, illustrating the spac-

ing between computationally identified nucleosomes. Finally, the recovered contact profile is

compared to the original contact profile. If the nucleosome spacing is consistent between the

nucleosomes identified by callers and the underlying ground truth nucleosomes in the data,

the two profiles are similar to each other. Compared with the nucleosomes called by baseline

methods, the recovered contact profile produced by NucleoMap is more similar to the original

contact profile (Fig 2C). This result implies that NucleoMap achieves high accuracy in identify-

ing nucleosomes in eukaryotic genomes.

Nucleosome positioning level and spatial organization reflect patterns of

histone modification and genome functions

It has been discovered that nucleosome positioning reflects the genome functions in different

regions because the nucleosomes are directly decorated, composed, or impeded by specific his-

tone variants and regulatory proteins [30, 31]. To further validate the identified nucleosomes,

as well as to evaluate the connection between nucleosome spatial distribution and genome

functions, nucleosome positioning levels and local nucleosome organization are compared at

different epigenetic marks and transcriptional factor binding sites and in different genome

functions.

Consistent with the existing conclusions [32, 33], we observe that nucleosome positioning

levels at epigenetic marks and transcriptional factor binding sites better correlate with location

rather than the regulatory direction (up-regulate or down-regulate) of the epigenetic binding
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(Fig 3A). We use a previously proposed measure called nucleosome occupancy to quantify the

normalized nucleosome positioning level [18]. In general, modified nucleosomes at promoters

tend to have higher positioning levels, followed by enhancers and gene bodies. Within a partic-

ular region, the positioning level at activation modification is slightly higher than repression

modification, i.e., H3K9ac and H3K4me2 compared with H3K9me3 and H3K27me3 in pro-

moter regions. Besides histone modifications, histone variants and all tested chromatin-bind-

ing proteins are also associated with higher positioning levels. For example, nucleosomes at

structural proteins such as CTCF and RAD21 binding sites have higher positioning levels than

the genome-wide average level. A consistent trend is confirmed by the nucleosome positioning

levels in different chromatin states annotated by ChromHMM (Fig 3B). In promoters and

transcription-active regions, nucleosomes are better positioned, whereas in enhancers and

repressed regions such as polycomb repressed regions and heterochromatin, they are more

poorly positioned.

To investigate the association between local nucleosome organization and genome func-

tions, we calculate the average genomic distance of local contacts (i.e., contacts within 1kb)

measured by nucleosomes at individual genomic regions, and compare the average genomic

distances at different types of genomic regions. In general, a shorter average contact distance

indicates a more relaxed chromatin fiber structure, while a longer average contact distance

Fig 3. Nucleosome positioning levels and spatial organization are correlated with patterns of epigenetic modifications and genome functions. A.

Normalized nucleosome positioning level at nucleosomes subject to specific epigenetic modifications or protein bindings. Generally, nucleosomes

modified by promoter enriched epigenetic marks or at chromatin architecture associated protein binding sites are better positioned. Meanwhile,

nucleosomes modified by gene body enriched or enhancer enriched epigenetic marks are more poorly positioned. B. Normalized nucleosome

positioning level at nucleosomes within different chromatin states predicted by ChromHMM. Similar to the observation in epigenetic modifications,

nucleosomes in promoters are better positioned, while nucleosomes in promoter flanking regions and enhancers are more poorly positioned.

Transcription associated state represents loci of RNA polymerase binding or mRNA elongation, which mostly occur near active promoters. C. Average

distances of local contacts (contact distances� 1kb) at nucleosomes subject to specific epigenetic modifications or protein bindings. A longer contact

distance suggests more compact nucleosome spatial organization, while a shorter contact distance suggests more relaxed nucleosome spatial

organization. Generally, nucleosomes modified by histone methylations are more tightly packed than nucleosomes modified by histone acetylations,

and the spatial organization of nucleosomes at protein binding sites varies across different protein functions. D. Average distances of local contacts

(contact distances� 1kb) at nucleosomes within different chromatin states predicted by ChromHMM. Compared with other states, nucleosomes at

enhancers and promoters are more lightly packed regardless of their activities, resulting in shorter average contact distances.

https://doi.org/10.1371/journal.pcbi.1010265.g003
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indicates a more compact chromatin fiber structure (S2 Fig). Compared with histone methyl-

ated regions, histone acetylated regions tend to correlate with a shorter average contact dis-

tance (Fig 3C). This result is consistent with the fact that histone acetylation is enriched at

euchromatin where the chromatin fiber is lightly packed. Meanwhile, the influences of binding

proteins on nucleosome spatial organization are various. Long average contact distances are

observed at structural protein binding sites such as CTCF and RAD21, consistent with the pre-

vious studies that these proteins mediate chromatin looping and other structures [34]. On the

contrary, short average contact distances are observed at transcription-associated protein

POLR2A and histone variant H2AFZ. These factors are enriched at active TSSs, consistent

with the fact that euchromatin with relaxed structures is enriched with expressed genes [35,

36]. In addition, nucleosome spatial organization is also correlated with chromatin states and

transcription activities (Fig 3D). Short average contact distances are observed in promoters,

enhancers, and the promoter flanking regions, indicating the chromatin is loose in these

regions. Furthermore, average contact distances at active promoters are shorter than inactive

ones, and strong enhancers are shorter than weak ones, suggesting that the nucleosomes are

more lightly packed in regions more associated with transcription events.

