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SUMMARY

In Finland, the pandemic influenza virus A(H1N1)pdm09 was the dominant influenza strain
during the pandemic season in 2009/2010 and presented alongside other influenza types during
the 2010/2011 season. The true number of infected individuals is unknown, as surveillance missed
a large portion of mild infections. We applied Bayesian evidence synthesis, combining available
data from the national infectious disease registry with an ascertainment model and prior
information on A(H1N1)pdm09 influenza and the surveillance system, to estimate the total
incidence and hospitalization rate of A(H1N1)pdm09 infection. The estimated numbers of
A(H1N1)pdm09 infections in Finland were 211000 (4% of the population) in the 2009/2010
pandemic season and 53000 (1% of the population) during the 2010/2011 season. Altogether,
1·1% of infected individuals were hospitalized. Only 1 infection per 25 was ascertained.
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INTRODUCTION

The first case of A(H1N1)pdm09 influenza virus
(‘swine flu’) in Finland was identified on 10 May
2009 [1]. The pandemic season occurred between
September 2009 and May 2010, with the major out-
break in October–December 2009. A second season
occurred between November 2010 and April 2011,
when ‘swine flu’ co-existed with seasonal A and B
influenza strains [2]. National vaccination against
A(H1N1)pdm09 in Finland was initiated in October
2009, but only after the peak epidemic in the

2009/2010 season was over in the major part of the
population [3].

There are good-quality data about the burden
of hospitalized infections and severe outcomes with
A(H1N1)pdm09 in Finland [3, 4]. However, there re-
main a number of important questions regarding the
impact of A(H1N1)pdm09 in the Finnish population,
including the attack rate (infected/susceptible ratio),
severity (hospitalization/infection ratio), and the role
of vaccination in mitigating the second season. To
answer these questions, one needs to know the true
number of all infected cases. However, most infections
remained unobserved, i.e. surveillance missed a large
portion of infections. Underreporting may have
occurred for a number of reasons: (1) only a portion
of infected individuals exhibited symptoms; (2) only
a portion of symptomatic infections sought medical
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care; (3) samples for confirming the aetiology were not
necessarily taken and the sensitivity of laboratory de-
tection may have been low; (4) positive findings may
not have been reported to the national registries.

In general, it was likely that more medical attention
was given to individuals with severe forms of disease,
leading to biased observations: the probability of ascer-
taining infection increases with severity (Fig. 1). The
ascertainment of infected cases may have varied across
regions and age groups, during or between epidemic
seasons. For example, the policy of reporting cases
changed between the two A(H1N1)pdm09 seasons [3].

Bayesian methodology provides a natural way to
handle uncertain data from multiple sources, allowing
the combination of heterogeneous evidence [5–7]. In
this study we use a Bayesian evidence synthesis to
estimate the underlying true incidence of A(H1N1)
pdm09 influenza and its severity, based on data on
ascertained cases in the first two seasons of A
(H1N1)pdm09 in Finland (2009/2010 and 2010/
2011). The Methods section describes the surveillance
data and the ascertainment model, followed by the
Results section, which includes the estimated numbers
of A(H1N1)pdm09 infection in Finland over the two
seasons as well as estimates of severity and the ascer-
tainment probabilities. The paper concludes with a
discussion.

METHODS

Surveillance

In Finland (population 5·3 million), the national
healthcare system is organized into 20 healthcare

districts with catchment populations ranging from
68000 to 1·4million, forming five tertiary-care districts.
After the first case of pandemic influenza A(H1N1)
pdm09 in Finland in 2009, findings positive for A
(H1N1)pdm09 were recorded in a specific data collec-
tion field in the surveillance system of the National
Infectious Disease Registry (NIDR). Notifications
concerning the same patient were merged into a single
case. In addition to NIDR, a web-based notification
system was set up to collate more detailed information
on hospitalized cases [3].

Hospitalized cases

The data on hospitalized cases from both seasons
(2009/2010, 2010/2011) were obtained from the web-
based notification system. In the second season, only
cases admitted to intensive care (IC) and cases with
fatal outcome were recorded in this system. During
both seasons, the data on hospitalized cases were
specific to A(H1N1)pdm09.

Non-hospitalized cases

Numbers of laboratory-confirmed cases with influenza
A in the two seasons were obtained from NIDR. In
the first season (2009/2010), 99% of influenza A infec-
tions were caused by A(H1N1)pdm09 virus, based on
virological surveillance and subtyping of viruses [3].
In the second season (2010/2011), more than 95% of
influenza A cases in a subsample from a sentinel sys-
tem were confirmed as A(H1N1)pdm09 [2]. During
both seasons, all unidentified influenza A cases were

Ascertained

Unobserved
Mild

Hospitalized non-IC

IC

Fig. 1 [colour online]. The iceberg pyramid of influenza. Infection with influenza can lead to different outcomes with
varying severities. The more severe outcomes occur less frequently while being ascertained more easily. The three outcomes
in the diagram correspond to the model in this paper. IC, Intensive care.
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therefore considered as A(H1N1)pdm09 cases and in-
cluded in the analysis.

