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Abstract: The reaction-based deposition on various surfaces of an all-organic fluorescent coating is
reported here, involving autoxidation of 2 mM dopamine in carbonate buffer at pH 9.0, in the presence
of a 1 mM diamine–resorcinol coupler (Bis–Res) prepared from 2,4-dihydroxybenzaldehyde and
hexamethylenediamine (HMDA). Spectral analysis of the films coupled with an LC-MS investigation
of the yellow fluorescent mixture was compatible with the formation and deposition of HMDA-linked
methanobenzofuroazocinone fluorophores. Both the emission properties and hydrophobicity of the
film were abated in a reversible manner following exposure to acid vapors. These results provide
an entry to efficient and practical fluorescent coating methodologies based on in situ generation
and the deposition of wet adhesive, as well as fluorescent materials combining a strongly emitting
fluorophore with the film-forming properties of long chain diamines.

Keywords: dopamine; hexamethylenediamine; hydrophobic to hydrophilic switch bis-resorcinol
coupler; fluorescent coating; strong fluorescence emission; yellow chromophore

1. Introduction

Fluorescent thin films and coatings may provide useful tools for a variety of biomedical,
environmental, and technological applications with special reference to specific sensing materials
operating both in vapor phase (e.g., volatile amines, illicit drugs, nitrotoluenes) [1,2] and in solution
(e.g., Hg+, F−, Au3+) [3]. Additional perspectives for the use of fluorescent films include real-time
monitoring of cell growth and metabolic changes, specific input-responsive packaging, and damage
detection in cultural heritage, to mention only some. The repertoire of approaches and technologies
for fluorescent thin films and coatings is still expanding, and is comprised of aggregation-induced
emission materials [4–7], derivatization of photochemically stable fluorophores into low-molecular
mass gelators [8,9], and high quantum yield carbon dots [10–12]. In representative examples from
the past few years, fluorescence is carried by a stable fluorophore, such as modified naphthalene
diimide [9]; perylene bisimide (PBI) [13]; a Schiff base derivative [14]; rhodamine derivatives grafted
onto polymers [15]; chlorophyll [16]; and quantum dots or by organic–inorganic complexes based,
e.g., on Eu3+/polyhydroxybutyrate [17]. Relatively few cases deal with all-organic films [16], and little
precedent is available, to the best of our knowledge, about the in situ deposition of all-organic,
reaction-based fluorescent films and coatings by wet dipping technologies.

In this paper, we disclose a strategy for the in situ development of a highly adhesive and strongly
emitting, all-organic film-forming system via the autoxidation of dopamine in the presence of a
cross-linking, hexamethylenediamine (HMDA)–resorcinol conjugate referred to as Bis–Res (Scheme 1).
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Scheme 1. Rationale underlying the development of hexamethylenediamine (HMDA)–resorcinol 45 
conjugate (Bis-Res) dopamine coupling for fluorescent coating technology. 46 

The chemistry outlined in Scheme 1 relies on the well-known dopamine quinone–resorcinol 47 
coupling reaction, leading to a highly fluorescent methanobenzofuroazocinone system of 48 
azamonardine and related natural fluorophores [18–22]. Recent investigation of this chemistry led us 49 
to develop a unimolecular variant of this reaction, referred to as “FluoResCat”, which may provide a 50 
promising tool for pH-sensitive oxygen and volatile amine sensing [23]. As an extension of this 51 
reaction, we have now probed the deposition of fluorescent films, capitalizing on the crosslinking 52 
properties of long chain diamines like hexamethylenediamine (HMDA) [24–26].  53 

HMDA, regarded as a lysine mimic in mussel-inspired adhesive systems [27], has been shown 54 
to enable the deposition of adhesive films from gallic acid, caffeic acid, 5,6-dihydroxyindole [26], 55 
N-protected DOPA [28], and other catechol-containing polymers [29–31]. This versatile strategy 56 
provides an entry to the design of a variety of functional films and coatings, including, e.g., 57 
antioxidant properties via binding to melanin-related metabolites [32]. Different from the coupling 58 
of HMDA to catechol and catecholamines, which may occur via Michael addition or condensation 59 
reactions at the o-quinone intermediates [25,28], the chemistry leading to the fluorescent 60 
methanobenzofuroazocinone system from dopamine and resorcinol relies on the high nucleophilic 61 
reactivity of the carbon position of resorcinol, which efficiently competes with the primary amino 62 
group of the catecholamine, inhibiting the cyclization pathway.  63 

