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Abstract: Ovarian cancer (OCa) is characterized as one of the common reasons for cancer-associated
death in women globally. This gynecological disorder is chiefly named the “silent killer” due to
lacking an association between disease manifestations in the early stages and OCa. Because of the
disease recurrence and resistance to common therapies, discovering an effective therapeutic way
against the disease is a challenge. According to documents, some popular herbal formulations,
such as curcumin, quercetin, and resveratrol, can serve as an anti-cancer agent through different
mechanisms. However, these herbal products may be accompanied by some pharmacological
limitations, such as poor bioavailability, instability, and weak water solubility. On the contrary, using
nano-based material, e.g., nanoparticles (NPs), micelles, liposomes, can significantly solve these
limitations. Therefore, in the present study, we will summarize the anti-cancer aspects of these herbal
and-nano-based herbal formulations with a focus on their mechanisms against OCa.
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1. Introduction

Ovarian cancer (OCa) is characterized as the fifth most prevalent reason for death in
women around the world because of its insidious initiation, weak prognosis, and rapid
development. Based on estimations, annually, more than 100,000 females die due to OCa
globally [1]. Mainly, OCa is categorized into three types: germ cell, sex-cord-stromal,
and epithelia [2]. The most common form of OCa is epithelial OC (EOC), which is a
heterogenic disorder, and histologically, EOC can be divided into four main subgroups,
endometrioid, serous, mucinous, and clear cell carcinomas [3]. The etiology of OCa has
not been completely illustrated yet, but it is shown that obesity, hereditary, aging, alcohol
consumption, smoking, and diabetes mellitus are risk factors of OCa [4,5]. Plus, it is
expressed that environmental, hormonal, and ovulation factors may have a role in the
pathogenesis of OCa [6]. According to reports, OCa progression is linked with various
pathways that interfered with the metabolism of energy, like galactose metabolism, which
is related to the risk of OCa development [7]. OCa is mostly named the “silent killer”
since the observed manifestations in the early stages of the disease are not clearly related
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to OCa [8]. The signs and symptoms of OCa can be general and ambiguous, such as
abdominal pain, abnormal bowel habits, and early satiety [9]. There is a substantial need
for using novel therapies for OCa due to disease recurrence and resistance to common
therapies, such as chemotherapy and surgery [6,10,11]. In addition, these approaches can
significantly along to cytotoxic impacts and severe complications [8]. Therefore, finding
and using efficient curative methods against this gynecological tumor is indispensable.
Among these, herbal remedies have obtained great attention from thousand years ago
owing to their effectiveness against different ailments, such as cancer [12]. It is stated that
some herbal compounds, like phenols, alkaloids, and lectins, can exert anti-cancer effects
by apoptosis induction [13]. On the other hand, nano-based drug delivery systems, such
as nanoparticles (NPs), nano micelles, liposomes, branched dendrimers, nanostructured
lipid formulations, and nanocapsules, have been developed recently for the treatment of
OCa [14]. Thus, the combination of herbal therapy and nano-based therapy may provide
a new horizon in the improvement of OCa. For this reason, in this literature review, the
therapeutic potential of some popular nano-based herbal formulations, namely curcumin,
quercetin, and resveratrol [15–17], will be discussed.

2. Methods

In this literature review, we investigated accessible information from Google Scholar,
PubMed, Scopus, Web of Science, Science direct, and Scientific Information Database until
2021. The MeSH terms used were: periodontitis, herbal medicine, herbal remedies, and
natural products. According to the search strategy, 218 articles were discovered. After
checking the titles, abstracts and manuscripts entirely cited, a collection of 126 papers
were received and chosen according to the suitability indexes. The papers were performed
around herbal medicine of different diseases especially ovarian cancer.