Tetra-nucleosome structural motifs closely correlate with genome

functions and chromatin structures

Although global structural motifs have been confirmed in the contact profiles (or decaying

curves) of ultra-high resolution contact maps in mouse [22], the location of structural motifs

across the whole genome has not yet been studied because most nucleosomes are poorly-posi-

tioned. Recently, two types of tetra-nucleosome structural motifs, α-tetrahedron and β-rhom-

bus, are discovered in yeast chromatin contact maps [24, 37]. Evidence of these folding motifs

is also reported in human by electronic microscopes in earlier studies [38]. Using nucleosomes

identified by NucleoMap, we predict the distribution of tetra-nucleosome structural motifs in

hESC to investigate the relationship between tetra-nucleosome structural motifs and patterns

in chromatin contact maps.

In our prediction task, binary classifiers are trained on the recently modeled yeast chroma-

tin [24]. Because the spatial distances between nucleosome pairs are inversely proportional to

some constant order of the contact frequency [39], 4-by-4 submatrices are extracted along the

diagonal of the contact matrix as the input features. Ideally, chromatin contacts in the subma-

trices characterize the neighborhood of the nucleosomes. We observe in yeast that the number

of contacts is closely related to the nucleosome structural motifs (S1 Table). In brief, β-rhom-

bus tends to form neighborhoods with fewer contacts, while α-tetrahedron tends to form

neighborhoods with more contacts. To improve the prediction accuracy, we divide the features

into four groups according to the proportions of α-tetrahedrons with respect to the contact

numbers (S3 Fig). Next, ten commonly used classifiers are trained and compared in each

group respectively (S2 Table). At last, the models with the highest F1-scores in group2 (with

200–400 neighboring contacts), group3 (with 400–600 neighboring contacts), and group4

(with over 600 neighboring contacts) are selected and applied to hESC. Due to the overall low

F1-scores, folding motifs of nucleosomes in group1 (with less than 200 neighboring contacts)

are not predicted.

The ratio of predicted α-tetrahedron and β-rhombus in human (51.4% vs. 48.6%) are con-

sistent with that in yeast (50.9% vs. 49.1%). We also observe that contact patterns in the neigh-

borhood of α-tetrahedron and β-rhombus in human are similar to the patterns in yeast (S4

Fig). Together, these results imply that the classifiers trained on yeast successfully distinguish

the folding motifs in human.
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To investigate the correlation between the structural preference and genome function, we

first compare the ratio of α-tetrahedron to β-rhombus at epigenetic marks, transcriptional fac-

tor binding sites, and candidate cis-regulatory element (cCRE) annotations. Surprisingly,

almost all selected epigenetic marks and transcriptional factors exhibit a preference towards α-

tetrahedron at their binding sites. On the contrary, the preferences on folding motifs vary

among cis-regulatory elements. Three of the four cis-regulatory elements have certain prefer-

ences on the folding motifs. Higher levels of α-tetrahedron are observed at distal enhancers

and enhancers, and more β-rhombus are observed at insulators. At promoters, the proportions

of α-tetrahedron and β-rhombus are close to their global levels (Table 1). Combining the

results from epigenetic marks, transcriptional factor binding sites, and cis-regulatory elements,

it implies that although epigenetic marks and transcriptional factors bindings have a prefer-

ence towards α-tetrahedrons, high-order genome functions still influence the final preference

on tetra-nucleosome folding motifs.

Meanwhile, the distribution of folding motifs also highly correlates with large-scale chro-

matin structures. We observe different proportions of α-tetrahedron and β-rhombus at multi-

ple chromatin structures including compartments, topologically associated domain (TAD)

boundaries, stripes, and loops. α-tetrahedrons present more frequently in compartment A

(expression-active chromatin), while higher proportion of β-rhombuses is observed in com-

partment B (expression-inactive chromatin) (Table 1). At the level of nuclear subcompart-

ments revealed by SPIN [40], we also observe consistent results. Among the eight identified

SPIN-states, the highest proportions of α-tetrahedrons are found at two active states “Interior

Active 1” (58.5%) and “Speckle” (58.6%), whereas the lowest proportions of α-tetrahedrons are

found at inactive states “Lamina” (37.6%) and “Near Lamina 1” (37.6%) (Table 1). Moreover,

we find that the preference for folding motifs changes at TAD boundaries according to the

boundary strength. Rigid (“strong”) boundaries tend to form more β-rhombuses, and permis-

sive (“weak”) boundaries tend to form more α-tetrahedrons (Table 1). Previous studies have

shown that the strength of TAD boundaries is associated with their functionalities [41], possi-

bly explaining the difference in their preferences on folding motifs. At loops and stripes, higher

proportions of α-tetrahedrons are observed (Table 1). One possible explanation of the prefer-

ence towards α-tetrahedron in these regions is that compacted local domains in chromatin

contact maps, such as loop extrusion, play a role in the formation of compartment A [42].

Nucleosome contact maps provide precise chromatin organizational details

Traditionally, ultra-high resolution contact maps are generated at certain fixed resolutions

(e.g., 200bp). However, these 200bp-bins are not associated with genome structures in reality.