2. Results 64 

A symmetrical bis-resorcinol derivative (Bis–Res), in which the two aromatic rings are held 65 
together by an HMDA tether, was synthesized from 2,4-dihydroxybenzaldehyde via Schiff base 66 
formation and reduction (Scheme S1).  67 

Stirring 2 mM dopamine with 1 mM Bis–Res in carbonate buffer at pH 9.0 led to the gradual 68 
development of an intensely emitting yellow chromophore, accompanied by the deposition of a 69 
fluorescent thin film on a quartz substrate immersed in the reaction flask (Figure 1). 70 
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Scheme 1. Rationale underlying the development of hexamethylenediamine (HMDA)–resorcinol
conjugate (Bis-Res) dopamine coupling for fluorescent coating technology.

The chemistry outlined in Scheme 1 relies on the well-known dopamine quinone–resorcinol
coupling reaction, leading to a highly fluorescent methanobenzofuroazocinone system of azamonardine
and related natural fluorophores [18–22]. Recent investigation of this chemistry led us to develop a
unimolecular variant of this reaction, referred to as “FluoResCat”, which may provide a promising tool
for pH-sensitive oxygen and volatile amine sensing [23]. As an extension of this reaction, we have now
probed the deposition of fluorescent films, capitalizing on the crosslinking properties of long chain
diamines like hexamethylenediamine (HMDA) [24–26].

HMDA, regarded as a lysine mimic in mussel-inspired adhesive systems [27], has been shown
to enable the deposition of adhesive films from gallic acid, caffeic acid, 5,6-dihydroxyindole [26],
N-protected DOPA [28], and other catechol-containing polymers [29–31]. This versatile strategy
provides an entry to the design of a variety of functional films and coatings, including, e.g., antioxidant
properties via binding to melanin-related metabolites [32]. Different from the coupling of HMDA to
catechol and catecholamines, which may occur via Michael addition or condensation reactions at the
o-quinone intermediates [25,28], the chemistry leading to the fluorescent methanobenzofuroazocinone
system from dopamine and resorcinol relies on the high nucleophilic reactivity of the carbon position of
resorcinol, which efficiently competes with the primary amino group of the catecholamine, inhibiting
the cyclization pathway.

2. Results

A symmetrical bis-resorcinol derivative (Bis–Res), in which the two aromatic rings are held
together by an HMDA tether, was synthesized from 2,4-dihydroxybenzaldehyde via Schiff base
formation and reduction (Scheme S1).

Stirring 2 mM dopamine with 1 mM Bis–Res in carbonate buffer at pH 9.0 led to the gradual
development of an intensely emitting yellow chromophore, accompanied by the deposition of a
fluorescent thin film on a quartz substrate immersed in the reaction flask (Figure 1).

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 9 

 

OH
HO

NH2H
N

H
N

HO OHOHO

pH > 8.5

OHO
HN

HO

O6

NH
H
N

OH

OH

6

Bis-Res (1)
2

 44 

Scheme 1. Rationale underlying the development of hexamethylenediamine (HMDA)–resorcinol 45 
conjugate (Bis-Res) dopamine coupling for fluorescent coating technology. 46 

The chemistry outlined in Scheme 1 relies on the well-known dopamine quinone–resorcinol 47 
coupling reaction, leading to a highly fluorescent methanobenzofuroazocinone system of 48 
azamonardine and related natural fluorophores [18–22]. Recent investigation of this chemistry led us 49 
to develop a unimolecular variant of this reaction, referred to as “FluoResCat”, which may provide a 50 
promising tool for pH-sensitive oxygen and volatile amine sensing [23]. As an extension of this 51 
reaction, we have now probed the deposition of fluorescent films, capitalizing on the crosslinking 52 
properties of long chain diamines like hexamethylenediamine (HMDA) [24–26].  53 