3. Ovarian Cancer and Its Pathogenesis

Presently, the pathogenesis and clinicopathological properties of OCa have not clearly
been expressed [18]. However, some theories have been proposed concerning OCa origina-
tion (Figure 1) which includes (1) the gonadotropin theory characterizes over the induction
of the epithelium of ovarian surface by hormonal receptors resulting in malignancy, (2) the
continuous ovulation theory, in the location of which the cells of ovarian surface epithelium
are damaged because of constant ovulation, (3) the origin cells for the majority of epithelial
ovarian cancers are not derived from the ovary but mostly originated from the fallopian
tube and develop to the ovary and more than it [19]. Regarding hormonal conditions, there
is evidence that progesterone and androgens can elevate ovarian epithelium proliferation
and subsequently lead to the formation of OCa. Indeed, the increment of androgens and
estrogens taggers multiple pro-inflammatory agents resulting in immune activation. Dur-
ing ovulatory occurrences, a great number of molecules are produced, such as chemokines
and cytokines, plasminogen activators, prostaglandins, interleukins, bioactive eicosanoids,
tumor necrosis factors, collagenases, and a large number of growth factors and immune
cells, which all trigger a pro-inflammatory occurrence. Such pro-inflammatory agents, like
IL-8, CCL2/MCP-1, and CCL5/RANTES, are induced during each cycle of ovulation; there-
fore, the continuous ovulation theory recommends that the inflammation accompanied
by other physiological situations potentiates OCa progression [20,21]. Plus, it is shown
that IL-1β, IL-6, and TNF-α formed by activated immune agents and/or the tumor itself,
induce the growth of cancer cells and affect the prognosis and clinical status of the disease
via increasing resistance to chemotherapy and stimulating symptoms (e.g., weight loss,
anemia, depression, and anorexia) [22]. Oxidative stress, namely reactive nitrogen species
(RNS) and reactive oxygen species (ROS), are another factor involved in many pathological
conditions, such as OCa, by genetic instability enhancement, angiogenesis promotion,
and abnormality in cell proliferation [23,24]. Exogenous agents, like hypoxia, infection,
and chronic inflammation, are among the main sources of oxidative stress [25]. Mount-
ing evidence has demonstrated that ROS can modulate the biogenesis and expression of
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microRNAs by epigenetic alterations, regulating biogenesis course, and transcription fac-
tors [26]. MicroRNAs, as noncoding RNAs, have a role in chemoresistance, carcinogenesis,
proliferation, apoptosis, cell cycle, invasion, and metastasis. Impairments of microRNAs
can lead to the onset and progression of OCa [27]. Possibly, the most important feature of
any cancer is genetic changes that mediate the development and progression of tumors [28].
In this line, it is revealed that the presence of mutations in PTEN (Phosphatase and tensin
homolog), P53, BRCA(Breast Cancer)1, and BRCA2 genes, and tumor suppressor factors can
develop OCa (Figure 2) [29–31]. Endometrioid, serous, and mucinous types of OCa have
shown mutations in KRAS (Kirsten rat sarcoma), β-catenin, TFG-βRII, and BRAF genes,
which all are associated with the proliferation and cell growth processes [28].

Figure 1. Three main theories regarding the development of ovarian cancer are based on induction of the epithelium of
ovarian surface by hormonal receptors, increased induction of pro-inflammatory agents during continuous ovulation, and
cancerous cells originating from the fallopian tube. IL-8, Interleukin-8; CCL2/MCP-1, Monocyte chemoattractant protein-1;
CCL5/RANTES, CC Chemokine Ligand-5.
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Figure 2. Different endogenous and exogenous factors modify the development and prognosis of ovarian cancer. IL-
1β, IL-6, and TNF-α accelerate the growth of cancer cells and affect the prognosis and clinical status of the disease via
increasing resistance to chemotherapy and stimulating symptoms. Exogenous factors, such as hypoxia, infection, and
chronic inflammation, are the main sources of oxidative stress, namely reactive nitrogen species (RNS) and reactive oxygen
species (ROS). They can contribute to ovarian cancer development via genetic instability enhancement, angiogenesis
promotion, and abnormality in cell proliferation. One of the most important features of ovarian cancer is genetic changes
that mediate the development and progression of tumors. In ovarian cancer, the presence of mutations in PTEN, P53,
BRCA1, and BRCA2 genes, tumor suppressor factors, can lead to ovarian cancer development. IL-1β, Interleukin-1β; IL-6,
Interleukin-6; TNF-α, Tumor necrosis factor α; PTEN, Phosphatase and tensin homolog; BRCA1, Breast cancer type 1;
BRCA2, Breast cancer type 1.