As a result, studies of fine-scale nucleosome patterns such as zig-zag patterns are either limited

in well-positioned regions (e.g., transcription factor binding sites) or using indirect statistics

(e.g., contact profiles) [20, 22, 43]. To overcome this challenge, a nucleosome contact map, in

which nodes represent actual nucleosomes, is generated in yeast to facilitate extraction and

visualization of nucleosome motifs in previous studies [24]. In nucleosome contact maps, con-

tacts assigned to nucleosome pairs are directly converted to edges between nodes, illustrating

the spatial proximity between these nucleosomes. Using nucleosomes identified by Nucleo-

Map, we generate nucleosome contact maps in multiple cell lines and compare them with two

sets of related contact maps, including (1) 200bp-resolution contact maps and (2) nucleosome

contact maps generated by iNucs [44], which generates nucleosome contact maps using pre-

defined nucleosome positions and bin-based contact maps.

Compared with 200bp-resolution contact maps, nucleosome contact maps contain more

interpretable and precise contact patterns. While having similar numbers of N/N+1, N/N+2,
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N/N+3, and N/N+4 contacts as 200bp-resolution contact maps, nucleosome contact maps

generated by NucleoMap and iNucs barely include self contacts (N/N contacts), suggesting

that most contacts connect two different nodes in nucleosome contact maps (Fig 4A). This

property is consistent with the fact that every contact in the ultra-high resolution contact map

Table 1. Preferences on tetra-nucleosome folding motifs in different regions.

Regions Prop. of α motif Prop. of β motif Folding motif ratio Preference Significance

hESC chr21 51.4% 48.6% 1.00 NA ns

Epigenetic marks and transcriptional factor binding sites

CTCF 51.5% 48.5% 1.00 NA ns

H3K27ac 51.9% 48.1% 1.02 α-tetrahedron ��

H3K36me3 51.7% 48.3% 1.01 α-tetrahedron �

H3K4me1 53.2% 46.8% 1.12 α-tetrahedron ����

H3K4me2 52.6% 47.4% 1.05 α-tetrahedron ����

H3K4me3 51.8% 48.2% 1.02 α-tetrahedron ���

H3K79me2 51.6% 48.4% 1.00 NA ns

H3K9ac 51.7% 48.3% 1.01 α-tetrahedron ��

H3K9me3 51.7% 48.3% 1.01 α-tetrahedron �

H3K18ac 51.6% 48.4% 1.00 NA ns

Nanog 51.9% 48.1% 1.02 α-tetrahedron ��

Rad21 51.6% 48.4% 1.00 NA ns

H2AFZ 52.1% 47.9% 1.03 α-tetrahedron ��

GTF2F1 51.6% 48.4% 1.00 NA ns

cis-Regulatory elements

Distal enhancers 52.2% 47.8% 1.03 α-tetrahedron ����

Enhancers 54.5% 45.5% 1.14 α-tetrahedron ��

Promoters 50.9% 49.1% 0.98 β-rhombus ���

Insulators 46.3% 53.7% 0.813 β-rhombus ���

Chromatin compartments

Compartment A 54.6% 45.4% 1.14 α-tetrahedron ����

Compartment B 46.8% 53.2% 0.83 β-rhombus ����

SPIN states

Interior active1 58.5% 41.5% 1.34 α-tetrahedron ����

Interior active2 49.2% 50.8% 0.92 β-rhombus ����

Interior active3 43.9% 56.1% 0.74 β-rhombus ����

Interior repressive2 46.3% 53.7% 0.81 β-rhombus ����

Lamina 37.6% 62.4% 0.57 β-rhombus ����

Near lamina1 41.7% 58.3% 0.67 β-rhombus ����

Near lamina2 42.3% 57.7% 0.69 β-rhombus ����

Speckle 58.6% 41.4% 1.35 α-tetrahedron ����

TAD boundaries

Strong boundaries 47.8% 25.2% 0.86 β-rhombus ����

Weak boundaries 69.2% 30.8% 2.12 α-tetrahedron ����

Other chromatin structures

Loops 57.5% 42.5% 1.27 α-tetrahedron ����

Stripes 55.4% 44.6% 1.17 α-tetrahedron ����

Note: Folding motif ratio is calculated by comparing the α/β ratios in specific regions and the genome-wide α/β ratio. A folding motif ratio greater than 1 indicates that

the region has a preference towards α-tetrahedrons, and a folding motif ratio smaller than 1 indicates a preference towards β-rhombus.

https://doi.org/10.1371/journal.pcbi.1010265.t001
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consists of reads from two different nucleosomes. Although the contact distribution changes,

nucleosome contact maps generated by NucleoMap still achieve the same level of precision as

the commonly used 200bp-resolution bin-based contact maps, measured by the distance error

between the aligned reads and their assigned node centers (Fig 4B). In addition, the error in

Fig 4. Nucleosome contact maps constructed by NucleoMap contain more concentrated inter-nucleosomal contact signals. A. Averaged contact

numbers between neighboring nodes in 200bp-resolution contact maps and nucleosome contact maps constructed by NucleoMap and iNucs.