All cases included in NIDR and absent in the web-
based system were considered as non-hospitalized
cases and therefore designated as mild. The data on
both the hospitalized and mild cases were stratified
by the 20 healthcare districts (regions) and 16 age
groups (0–4, 5–9, . . ., 70–74, >74 years). The popu-
lation sizes were taken from Statistic Finland (www.
stat.fi).

Vaccination

Altogether 2·6 million A(H1N1)pdm09 vaccine doses
were administered in Finland in a special campaign
from October 2009 to February 2010. The data re-
garding vaccinations were retrieved from a nationwide
register set up especially for the first A(H1N1)pdm09
season.

The coverage of vaccination varied considerably
between different age groups, being highest (81%) in
children aged 5–14 years and lowest (32%) in young
adults aged 20–29 years [3]. Regional differences in
vaccination coverage were less prominent (range
42–61%). In the healthy population aged 3–64 years,
the campaign only started a week later than the
peak epidemic in the country [3]. For simplicity, we
therefore assumed that vaccination effectively took
place between the two seasons. The vaccination and
demographic data were stratified according to the 20
geographical regions and 16 age groups.

Definitions and model description

In this paper, infection refers to any infection with A
(H1N1)pdm09 that induces protective immunity
against subsequent re-infection with the same strain.
We focus on the following three infection outcomes:
(1) mild infection not requiring hospitalization; (2) in-
fection requiring hospitalization but not admitted to
intensive care (hospitalized non-IC); and (3) infections
admitted to IC. The two latter are referred to as severe
infections. Asymptomatic infections are included in
the mild, i.e. non-hospitalized infections, and fatal
infections in the IC outcome.

The observed data on A(H1N1)pdm09 suffer from
imperfect ascertainment and the numbers of mild
cases in particular are only a fraction of the true num-
ber of mild infections. Our aim was to estimate the
true numbers of individuals with each of the three in-
fection outcomes based on the numbers of ascertained

cases and knowledge on the surveillance practice in
Finland and epidemics in other countries. We built a
model to describe the relationship between the num-
bers of true infections and ascertained cases in the
two A(H1N1)pdm09 seasons (2009/2010, 2010/2011).
Bayesian evidence synthesis was used to combine obser-
vations with a priori knowledge about the unknown
model quantities (parameters) to derive a posterior
distribution for the parameters. Uncertainties were
expressed in terms of probability distributions. The
prior distribution expresses this uncertainty about
model parameters before including the information
from the observations. The posterior distribution
describes the uncertainty after including that in-
formation.

Figure 2 presents the model schematically. We first
consider a single epidemic season. Let p denote the
attack rate, i.e, the probability for a susceptible indi-
vidual to become infected with A(H1N1)pdm09
during the season. If infected, the individual develops
severe disease and is hospitalized with probability s
(severity or hospitalization/infection ratio), otherwise
the infection is termed mild. A hospitalized individual
is admitted to IC with probability g (IC/hospitaliz-
ation ratio). Each infection becomes ascertained with
a probability which depends on the infection outcome:
the ascertainment probabilities for mild, hospitalized
non-IC and IC infections are denoted by αM, αH
and αI.

We assume first that each of the six probabilities
(p, s, g, αM, αI, αH) is homogeneous across all initially
susceptible individuals, S. Let M denote the total
number of mild infections over the epidemic season,
m of which are ascertained. Similarly, H is the total
number of hospitalized non-IC individuals (h of which
are ascertained), and I is the total number of IC infec-
tions (i of which ascertained). We term the vector of
the six observables (M, m, H, h, I, i) as complete
data. Based on the number of susceptible individuals
S and the complete data, the likelihood function of
the six model probabilities is:

P(M,H, I ,m, h, i|S; p, s, g, αM , αI , αH)
= Binom(M +H + I |S; p) × Binom(H + I |M +H

+ I ; s) × Binom(I |H + I ; g) × Binom(m|M; αM )
× Binom(h|H; αH ) × Binom(i|I ; αI ).