HMDA, regarded as a lysine mimic in mussel-inspired adhesive systems [27], has been shown 54 
to enable the deposition of adhesive films from gallic acid, caffeic acid, 5,6-dihydroxyindole [26], 55 
N-protected DOPA [28], and other catechol-containing polymers [29–31]. This versatile strategy 56 
provides an entry to the design of a variety of functional films and coatings, including, e.g., 57 
antioxidant properties via binding to melanin-related metabolites [32]. Different from the coupling 58 
of HMDA to catechol and catecholamines, which may occur via Michael addition or condensation 59 
reactions at the o-quinone intermediates [25,28], the chemistry leading to the fluorescent 60 
methanobenzofuroazocinone system from dopamine and resorcinol relies on the high nucleophilic 61 
reactivity of the carbon position of resorcinol, which efficiently competes with the primary amino 62 
group of the catecholamine, inhibiting the cyclization pathway.  63 

2. Results 64 
A symmetrical bis-resorcinol derivative (Bis–Res), in which the two aromatic rings are held 65 

together by an HMDA tether, was synthesized from 2,4-dihydroxybenzaldehyde via Schiff base 66 
formation and reduction (Scheme S1).  67 

Stirring 2 mM dopamine with 1 mM Bis–Res in carbonate buffer at pH 9.0 led to the gradual 68 
development of an intensely emitting yellow chromophore, accompanied by the deposition of a 69 
fluorescent thin film on a quartz substrate immersed in the reaction flask (Figure 1). 70 
 71 

 
 

(a) (b) 
 72 

Figure 1. Picture (a) and UV-VIS and fluorescence spectra (b) of a dopamine/Bis–Res coated quartz at
6 h reaction time, before and after exposure to HCl vapors.
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Profilometry data (Table 1) indicates a film thickness of 55 ± 2.7 nm, with a roughness of 15 nm.

Table 1. Profilometry data of the Bis–Res/dopamine (DA) coating on glass before and after HCl(vap) exposure.

Coating λmax/ex (nm) λem (nm) Thickness
(nm)

Roughness
(nm)

Water Contact
Angle (deg)

Bis-Res/DA 420 464 55 ± 2.7 15 52 ± 3.6
Bis-Res/DA-HCl 400 no 48 ± 0.2 16 Not calculable

Efficient film formation was also observed on a variety of materials immersed in the oxidation
mixture of dopamine and Bis–Res (Figure 2).
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Spectrophotometric analysis of the coating in the solid state revealed an absorption maximum 83 
at 420 nm and an intense emission at 460 nm, whose features matched those of the 84 
dopamine–resorcinol adduct. In support of this conclusion, LC-MS analysis of the reaction mixture 85 
(Figure 3) revealed the formation of a main species with m/z = 510 [M+H]+, consistent with the 86 
expected coupling for product 2 depicted in Scheme 1. A diadduct involving both resorcinol 87 
moieties of 1 could be considered as an additional reaction product. However, under the conditions 88 
adopted, Bis–Res 1 and dopamine are not completely consumed (Figure 3, red line), and hence the 89 
diadduct would be expected to represent a minor product. 90 
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Figure 2. Bis–Res/DA coatings on various materials: (A) polyethylene, (B) polycarbonate,
(C) polystyrene, and (D) aluminium. On the left of each are uncoated materials.