Compared with 200bp-resolution contact maps, the number of self-contacts (N/N contacts) significantly decreases in nucleosome contact maps, which

is more intuitive because the two ends of a contact connect different nucleosomes in a cell. B. Frequencies of contact distance errors after assigned to

200bp bins (blue) and nucleosomes identified by NucleoMap (black). The distance error of every contact is defined as the difference in contact distance

after assigning both ends to their corresponding nodes in a chromatin contact map. Nucleosome contact maps achieve the same level of precision as

200bp-resolution contact maps. C. OE normalized pileup nucleosome contact maps and 200bp-resolution contact maps centered at CTCF binding sites

or TSS regions in different cell lines. Nucleosome arrays are separated into two domains by CTCF binding sites and TSS flanking regions. Compared

with 200bp-resolution contact maps, nucleosome contact maps reveal more concentrated patterns in most cell lines.

https://doi.org/10.1371/journal.pcbi.1010265.g004
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nucleosome contact maps is symmetrically distributed compared with 200bp-resolution con-

tact maps, because nucleosomes called by NucleoMap reflect the distribution of aligned reads,

providing a more accurate presentation of the intrinsic inter-nucleosomal structures. There-

fore, nucleosome contact maps capture the nucleosome organization within the nucleus more

precisely than traditional bin-based chromatin contact maps.

Compared with 200bp-resolution bin-based contact maps, nucleosome contact maps better

recover fine-scale nucleosomal structures. Nodes in traditional 200bp-resolution contact maps

may not accurately cover the DNA wrapping around nucleosomes, and thus interactions

between mono-nucleosomes are not precisely captured by the contacts between nodes. In con-

trast, contacts between two nodes in nucleosome contact maps intuitively represent the prox-

imity of two nucleosomes. Since nucleosomes are basic structural components of chromatin,

the maps better illustrate the fine-scale nucleosomal motifs. In the pileup maps centered at

CTCF binding sites and TSSs in five cell lines, nucleosome contact maps provide more con-

centrated signals than 200bp-resolution bin-based contact maps (Fig 4C). In all pileup maps,

nucleosome contact maps generated by NucleoMap and iNucs provide similar nucleosomal

structures. A stronger contrast between the low contact frequency background and the high

contact frequency looping structures anchored at CTCFs or TSSs is shown in the nucleosome

contact maps, allowing easier identification of spatial nucleosome motifs.

Discussion

Incorporating inter-nucleosome distance information reveals more detailed and precise nucle-

osome positioning throughout the genome. Here we report a computational approach,

NucleoMap, for nucleosome identification in both well-positioned and poorly-positioned

regions from ultra-high resolution contact maps. Using public Micro-C data from yeast,

human, and mouse, we demonstrated that NucleoMap effectively detects nucleosomes in com-

plex mammalian genomes, where most nucleosomes are poorly positioned. Using an ablation

experiment, we justify that all factors in NucleoMap (i.e., the aligned reads, the binding prefer-

ence, and the pairing information) contribute to the final results (S7 Fig). As the resolution of

3D chromatin organization profiling reaches the nucleosome level, nucleosome contact maps

present more precise inter-nucleosome contact patterns than classical fixed-bin resolution

contact maps.

The genome-wide nucleosome positioning identified by NucleoMap provides an opportu-

nity to revisit epigenetic mark data at mono-nucleosome resolution. Although it has long been

known that epigenetic marks are decorated on mono-nucleosomes, previous studies rarely

explore the mono-nucleosome level due to the ubiquitously distributed poorly-positioned

nucleosomes in complex eukaryote genomes. The genome-wide nucleosome map enhances

existing epigenetic mark data to mono-nucleosome level, especially in the poorly positioned

transcriptionally silent chromatin. Furthermore, by integrating epigenetic modifications and

properties of nucleosome arrays in different genome regions, it is possible to establish a more

comprehensive understanding of gene regulation. However, we note that more accurate map-

ping of epigenetic signals to mono-nucleosomes requires both ultra-high resolution epigenetic

signals such as CUT&RUN data and enhanced computational approaches that consider the

densities of mono-nucleosomes and epigenetic signals. Follow-up work is still required to

design computational methods specifically for mono-nucleosome level sequencing data

mapping.

The produced nucleosome contact maps allow a comprehensive analysis of the association

between nucleosome spatial organization and genome functions. Using nucleosome contact

maps, it is possible to extract and locate nucleosome folding patterns across the genome.
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Although some computational approach has been developed to model inter-nucleosomal con-

tacts [44], NucleoMap is the first method jointly identifying nucleosomes and modeling inter-

nucleosomal contacts. Using the nucleosome contact map constructed by NucleoMap, the

hierarchical chromatin structures such as tetra-nucleosome folding motifs are retrieved by in
silico approaches in the human genome. Although the exact spatial constructions of α-tetrahe-

dron and β-rhombus are still under discussion [45], the existence of tetra-nucleosome folding

motifs is confirmed in Cryo-EM studies [38], providing an experimental foundation of study-

ing second-order nucleosome folding motifs in human genome via ultra-high resolution con-

tact maps. It is possible to identify more accurate tetra-nucleosome folding motifs and higher-

level chromatin folding structures with the help of enhanced machine learning models that uti-

lize the sequential nature of the chromatin. Furthermore, combined with the epigenetic signals

annotated to mono-nucleosomes, it is also possible to establish a 3D framework illustrating the

spatial structures of epigenetic events. Compared with traditional studies in this area which

focus on the interactions along the linear DNA sequence, this framework unveils interactions

of chromatin modifications in an ultra-high resolution 3D space, and thus provides additional

knowledge in the regulation of genome activities.

Methods

NucleoMap algorithms

Estimating read centers in Micro-C contact maps. To estimate the true read density

along the genome, we first estimate positions of read centers, which are not directly accessible

from the alignment data. Each contact in a chromatin contact map is composed of two anchor

reads, with various sizes from�120bp to�170bp each, referring to two different nucleosomes

(S5 Fig step 4). During the paired-end sequencing and downstream processing, only�50bp

fragments at two ends of a contact are sequenced and mapped to the reference genome, and

thus the centers of the two anchor reads are not sequenced and mapped in the alignment data

(S5 Fig step 6). Therefore, read centers need to be estimated from the mapped fragments.