4. Use of Curcumin and Its Nanoformulations against Ovarian Cancer

Curcumin (CUR) is characterized as a yellow and hydrophobic herbal component
that is originated from the turmeric plant (Curcuma longa L. Zingiberaceae) [32]. Grow-
ing evidence has shown some positive effects of CUR in medicine, such as anti-tumor,
anti-inflammatory, anti-oxidative, immunoregulatory, anti-fungus, and anti-bacterial fea-
tures [33,34], such as breast, ovarian, prostate, gastric, colorectal, pancreatic, and cervical
cancers [35–38]. Regarding anti-cancer mechanisms of CUR, it has to be said that several
signaling pathways are affected by that, for example, JAK (Janus Activated Kinase)/STAT
(signal transducer and activator), PI3K (Phosphoinositide 3-kinases)/Akt, MAPK (mitogen-
activated protein kinase), NF-kB, p53, Wnt/β-catenin, and apoptosis-related signaling
(Figure 3). Furthermore, CUR can suppress epithelial-mesenchymal transition (EMT),
angiogenesis, proliferation, metastasis, and invasion of the tumor by modulating the ex-
pression of non-coding RNA (ncRNA) associated with the tumor [39–42]. In the study of
Shi et al., it was revealed that CUR can considerably suppress the growth and stimulate
apoptosis in human OCa cell line Ho-8910. In their research, the use of 40 µM CUR caused
a reduction in pro-caspase-3, Bcl-XL, and Bcl-2, whereas Bax and p53 levels were elevated
in the treated cells with CUR [38]. Triggering AMP-activated protein kinase (AMPK),
which stimulates cell apoptosis and inhibits cell proliferation in several cancers, in a p38-
dependent way is another mechanism of CUR action in ovarian cancer cells CaOV3 [43].
In an animal investigation on OCa, it was manifested that CUR can dramatically sup-
presses STAT3 and NF-kB signaling pathways [44]. Liu et al. have pointed out that CUR
can stimulate human OCa cell autophagy through AKT/mTOR (mammalian target of
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rapamycin)/p70S6K pathway suppression [45]. Despite these, the clinical application
of CUR has been limited owing to its instability and low water solubility, which in turn
give rise to poor bioavailability of CUR in cancerous cells. Attempts toward elevating the
therapeutic effectiveness of Cur have been carried out through various techniques [46].
For instance, drug delivery systems based on NP have attracted much attention. CUR can
be encapsulated inside NPs to promote its water solubility, biocompatibility, and protec-
tion from breaking down, and enhance CUR accumulation in cancerous regions because
of increased permeability and retention impact [47,48]. In the investigation of Xu et al.,
CUR was encapsulated with niosome and its therapeutic effects against OCa cells were
assessed [49]. In the field of nanotechnology, niosomes are known as nonionic vesicles
with a bilayer construction which have a high bioavailability and are a good candidate for
drug delivery systems [49,50]. Xu and colleagues concluded that CUR-niosomes increase
cytotoxic influences and induce apoptosis against OCa cells A2780 in comparison with free
CUR [49]. An in vivo and in vitro investigation showed that nanocurcumin in combination
with cisplatin, a common treatment for OCa, could lead to a remarked reduction of the
weight and volume of ovarian tumors. In addition, this treatment decreased PI3K, JAK,
TGF-β, Ki67 expression, and Akt phosphorylation [51]. Hu et al. (2020) demonstrated
that the use of Docetaxel curcumin/methoxy poly (ethylene glycol)-poly (L-lactic acid)
(MPEG-PLA) copolymers nanomicelles cause the Suppression of tumor proliferation and
angiogenesis (Table 1). The study of Bondi et al. (2017) concluded that biocompatible
Lipid nanoparticles as carriers improved curcumin efficacy in ovarian cancer treatment
and caused the Reduction of cell colony survival, inhibition of tumor growth, and apop-
tosis induction (Table 1). In the study of Ghaderi et al. (2021) OCa cells were treated
with free curcumin and Gemni-Cur the anticancer activity was investigated by uptake
kinetics, cellular viability, and apoptotic assays. The results illustrate that Gemini-Cur
nanoparticles have a great potential for developing novel therapeutics against ovarian
cancer (Table 1). Previous studies also demonstrated that the use of curcumin and pacli-
taxel co-delivery by hyaluronic acid-modified drug-loaded polyethyleneimine and stearic
acid caused Downregulation of P-glycoprotein, and suppression of tumor cell migration
(Table 1). Dendrosomal nano-curcumin caused the reduction of cancer cell viability, a
decrease of LncRNAs expression of H19 and HOTAIR, and an increase in the expression of
MEG3 LncRNA and Bcl2 protein (Table 1). The study of Sandhiutami et al. (2021) showed
that co-use of curcumin nanoparticles and Cisplatin caused the Decrease of ovarian tu-
mor weight and volume, reduction of PI3K, TGF-β, JAK, and Ki67 expression, Akt and
STAT3 phosphorylation, and decrease of IL-6 level (Table 1). In general, Curcumin is an
efficient agent with anti-tumor, antioxidant, and anti-inflammatory activities. The main
mechanisms of action by which curcumin exhibits its unique anticancer activity include
inducing apoptosis and inhibiting proliferation and invasion of tumors by suppressing a
variety of cellular signaling pathways.
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Figure 3. Curcumin (CUR) and Quercetin (Que) can exert an anti-cancerous effect on ovarian cancer in many different
pathways. CUR triggers AMP-activated protein kinase (AMPK) that leads to stimulation of cell apoptosis and inhibition of
cell proliferation. Moreover, CUR can decrease pro-caspase-3, Bcl-XL, and Bcl-2 levels, whereas Bax and p53 levels rise
in the treated cells with CUR. These changes lead to ovarian cancer treatment. Furthermore, CUR can exert a significant
inhibitory effect on STAT3 and NF-kB signaling pathways. Quercetin (Que) can modify many pathways and play a role
in ovarian cancer treatment. Que decreases the anti-apoptotic agents, like Bcl-2, Bcl-xL, while it elevates the expression
of pro-apoptotic agents, such as Bad and Bid, leading to increased apoptosis and ovarian cancer treatment. In addition,
the elevation of cytosolic Ca2+ levels due to Que consumption can take part in ovarian cancer treatment. Que triggers
autophagy by endoplasmic reticulum (ER) stress by the p-STAT3/Bcl-2 axis as well. Bcl-XL, B-cell lymphoma-extra-large;
BAX, BCL2-associated X protein; Bcl-2, B-cell lymphoma 2; Bad, BCL2 associated agonist of cell death; Bid, BH3-interacting
domain death agonist; STAT, Signal transducer and activator of transcription; NF-kB, Nuclear factor-kappaB.