Spectrophotometric analysis of the coating in the solid state revealed an absorption maximum at
420 nm and an intense emission at 460 nm, whose features matched those of the dopamine–resorcinol
adduct. In support of this conclusion, LC-MS analysis of the reaction mixture (Figure 3) revealed the
formation of a main species with m/z = 510 [M+H]+, consistent with the expected coupling for product
2 depicted in Scheme 1. A diadduct involving both resorcinol moieties of 1 could be considered as an
additional reaction product. However, under the conditions adopted, Bis–Res 1 and dopamine are not
completely consumed (Figure 3, red line), and hence the diadduct would be expected to represent a
minor product.
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Figure 3. LC-MS analysis of the reaction mixture of Bis–Res (Rt = 8.9 min) and dopamine (Rt = 4 min). 92 
(a) total ion current chromatogram after 0 min (black) and 150 min (red). (b) mass spectrum of the 93 
peak eluting at 5.1 min, base peak [M + H]+ = m/z 510.4, eluting system = 0.1 % HCOOH—MeOH 8:2. 94 

Interestingly, exposure of the coated substrate to HCl vapors caused an apparent discoloration 95 
of the film with a consistent hypsochromic shift, a marked quenching of fluorescence, and a drop of 96 
the water contact angle (WCA) of the film from about 50° to values below instrumental limits, 97 
indicating conversion into a superhydrophilic material (Figure 4, left). The HCl-induced absorption 98 
shift proved to be completely reversible upon exposure to gaseous ammonia over at least five cycles 99 
(Figure 4, right). The marked drop in the WCA value was attributed to the protonation of the amine 100 
residues linked to the methanobenzofuroazocinone scaffold in the adduct, with the generation of 101 
positively-charged sites increasing the hydrophilic character of the film. 102 

 
 

  

Figure 4. Left: water droplet on the Bis–Res/dopamine coating before (a) and after (b) exposure to 103 
HCl vapors. Right: relative absorbance changes at 420 nm of Bis–Res/dopamine film following 104 
repeated sequential exposure to HCl and NH3 vapors. 105 

The origin of superhydrophilicity following exposure to HCl vapors was then investigated by 106 
ATR/FT-IR analysis. Comparison of the spectra of the film deposited on aluminum substrate before 107 
and after acid treatment indicated (1) a detectable shift of the broad N–H and O–H stretching band 108 
from ca. 3300 cm-1 to ca. 3100 cm-1; and (2) marked changes in the low energy bands, with the 109 
development of two weak bands at 1560 cm−1 and 1200 cm−1 (Figure 5). Though it is difficult to assign 110 

Figure 3. LC-MS analysis of the reaction mixture of Bis–Res (Rt = 8.9 min) and dopamine (Rt = 4 min).
(a) total ion current chromatogram after 0 min (black) and 150 min (red). (b) mass spectrum of the peak
eluting at 5.1 min, base peak [M + H]+ = m/z 510.4, eluting system = 0.1% HCOOH—MeOH 8:2.

Interestingly, exposure of the coated substrate to HCl vapors caused an apparent discoloration of
the film with a consistent hypsochromic shift, a marked quenching of fluorescence, and a drop of the
water contact angle (WCA) of the film from about 50◦ to values below instrumental limits, indicating
conversion into a superhydrophilic material (Figure 4, left). The HCl-induced absorption shift proved
to be completely reversible upon exposure to gaseous ammonia over at least five cycles (Figure 4, right).
The marked drop in the WCA value was attributed to the protonation of the amine residues linked to
the methanobenzofuroazocinone scaffold in the adduct, with the generation of positively-charged sites
increasing the hydrophilic character of the film.
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Figure 4. Left: water droplet on the Bis–Res/dopamine coating before (a) and after (b) exposure to HCl
vapors. Right: relative absorbance changes at 420 nm of Bis–Res/dopamine film following repeated
sequential exposure to HCl and NH3 vapors.

The origin of superhydrophilicity following exposure to HCl vapors was then investigated by
ATR/FT-IR analysis. Comparison of the spectra of the film deposited on aluminum substrate before and
after acid treatment indicated (1) a detectable shift of the broad N–H and O–H stretching band from ca.
3300 cm−1 to ca. 3100 cm−1; and (2) marked changes in the low energy bands, with the development of
two weak bands at 1560 cm−1 and 1200 cm−1 (Figure 5). Though it is difficult to assign these latter
bands with certainty, it is worth mentioning the well-known appearance in the spectra of protonated
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secondary amines of bands around 1590 cm−1, which are missing in the free base [33]. Support to
the proposed assignment could derive from the application of spectral-inverse quantum methodology,
recently developed for the interpretation of the IR spectral features of solid materials like mesoporous
silica gel [34].
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Figure 5. ATR/FT-IR of the dopamine/Bis–Res coated aluminum slide before (red line) and after (violet
line) exposure to HCl vapors.