One effective way to estimate read centers is to shift the ends towards 3’ direction by half

of the average read size. NucleoMap automatically estimates the average read size in the

Micro-C data using the difference in contact distances across contact types. Four types of con-

tacts, ++, +−, −+, and −−, can be found in the chromatin contact map, according to the strands

the reads mapped to (S6 Fig). Contacts of different types vary in contact distance even when

they anchor the same nucleosome pair. +− contacts cover two nucleosome dyads and the frag-

ment between them, and ++ contacts and −− contacts cover a nucleosome dyad and the frag-

ment between them, while −+ contacts cover only the fragment between them. Based on this

observation, the average read size is calculated as the average difference in contact distances

between +− contacts and ++ contacts with three steps. First, NucleoMap calculates the contact

distance distributions of short-range +− and ++ contacts. Next, peaks are called from the two

distributions. The first peak centers in the histograms correspond to the average contact dis-

tance between neighboring nucleosomes in +− and ++ contacts. Finally, the average read size

is estimated to be the distance between the first peak centers in the two distributions.

After shifting reads to their centers, both reads in the contacts with genomic distances

shorter than 160bp are excluded in the downstream analysis to prevent artifacts introduced by

the outliers.

Calculating sequence-based binding score. Sequence-based binding score measures

sequence-based nucleosome affinity at a given position. The score is calculated by normalizing

the convolution score of an AA/AT/TA/TT dinucleotide PWM. The binding score is calcu-

lated in four steps. First, NucleoMap calculates a Position Frequency Matrix (PFM) of AA/AT/
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TA/TT dinucleotides. PFM records the occurrences of AA/AT/TA/TT dinucleotides at each

position within ±80bp from the N read centers. Based on the dinucleotides frequency, a

2 × 160 PFM F is generated by

Fk;j ¼
1

N

XN

i¼1

dðXi;j ¼ kÞ; ð1Þ

where i 2 [1, N], j 2 [1, 200] and k = {0, 1} indicates the occurrence of AA/AT/TA/TT dinucle-

otides. δ is an indicator function. The first row of the matrix indicates the occurring frequency

of AA/AT/TA/TT dinucleotides, and the second row indicates the occurring frequency of

other dinucleotides. Following that, a PWM W expressing the binding patterns is calculated as

Wk;j ¼ log
2
ðFk;j=bkÞ; ð2Þ

where bk denotes the background frequencies of AA/AT/TA/TT dinucleotides and other dinu-

cleotides calculated from the reference genome. In the third step, NucleoMap calculates the

cross correlation scores D between the PWM and the one-hot encoded reference genome.

DðiÞ ¼
P

k;jWk;jGðiÞ; ð3Þ

where G(i) is the dinucleotide in reference genome at position i. This score illustrates the simi-

larity between the nucleosome binding pattern and the genome sequence at a given position.

In the last step, a binding score B is generated by normalizing the cross correlation score D in

two steps. First, ~BðiÞ is generated by normalizing D over its neighborhood,

~BðiÞ ¼
DðiÞ

Piþ50

j¼i� 50
DðjÞ

; ð4Þ

Next, B(i) is calculated by z-normalizing ~BðiÞ,

BðiÞ ¼
~BðiÞ � Eð~BÞ

sð~BÞ
: ð5Þ

The resulting binding score quantifies in nucleosome binding preference at a position com-

pared with its neighborhood.

Estimating nucleosome numbers and defining the objective function. Reads are

assigned to nucleosomes within 1kb using a hard clustering DP mixture model with a fixed

covariance σ2 I. We assume that within 1kb on the genome, reads X = {xi} are samples drawn

from an unknown number of Gaussian distributions with fixed covariance σ2, representing the

nucleosome dyad. Under this assumption, a DP mixture model of nucleosomes is formulated

as follows:

xi � N ðmc; s
2IÞ; ð6Þ

mc � G; ð7Þ

G � DPða;G0Þ: ð8Þ

Here G0 ¼ N ð0; IÞ is a prior over the mean distributions of the Gaussian mixtures, and a draw

G ¼
P1

c¼1
pcdðmcÞ from G0 is the mean distribution of a Gaussian mixture, where πc denotes

the weight of the c-th Gaussian component. For i = 1, 2, . . ., n, the probability pc of assigning a
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read xi to an existing nucleosome c is

pc ¼

nc � exp �
1

2s
d2

c

� �

exp �
1

2s
lþ

s

1þ s
d2

0

� �� �

þ
Pk

j¼1
nj � exp �

1

2s
d2

j

� � ; ð9Þ

where nc is the number of reads assigned to nucleosome c, d0 = kxik, dc = kxi − μck, and

l ¼ � 2sln 1þ 1

s

� �1=2
a

� �
. Similarly, the read xi is assigned to a new nucleosome with a proba-

bility pnew

pnew ¼

exp �
1

2s
lþ

s

1þ s
d2

0

� �� �

exp �
1

2s
lþ

s

1þ s
d2

0

� �� �

þ
Pk

j¼1
nj � exp �

1

2s
d2

j

� � : ð10Þ

A hard assignment DP mixture model is obtained by pushing σ! 0. When σ approaches 0,

the numerator of pnew is dominated by λ. Furthermore, as σ! 0, the assignment probabilities

become binary and only the smallest values of fd2
1
; d2

2
; . . . ; d2

k; lg receive a non-zero probabil-

ity. In particular, a new nucleosome is created whenever a read is farther than
ffiffiffi
l
p

bp away

from every existing nucleosome center. The underlying objective of this model is similar to the

k-means objective function,

min
f‘cg

k
c¼1

Xk

c¼1

X

x2‘c

d2

c þ lk; ð11Þ

where ℓc is the set of reads assigned to nucleosome c. The threshold λ controls the trade-off

between the traditional k-means term and the cluster penalty term. Optimizing this objective

function identifies potential nucleosome centers based on the read density.