Table 1. Nano-based formulations of curcumin, quercetin, and resveratrol through various mechanisms affect ovarian cancer.

Type of Nano-Based Herbal Formulation Mechanism/Effect In Vivo/In Vitro References

PLGA-phospholipid-PEG nanoparticles
comprising curcumin Downregulation of P-glycoprotein In vitro [52]

Niosome-encapsulated curcumin Arresting the cell cycle at the S
phase and apoptosis induction In vitro [49]

Docetaxel curcumin/methoxy poly (ethylene glycol)-
poly (L-lactic acid) (MPEG-PLA)

copolymers nanomicelles

Suppression of tumor
proliferation and angiogenesis In vivo/in vitro [53]

Curcumin—loaded nanostructured lipid carrier
Reduction of cell colony survival,
inhibition of tumor growth, and

apoptosis induction
In vitro [54]

Gemini curcumin Apoptosis induction In vitro [55]

Curcumin and paclitaxel co-delivery by hyaluronic
acid-modified drug-loaded polyethylenimine and

stearic acid

Downregulation of
P-glycoprotein, and suppression

of tumor cell migration
In vivo/in vitro [56]
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Table 1. Cont.

Type of Nano-Based Herbal Formulation Mechanism/Effect In Vivo/In Vitro References

Dendrosomal nano-curcumin

Reduction of cancer cell viability,
decease of LncRNAs expression

of H19 and HOTAIR, and increase
in the expression of MEG3
LncRNA and Bcl2 protein

In vitro [57]

Co-use of curcumin nanoparticles and Cisplatin

Decrease of ovarian tumor weight
and volume, reduction of PI3K,

TGF-β, JAK, and Ki67 expression,
Akt and STAT3 phosphorylation,

and decrease of IL-6 level

In vivo/in vitro [51]

Encapsulated quercetin into monomethoxy poly
(ethylene glycol)-

poly (3-caprolactone)

Apoptosis induction and the
suppression of angiogenesis In vivo/in vitro [58]

Encapsulated quercetin into methoxypoly(ethylene
glycol) Poly(caprolactone)

Apoptosis induction and cell
growth suppression In vivo/in vitro [59]

PEGylated liposomal quercetin

Apoptosis induction, cell
proliferation inhibition, and

arresting the cell cycle at G0/G1
and G2/M phases

In vivo/in vitro [60]

Resveratrol—ZnO nanohybrid
Mitochondrial membrane

depolarization and
ROS formation

In vitro [61]

RGD-conjugated Resveratrol human serum
albumin nanoparticles

Reduction of cell viability and
tumor growth inhibition In vivo/in vitro [62]

Resveratrol—bovine serum albumin
nanoparticles

Reduction of cancer cell growth,
activation of cytochrome

C, upregulation of caspase-3 and
caspase-3 expression

In vivo/in vitro [63]

5. Use of Quercetin and Its Nanoformulations against Ovarian Cancer

Quercetin (Que) is a polyphenolic compound present in various vegetables and fruits [64].
Several pharmacologic effects have been demonstrated for Que, such as anti-cancer, anti-
proliferation, anti-inflammation, anti-oxidant, as well as anti-diabetes influences [65–67].
The growth of numerous cancers, like ovarian, colon, prostate, breast, cervical, gastric, and
lung cancer, has been manifested to be diminished by Que [68–73]. Predominantly, the anti-
cancer effects of Que are linked with the modulation of PI3K/Akt/ mTOR, STAT signaling
pathway, expression of heat shock protein (HSP), intracellular pH modification, regulation
of apoptosis-associated proteins, and the regulation of matrix metalloproteinases (MMPs),
fibronectin, and vascular endothelial growth factor (VEGF) [74–76]. Apoptosis induction
mechanisms have a key role in exerting anti-cancer impacts of Que possibly through the
elevation of cytosolic Ca2+ levels, ROS generation, reduction of mitochondrial membrane
potential, and surviving modulation [77–80]. Que also decreases the anti-apoptotic agents,
for example, Bcl-2, Bcl-xL, whereas elevates the expression of pro-apoptotic agents, for