3. Discussion

Emitting film deposition by fluorescence turn on processes is a promising approach to surface
functionalization that is not adequately represented in the literature, to the best of our knowledge.
The present proof-of-concept investigation into the autoxidation-promoted reaction of dopamine with
the Bis–Res coupler demonstrates the potential of this chemistry to produce novel adhesive species that
can coat various substrates with acid-tunable emission and surface properties. Distinctive outcomes of
this study, which deserve further investigation, include:

1) The demonstration of the uncommon emission properties of the dopamine–resorcinol coupling
product in the solid state as thin film;

2) Verification of the role of HMDA as an almost universal coupler, inducing film deposition under
a variety of conditions;

3) The added value of including, in the film-forming adducts, strongly basic secondary amine sites
susceptible of reversible protonation, to serve as on–off switches for surface property modification.

Ongoing work is directed (1) to fine tuning the surface and emission properties of the films via
modification of the Bis-Res coupler, in order to introduce additional functional groups on both the
diamine and resorcinol moieties; (2) to gaining better insight into the structural properties of the film
in relation to the current knowledge of underwater adhesion mechanisms; and (3) to assessing the
potential of the fluorescent films for biomedical and nanotechnological applications, e.g., for stem cell
growth and theranostics.

4. Materials and Methods

All reagents were obtained from commercial sources and used without further purification.
Organic solvents were used as purchased. Water was of MilliQ® quality. Buffers were prepared by
standard procedures. A Crison pH-meter equipped with a 5014 Crison electrode was used for pH
measurements at room temperature. Analytical thin-layer chromatography (TLC) was performed on
0.25 mm thick pre-coated silica gel plates (60 F254). UV-VIS absorption spectra were registered at room
temperature on a V-560 JASCO spectrophotometer, using calibrated 2 mL quartz cuvettes, and for
quartz slides, on a Cary 4000 UV-Vis spectrophotometer, using the solid sample holder. Steady-state
fluorescence emission spectra were recorded with a FP-750 JASCO spectrofluorometer. 1H-NMR and
13C-NMR spectra were recorded in deuterated solvents at 400 MHz on a Bruker DRX 400; δ values
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are reported in ppm and coupling constants are given in Hz. HPLC analyses for reaction monitoring
were performed on an Agilent 1100 series instrument equipped with an LC-10AD VP pump and a
G1314A UV-VIS detector, using a Sphereclone C18 column (4.6 × 150 mm, 5 µm). LC-MS analysis
was conducted on an ESI-TOF 1260/6230DA (Agilent Technologies) in positive ion mode. IR spectra
were recorded on Nicolet 5700 FT-IR + Smart performer spectrometer, mounting a Continuum FT-IR
Microscope and on Bruker Optics TENSOR 27 FT-IR.

4.1. Synthesis and Structural Characterization of Bis–Res

A mixture of hexamethylenediamine (1.81 mmol, 400 mg) and 2,4-dihydroxybenzaldehyde
(3.62 mmol, 950 mg) in absolute ethanol (35 mL) was stirred at room temperature for 1 h. The yellow
solid that separated was centrifuged three times at 5000 rpm and washed with cold ethanol, then dried
in vacuo to give the Schiff base (1a, 90% yield). The latter was then rinsed in glacial acetic acid
(10 mM, 160 mL) and reduced by NaBH4 (16 mmol, 605 mg). When hydrogen evolution ceased, 3 M
HCl was added until the pH was 5.0 The mixture was dried under vacuum, then rinsed in 1 mL of
water before desalting on Sephadex G-10 resin, using HCl 0.05 M as the eluant. Ten fractions of 8 mL
each were collected and analyzed by UV-VIS spectrometry. After removal of the acid under reduced
pressure, compound 1 was obtained as di-hydrochloride salt in the form of a brownish orange solid
(yield = 75%).