Integrating read density, pairing information, and binding scores. To incorporate pair-

ing information and binding scores, an adjusted distance ~dc is used instead of dc. We define

~dcðxiÞ ¼ dc þ g1dcðx0iÞ þ g2BðmcÞ; ð12Þ

where x0i is the other read sharing a contact with xi, δc an indicator function returning 1 if x0i 2
‘c and 0 otherwise,, B(μc) the binding score of predicted nucleosome center, and γ1, γ2 the cor-

responding distance penalties. The final objective function is

min
f‘cg

k
c¼1

Xk

c¼1

X

x2‘c

~dc

2

þ lk: ð13Þ

The model is optimized using a previously proposed hard clustering algorithm that behaves

similarly to k-means with the exception that new clusters are formed when the aforementioned

condition is satisfied [46].

Identifying nucleosomes from Micro-C data

Alignment files of Micro-C data are downloaded from 4DN data portal (human cell lines), or

generated by Bowtie2 with ‘very sensitive’ mode (mESC and yeast) using reference genomes

hg38, mm10, and SacCer3 respectively [47]. Mapped reads from all replicates are merged

before calling nucleosomes. Using the alignment files and the following parameters, we
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benchmarked NucleoMap and multiple baseline methods including DANPOS2 [10], NOr-

MAL [11], Nseq [13], and nucleR [29]. NucleoMap is run with default parameters. DANPOS2

is run with parameters “-m 0 -p 0.05”. NOrMAL is run using the original config.txt on its

GitHub repository. Nseq is run with parameters “-f 0.01 -s 10 -t 16”. nucleR is run with param-

eters “threshold = “25%”, score = TRUE, width = 147”.

Calculating nucleosome occupancy

Nucleosome occupancy measures the fraction of nucleosomes covering a given position in a

cell population. The measure is originally proposed by Valouev et al. [18] to describe the nucle-

osome positioning level, but here a smaller neighborhood w = 30 is chosen in the normaliza-

tion step to increase its detection sensitivity.

The nucleosome occupancy is calculated in three steps. First, a smoothing kernel K is

defined as

Kði;wÞ ¼ ð1 � ði=wÞ2Þ3dðjij < wÞ; ð14Þ

where w defines an aggregation window and δ is an indicator function. In the second step, we

generate the read coverage files from the alignment files using samtools depth with parameters

“-a -H -Q 10” [48]. Next, the convolution kernel K is applied to the read coverage file along the

chromatin

Dði;w ¼ 30Þ ¼
XL

j¼0

Kði;wÞdðjÞ; ð15Þ

where L is the length of the chromatin and d(j) represents the number of read centers at posi-

tion j. At last, the smoothed density is normalized over its neighborhood

Sði;w ¼ 30Þ ¼
Dði;wÞ

Piþ4�w
j¼i� 4�w

1:09

w
Dðj;wÞ

:
ð16Þ

A scaling factor 1.09 is designed to normalize the occupancy values as

Z 1

� 1

ð1 � u2Þ
3du ¼ 1=1:09: ð17Þ

The neighborhood size in the denominator is set to ±4 � w such that it covers a slightly larger

region than a well-positioned nucleosome (146bp) to capture the poorly positioned

nucleosomes.

Annotating genome features to mono-nucleosomes

Epigenetic modification peaks are assigned to the nearest nucleosomes to the peak centers. In

this way, we generate binarized signals indicating whether or not a nucleosome is subjected to

certain modifications, and peak strengths and fold changes are ignored. Similarly, mono-

nucleosome positioning levels are calculated using the nucleosome occupancy signal. We

define the highest occupancy value within ± 30bp from a nucleosome center as its normalized

positioning level. Cis-regulatory elements are annotated to all nucleosomes within a ± 500bp

neighborhood.

Nucleosomes within the span of compartments, SPIN states, or stripes are assigned with the

corresponding features. TAD boundaries are annotated to all nucleosomes within a ± 500bp
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neighborhood. Loops are annotated to all nucleosomes within a ± 500bp neighborhood at

each anchor.

Predicting tetra-nucleosome folding motifs

For the i-th nucleosome, we generate a 10-dimension feature using elements from the upper

triangle of the sub-contact-matrix containing the (i − 1)-th, the i-th, the (i + 1)-th, and the (i
+ 2)-th nucleosomes. Tetra-nucleosome motif labels of the yeast genome are collected from

the nucleosome 3D coordinates generated in a published study [24].