instance, Bax, Bad, Bid, cyto-c, caspase-3, and caspase-9 (Figure 3) [81]. In vivo and in vitro
studies have indicated that Que has a cytotoxic effect on OCa cells [67]. It is stated that Que
can suppress the proliferation of OCa cells SKOV-3 in a dose-and time-dependent way. In
addition, it can potentiate the apoptosis of these cell lines and attenuate the expression
of survivin protein [82]. Regarding this disease, Liu and colleagues expressed that Que
triggers autophagy by endoplasmic reticulum (ER) stress by the p-STAT3/Bcl-2 axis [83].
In this line, Yi et al. also highlighted that Que sensitizes human OCa cells to tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL), one of the strong anti-tumor agents in
various cancer types [84–86]. They also observed that Que stimulated the expression of
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death receptor 5 (DR5) by JNK activation and CCAAT enhancer-binding protein homolo-
gous protein (CHOP) upregulation, while death receptor 4 (DR4) expression did not change
by this phenol [84]. DR4 and DR5 belong to the TNF family and are induced through
TRAIL, and CHOP is defined as a transcriptional factor that enhances apoptosis by the
mediation of proportion of prosurvival Bcl-2 and the proapoptotic Bax [87–89]. Based
on another work, Que stimulates radiosensitization via ATM phosphorylation induction
and increases p53 protein expression [90]. However, the pharmacological applications of
quercetin are limited by its insolubility in water. Several approaches have been investigated
to overcome these obstacles, such as the use of micelle, polymeric NPs, microemulsions,
solid lipid NPs, liposomes, as well as liquid crystal systems [91–93]. It is stated that one of
the ways to promote water solubility of hydrophobic medicinal compounds is encapsula-
tion by polymer micelles [58]. Micelles are nanoscale colloidal aggregates obtained from
amphiphilic surfactants, which their core and shell are hydrophobic and hydrophilic, re-
spectively. These features make them a suitable carrier for hydrophobic drug delivery [94].
The line with this notion, Gao et al. encapsulated Que into the micelles of monomethoxy
poly (ethylene glycol)-poly(3-caprolactone) (MPEG-PCL), these QU loaded MPEG-PCL
(QU/MPEG-PCL) micelles with a drug loading of 6.9% had a mean particle size of 36 nm,
rendering the complete dispersion of quercetin in water and they illustrated that intra-
venous injection of these micelles can significantly repress the growth of ovarian tumors by
inducing the apoptosis of cancer cells and suppressing angiogenesis in vivo [58]. In the
drug delivery system, also poly (3-caprolactone) and poly (ethylene glycol) (PCL/PEG) are
block copolymers that are amphiphilic, biodegradable, and can easily be produced. [95,96].
Another work assessed the potential of PEGylated liposomal quercetin (Lipo-Que) in OCa
cells in vivo and in vitro. Lipo-Que was prepared using a solid dispersion method, and the
obtained Lipo-Que is monodisperse with a mean diameter of 163 ± 10 nm. They implicated
that Lipo-Que suppresses the proliferation and growth, stimulates cell cycle arrest and
apoptosis of ovarian tumors [60]. Liposomes are a drug delivery system that provides the
possibility of administration of the lipophilic and hydrophilic drugs in a united formulation,
and their outer membrane can be modified by the surface attachment with the PEG and/or
other targeting molecules to boost their specificity [97]. Generally, quercetin is a desirable
anticancer agent because of its natural origin, safety, and low cost relative to synthetic
cancer drugs. Que decreases the expression of survivin protein, induces the expression
DR5 and ATM phosphorylation, and increases p53 protein expression.