(1a) Rf = 0.27 (CHCl3-MeOH 9:1); UV-VIS: λmax (MeOH) = 301 nm (ε= 33410 L•mol−1
•cm−1)

and 371 nm (ε = 15879 L•mol−1
•cm−1); m/z = 357.18 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ

8.30 (s), 7.13 (d, J = 8.5 Hz), 6.22 (d, J = 8.4 Hz), 6.13 (s), 3.48 (t, J = 6.6 Hz), 1.59 (br. m), and 1.36
(br. m) (Figure S1).13C NMR (101 MHz, DMSO–d6) δ 165.7, 164.5, 162.3, 133.0, 111.1, 106.7, 102.9, 56.4,
30.4, and 26.1 (Figure S2). The resonance assignment was deduced from two-dimensional (2D) NMR
analysis. ATR (cm−1) = 1227 (phenolic C–O stretch), 1358 (phenolic C–O bend), 1637 (C=N stretch),
2932 (aliphatic C-H bend and stretch), 3065 (aromatic C–H stretches), and 3509–3638 (phenolic O–H
stretches).

(1b) UV-VIS: λmax (MeOH) = 279 nm (ε= 4944 L•mol−1
•cm−1); m/z: 361.21 [M+H]+. 1H NMR

(400 MHz, MeOH-d4) δ 7.12 (d, J = 8.2 Hz), 6.39 (s), 6.33 (d, J = 6.8 Hz), 4.09 (s), 3.01–2.93 (br. m),
1.73 (br. m), and 1.43 (br. m) (Figure S3); 13C NMR (101 MHz, MeOD-d4) δ 161.4, 158.6, 133.5,
109.8, 108.1, 103.4, 47.8, 47.6, 27.1, and 26.6 (Figure S7). The resonance assignment was deduced
from 2D NMR analysis (Figures S4–S6). ATR-FT/IR (cm−1) = 1172 (C–N stretch), 1593 (N–H bend),
2796–2935 (aliphatic C–H bend and stretch), 3041 (aromatic C–H stretches), 3235–3292 (N–H stretch),
and 3531–3622 (phenolic O–H stretches) (Scheme S8).

4.2. General Procedure for the Oxidative Coupling of Compound 1 with Dopamine

The reaction was carried out using compound 1 dihydrochloride at 1 mM and dopamine at
2 mM in 0.05 M sodium carbonate buffer, pH 9.0, under stirring in air. Typically, the reaction was
carried out on a 50 mL volume. After complete dissolution of the reagents in the buffer, a neat
substrate (glass or quartz coverslips rinsed with piranha mixture H2SO4:H2O2 5:1, polyethylene or
polystyrene cuts, polycarbonate slides, or aluminum foils) was immersed in the reaction mixture
for 6 h. The development of a blue fluorescence was rapidly observed, followed by deposition of
a thin layer of organic material on the substrate and concomitant separation of a brownish-green
solid. The course of the reaction was followed by LC-MS analysis. After 2 h reaction time, the liquid
chromatography (LC) profile of the reaction mixture showed substantial consumption of dopamine
and compound 1, as well as the formation of a main component with a pseudomolecular ion peak
corresponding to the monoadduct 2, shown in Scheme 1. The quartz substrates after coating were
subjected to repeated ultrasound-assisted washing in water before spectrophotometric/fluorimetric
analysis. All other substrates were repeatedly washed with deionized water and dried in air.
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5. Conclusions

The autoxidation of dopamine in carbonate buffer at pH 9.0 in the presence of the cross-linking
coupler Bis–Res is shown herein to give rise to a film-forming coupling product with a detectable
fluorescence in the solid state. Exposure of the film to acid vapors causes a marked loss of fluorescence
and a drop in WCA, suggesting amine protonation-induced superhydrophilicity.

These results provide a new rationale toward the development of the first class of bioinspired,
all-organic, reaction-based turn-on fluorescent films for smart coating applications. The reported
chemistry is amenable to tailored modifications and the tuning of properties via the proper selection of
catecholamine and Bis–Res derivatives.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/18/
4532/s1.
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