Nucleosomes are grouped according to the sum of their features. Ten classifiers from the

sklearn python package are trained in each group, including k-Nearest Neighbors, Linear

SVM, RBF SVM, Gaussian Process, Decision Tree, Random Forest, Multilayer Perceptron,

AdaBoost, Gaussian Naive Bayes, and Quadratic Discriminant Analysis. The parameters in

these models are as follow: KNeighborsClassifier(k = 3), SVC(kernel = “linear”, C = 0.025),

SVC(gamma = 2, C = 1), GaussianProcessClassifier(1.0 � RBF(1.0)), DecisionTreeClassifier

(max_depth = 5), RandomForestClassifier(max_depth = 5, n_estimators = 10, max_fea-

tures = 1), MLPClassifier(alpha = 1, max_iter = 1000), AdaBoostClassifier(), GaussianNB(),

and QuadraticDiscriminantAnalysis().

In each group, 75% of the nucleosomes are randomly selected as training data, and the

remaining nucleosomes are used as test set. The classifiers are trained on the training data, and

their performances are evaluated by F1-scores on the test set.

The folding motif preference is measured by a folding motif ratio within a specific region,

defined as

NðaÞlocal � NðbÞgenome

NðbÞlocal � NðaÞgenome
: ð18Þ

When this ratio > 1, the region has a preference towards α-tetrahedron and towards β-rhom-

bus otherwise. The significance of folding motif preferences is evaluated using two-sided T-

tests. Folding motif ratios are compared between nucleosomes within specific regions and

nucleosomes sampled from the whole genome.

Constructing nucleosome contact maps and OE normalization

Nucleosome contact maps are constructed by assigning contacts to their corresponding nucle-

osomes identified by NucleoMap. NucleoMap estimates the expected contact numbers

between nucleosome pairs according to their genomic distance. Based on the assumption that

the contact frequency is a function of genomic distance, the expected contact numbers

between two nucleosomes is estimated given their genomic distance d,

CexpðdÞ ¼
NcðdÞ

NPnucðdÞ
; ð19Þ

where Nc refers to the total number of contacts in the contact map with genomic distance d,

and NPnuc refers to the total number of nucleosome pairs in the contact map with genomic dis-

tance d.

However, it is difficult to calculate NPnuc directly in practice because it requires a computa-

tional complexity of O(n2), where n is the number of nucleosomes in the contact map. To

avoid the expensive computation, we instead estimate NPnuc with a summation over multiple

Erlang distributions. Assuming that nucleosomes occur at a steady rate along the genome, the
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genomic distances between neighboring nucleosomes follow an exponential distribution

f ðd; lÞ ¼ le� ld; ð20Þ

where d is the genomic distance and λ = Lchrom/Nnuc is the occurring rate of nucleosomes.

Therefore, the genomic distance between the i-th and the (i + k)-th nucleosomes follow

an Erlang distribution which characterizes the sum of k independent exponential

distributions

gðd; k; lÞ ¼
l
kdk� 1e� ld

ðk � 1Þ!
: ð21Þ

Hence the probability of having k nucleosomes within a certain range of genomic distance

[d1, d2], denoted by P(d1, d2; k, λ), is calculated by the difference in CDF of the Erlang distribu-

tion,

Pðd1; d2; k; lÞ ¼ ðNnuc � kÞ �
Xk� 1

i¼1

1

n!
e� ld2ðld2Þ

n
� e� ld1ðld1Þ

n� �
; ð22Þ

and the expected number of nucleosome pairs within the range [d1, d2] in the chromatin,

denoted by NPnuc(d1, d2), is calculated by summing the differences of multiple Erlang distribu-

tions under a series of ks,

NPnucðd1; d2Þ ¼
XNnuc

k¼1

Pðd1; d2; k; lÞ: ð23Þ

To further reduce computational complexity, this number is approximated by a smaller set of

ks

NPnucðd1; d2Þ �
X

k2s

Pðd1; d2; k; lÞ; ð24Þ

where max(1, d1/150 − 20)� s�min(Nnuc, d2/150 + 20). The OE normalized contacts

between two nucleosomes are finally given by the ratio between observed contacts and the

expected contacts,

COEðdÞ ¼
Cobs

CexpðdÞ
; ð25Þ

where Cobs is the contact numbers between the nucleosome pairs, and d is their genomic

distance.

Data access

Data and the source code in this paper are publicly accessible (Table 2). Majority of the

sequencing data involved in the this paper are public available in NCBI GEO repository,

ENCODE project, and 4DN data portal. Software used in this paper is available on GitHub. A

python implementation of NucleoMap is provided on GitHub, which takes processed contact

pair files as input and generates nucleosome contact maps. Loops in hESC micro-C data are

called with Juicer HiCCUPS algorithm. Stripes in hESC micro-C data are called by the stripe

caller developed by our group. SPIN state data are from a published study.
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Supporting information

S1 Fig. Dinucleotide PWMs and the resulting binding scores. A. Dinucleotide PWMs of

yeast (left) and hESC (right). The dinucleotide PWMs in yeast and hESC reflect similar nucleo-

some binding preference of�10bp periodic AA/AT/TA/TT 2-mers in the two cell lines. B.

Table 2. Data and softwares involved in this paper.