6. Use of Resveratrol and Its Nanoformulations against Ovarian Cancer

Resveratrol (Res) is defined as a non-flavonoid polyphenol compound possessing
stilbene structural components, which are extensively found in lilies, grapes, and other
herbs [63]. Res has been illustrated to have anti-tumor, anti-inflammatory, anti-oxidation,
immunoregulatory, anti-virus, anti-microbial, neuroprotective, and anti-atherosclerosis in-
fluences [63,98,99]. Some documents revealed the positive effects of Res in different cancers,
such as skin, ovarian, breast, colorectal, lung, and uterine cancer [100–105]. Several mecha-
nisms are involved in exerting anti-tumor action of Res, for example, inflammation suppres-
sion through NLRP3 inflammasome inhibition, cyclooxygenase (COX) curbing, nuclear
factor erythroid 2-related factor 2 (Nrf2) induction, and mitogen-activated protein (MAP)
kinase phosphatase-1 (MKP-1) stimulation, which inhibits NF-kB pathway [99,106–108]. In
OCa, the administration of Res curbs growth and stimulates cell death through apoptosome
complex formation, caspase activation, and mitochondrial secretion of cytochrome c [109].
In the study of Kueck et al., Res suppressed glucose metabolism in OCa cells [110]. It
seems that glycolysis, conversion of glucose into 3-carbon carbohydrates, and subsequently
ATP formation, are needed for the enhancement of tumor growth [111]. Another study by
Zhong and colleagues exhibited accumulated G1 phase, elevated apoptosis fraction, and si-
multaneous inhibition of STAT3, Notch, and Wnt signaling pathway (Figure 4) [112]. Some
other investigations have manifested the anti-cancer effect of Res against OCa through
AMPK activation, downregulation of the protein cyclin D1, EMT inhibition [113–115].
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Regardless of the favorable results of Res in cancer treatment, its wide utilization has
been limited because of its poor bioavailability, low solubility in water, instability, and
unfavorable systemic delivery [116–118]. In contrast, nanotechnology-based strategies
have been widely used to acquire promoted oral bioavailability, higher solubility, promoted
solubility, and targeted release of Res [61]. In this line, Khatun et al. in their in vitro study
used Res—(Zinc oxide) ZnO nanohybrid against OCa cell lines and demonstrated that
this nanoformulation exerts anti-cancer effects by the generation of ROS [119]. ZnO NPs
have attracted much attention due to their utility in cancer therapy and targeted drug
delivery. In human cancer cells, these NPs can stimulate apoptosis by ROS generation,
which in turn is associated with cellular apoptosis and DNA damage [119]. An in vivo
investigation indicated that harnessing Res–BSA NPs attenuates tumor growth in nude
mice with OCa through the induction of ovarian cancer cell necrosis and cellular apoptosis
induction (Figure 4) [62]. BSA (bovine serum albumin) is a natural protein that is capable of
the formation of complexes in different shapes. In addition to other beneficial features, BSA
is nonimmunogenic, non-toxic, biodegradable, biocompatible. Thus, albumin particles
can be a good candidate for drug delivery system [120]. In summary, resveratrol is a
desirable substance with anti-cancer and anti-inflammatory activities. The anti-cancer
effect of resveratrol is correlated with the damage of mitochondrial function that leads to
increased ROS, apoptosis, downregulation of the protein cyclin D1 can fight against OCa.