Resource Source Identifier

Ultra-high resolution contact maps

hESC Micro-C 4DN data portal 4DNES21D8SP8

HFF Micro-C 4DN data portal 4DNESWST3UBH

WTC11 Micro-C 4DN data portal 4DNESODGV2V2

mESC Micro-C NCBI GEO repository GSE130275

yeast Micro-C NCBI GEO repository GSE68016

Gene expression profile

hESC ENCODE project ENCFF038OTF

WTC11 NCBI GEO repository GSE139273

Epigenetic signals

H3K4ac ENCODE project ENCFF604GSC

H3K9ac ENCODE project ENCFF719SGF

H3K27ac ENCODE project ENCFF162HPV

H3K4me1 ENCODE project ENCFF238YJA

H3K4me2 ENCODE project ENCFF583ABZ

H3K4me3 ENCODE project ENCFF456NIF

H3K9me3 ENCODE project ENCFF654ZZO

H3K27me3 ENCODE project ENCFF254ACI

H3K36me3 ENCODE project ENCFF813VFV

H3K79me1 ENCODE project ENCFF088PTH

H3K79me2 ENCODE project ENCFF620GIW

H4K8ac ENCODE project ENCFF760EFQ

H4K20me1 ENCODE project ENCFF718VCC

H2AFZ ENCODE project ENCFF584JOM

POLR2A ENCODE project ENCFF322DAE

CTCF ENCODE project ENCFF368LWM

RAD21 ENCODE project ENCFF532ZYE

Chromatin segmentation

25-state ChromHMM segmentations ENCODE project ENCSR604YKJ

Structural annotation

AB compartments 4DN data portal 4DNFI475YIT8

TAD boundaries 4DN data portal 4DNFIED5HLDC

SPIN states NCBI GEO repository GSE148362; GSE148609

candidate cis-regulatory element

candidate cis-regulatory element ENCODE project ENCSR597SZL

Software and algorithms

Stripe caller GitHub https://github.com/dmcbffeng/StripeCaller

DANPOS-2.2.2 GitHub https://github.com/sklasfeld/DANPOS3

nucleR Bioconductor https://github.com/nucleosome-dynamics/nucleR

NOrMAL GitHub https://github.com/antonpolishko/NOrMAL

Nseq GitHub https://github.com/songlab/NSeq

NucleoMap This paper https://github.com/liu-bioinfo-lab/NucleoMap

https://doi.org/10.1371/journal.pcbi.1010265.t002
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Average nucleosome-binding scores around experimentally identified nucleosomes (left) and

computational identified nucleosomes (right) in yeast. Peaks of motif-based nucleosome-bind-

ing scores centered at both experimentally and computationally identified nucleosomes indi-

cate that the nucleosome-binding score defined in NucleoMap effectively captures the

nucleosome sequence preference.

(TIF)

S2 Fig. Average contact distance characterizes local nucleosome spatial organization.

Frequencies of inter-nucleosome contacts correlate with the spatial distance between nucleo-

some pairs. In tightly packed chromatin, the neighborhoods of central nucleosomes involve

more adjacent nucleosomes (±3 nucleosomes in the example) and thus forming longer

average contact distances, whereas in lightly packed chromatin, fewer nucleosomes are

involved in the neighborhoods of the central nucleosomes, forming shorter average contact

distances.

(TIF)

S3 Fig. Percentages of α-tetrahedrons against local contact numbers. Neighborhood with

more contacts tends to have higher percentages of α-tetrahedrons. The nucleosomes are

divided into four groups according to their local contact numbers. Within each group, the

slope (the trend of forming α-tetrahedrons with respect to contact numbers) is approximately

constant.

(TIF)

S4 Fig. Average local contact maps of the two tetra-nucleosome folding motifs. Nucleo-

somes of α-tetrahedrons and β-rhombuses predicted by machine learning models in human

embryonic stem cells have consistent local contact patterns with yeast. Here average local con-

tact maps of the two tetra-nucleosome motifs between the i−1-th and the i+2-th nucleosomes

are presented. Values in the contact maps are OE normalized.

(TIF)

S5 Fig. Read centers are not directly accessible in Micro-C libraries. The Micro-C libraries

are generated as follows. 1. Fix chromatin with formaldehyde. 2. Digest linker DNA in cross-

linked chromatin with MNase. In this step, MNase does not strictly digest linker DNA. A

small fraction of linker DNA is remained, while core DNA in some nucleosomes is partially

digested. 3. Ligate the ends of remaining DNA with biotin according to their spatial proximity.

4. Digest protein and extract ligated DNA contacts. 5. Pair-end sequencing of the contacts. 6.

Micro-C libraries are generated, containing the�50bp sequence of one end of every nucleo-

some.

(TIF)

S6 Fig. Four types of inter-nucleosome contacts vary in contact distance. Biotin ligation is

formed between the closest ends of core DNAs wrapping around the nucleosome pairs.

Depending on the nucleosome orientation, four types of contacts can be formed between two

nucleosomes, namely, +−, −−, ++, and −+. Even if they anchor the same nucleosome pairs

(e.g., contacts between N/N+1 nucleosomes), different contact types vary in contact distance

measured by the genomic distance between two ends of a contact.

(TIF)

S7 Fig. Contribution of different factors in NucleoMap measured by recall (left) and preci-

sion (right). The aligned reads play the most crucial role in detecting nucleosomes, accounting

for the largest areas under the curves for both precision and recall. The pairing information

significantly improves the recall of NucleoMap, and it also contributes to the precision of our
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method. The binding preferences improve the precision and recall when dt is small, suggesting

that it helps locat nucleosomes more accurately.

(TIF)

S1 Table. Proportions of tetra-nucleosome motifs in different groups in yeast.

(XLSX)

S2 Table. F1-scores of different folding motif classifiers.

(XLSX)
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