Figure 4. Resveratrol (Res) can trigger various mechanisms involved in ovarian cancer treatment. Res
can stimulate mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) that leads to inhibition
of NF-kB pathway and subsequently contributes to inflammation suppression and ovarian cancer
improvement. Furthermore, the administration of Res can stimulate apoptosome complex formation,
caspase activation, and mitochondrial secretion of cytochrome c, which all end in inhibition of growth
and stimulation of cell death. In addition, Res suppresses glycolysis in ovarian cancer cells that
can be effective in ovarian cancer treatment. Res can act against ovarian cancer through AMPK
activation, downregulation of the protein cyclin D1, and inhibition of EMT, STAT3, Notch, and Wnt
signaling pathways, leading to ovarian cancer treatment. Moreover, consumption of Res—(Zinc
oxide) ZnO nanohybrid can lead to the generation of ROS in ovarian cancer cell lines and exert
anti-cancer effects on ovarian cancer. In addition, Res–bovine serum albumin (BSA) NPs induce
ovarian cancer cell necrosis and cellular apoptosis, attenuating tumor growth in ovarian cancer. EMT,
Epithelial–mesenchymal transition; Cyst C, Cytochrome c; STAT3, Signal transducer, and activator of
transcription 3; NF-kB, Nuclear factor-kappaB.
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7. Conclusions

Recently, herbal remedy using some popular herbal spices, including CUR, Que, and
Res has acquired much attention in the treatment of OCa, as one of the common gynecologic
cancers, through different mechanisms. For example, CUR through suppression of EMT,
angiogenesis, and STAT3 and NF-kB signaling, modulation of the expression of tumor-
related-ncRNA, apoptosis stimulation, AMPK activation, inhibition of STAT3 and NF-kB
signaling, and induction of autophagy can affect OCa. Que decreases the expression of
survivin protein, induces the expression DR5 and ATM phosphorylation, and increases
p53 protein expression. Res through mitochondrial secretion of cytochrome c, inhibition
of glucose metabolism and STAT3, Notch, and Wnt signaling, and downregulation of the
protein cyclin D1 can fight against OCa. However, these herbal products can have some
negative aspects in terms of pharmacology, such as instability, poor bioavailability, and
poor water solubility. Based on the evidence, using nano-based formulations from these
herbal therapeutic candidates, for instance, gemini, ZnO nanohybrids, PEGylated liposome,
NPs, micelles, niosome, not only can overcome these obstacles but also can improve the
therapeutic potential of herbal medicine against OCa. However, more and larger researches
are needed to show their therapeutic effects and mechanisms.
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