This likelihood is equivalent to one based on a multi-
nomial model for the six observables (see online
Supplementary material).
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We applied the model simultaneously to data from
the two successive influenza seasons (2009/2010, 2010/
2011) with separate vectors of observables [M(j), m(j),
H(j), h(j), I(j), i(j)], j=1, 2. The attack rates p(j) and the
ascertainment probabilities (αM

(j), αH
(j), αI

(j)) were allowed
to be season-specific, while the severities (s, g) were
taken to be the same for the two seasons. We assumed
that vaccination occurred between the seasons. All
individuals infected during the first season were
assumed to receive immunity against A(H1N1)
pdm09. Others could acquire vaccine-induced immun-
ity with probability v. Otherwise, they remained sus-
ceptible and could be infected in the second season,
i.e. the number of susceptible individuals for the
second season S(2) was distributed according to a
binomial distribution:

Binom(S(2)|S(1) −M (1) −H (1) − I (1); 1− v).
The model was further stratified by allowing some

of the probabilities to differ across age strata or geo-
graphical regions. In principle, each subpopulation
defined by ‘age×region’ could have its own set of
the parameters. In practice, we adopted the following
assumptions: The probabilities p(j), s, g, αH

(j) were taken
to vary across age groups. The probabilities αM

(j) varied
across age groups and regions. The probability αI

(j)

was taken to be the same across all strata. For each
of the above probabilities, we defined its average
value as the weighted average over age groups and re-
gional strata.

The joint likelihood of the model parameters and
unknown observables is:

L/
∏

a

∏

r

[Binom(S(2)
a,r|S(1)

a,r −M (1)
a,r −H (1)

a,r − I (1)a,r ;

1− vr,a) ×
∏

j=1,2

P(M ( j)
a,r,H

( j)
a,r, I

( j)
a,r ,m

( j)
a,r, h

( j)
a,r, i

( j)
a,r|

S( j)
a,r; p

( j)
a , sa, ga, α

( j)
Ma,r, α

( j)
Ha, α

( j)
I )].

Here a and r index the age groups and regions.
We assumed there was no pre-existing immunity

against A(H1N1)pdm09 before the first season, so
the number of susceptible individuals before the first
season was equal to the population size in the corre-
sponding stratum Sa,r

(1)=Na,r. We assumed that the vac-
cines were distributed independently of the infection
status of the individuals. We took the probability of
receiving vaccine-induced immunity va,r as a fixed par-
ameter, va,r=0·8Va,r. Here Va,r is the known vaccine
coverage in the corresponding stratum and 0·8 is the
vaccine efficacy.

Assuming that vaccination against A(H1N1)pdm09
did not affect the attack rates in those remaining
susceptible after the first season, the number of mild
infections prevented by vaccination was evaluated as
Ma,r

(2)va,r/(1−va,r) (see Supplementary material). The
prevented numbers of hospitalized and IC cases were
estimated similarly.

Table 1 summarizes the prior distributions of the
six model parameters. The posterior distribution of

Susceptible before
the first season

Susceptible after
the first season

Susceptible before
the second season

Effectively vaccinated

Uninfected

Ascertained Mild

IC

Unobserved
Ascertained Hospitalized non-IC
Unobserved
Ascertained
Unobserved

Ascertained Mild

IC

Unobserved
Ascertained Hospitalized non-IC

Hospitalized

Second seasonFirst season

Infected

Hospitalized

Infected

Unobserved
Ascertained
Unobserved

Fig. 2 [colour online]. The model representation. Susceptible individuals may acquire infection during the first season.
Those not infected or protected by vaccination may acquire infection during the second season. Infections are classified as
‘mild’, ‘hospitalized non-intensive care (IC)’ and ‘IC’. Only a fraction of infections are ascertained.
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the model parameters was explored using a Gibbs
sampler [8]. For each of the parameters we present
the marginal posterior distribution, the posterior
means and 90% credible intervals (CrI). Detailed in-
formation about the computational methods is pro-
vided in the online Supplementary material.

RESULTS

Table 2 presents the estimated numbers of infections
with different A(H1N1)pdm09 outcomes in the two
seasons. The posterior distributions of the model para-
meters are summarized in Figures 3 and 4.

Attack rate and the burden of illness

Figure 3a shows the estimated attack rates (parameter
p) by age group and season. In the first season
(2009/2010), the estimated average attack rate was
3·9% (90% CrI 2·5–4·3), while it was half as much
(1·7%, 90% CrI 1·5–1·9) in the second season (2010/
2011). The most significant decline in the attack rate
was observed in children aged <15 years, whereas in
individuals aged 565 years the attack rate was
slightly higher in the second season. The number of
all A(H1N1)pdm09 infections in the second season
corresponds to ∼1% of the total population of
Finland.

Table 1. Prior distributions

Parameter Prior Rationale

p Attack rate Beta(2,4) During previous influenza pandemics in the populations with
no pre-existing immunity, the attack rate has been estimated
to be up to 50% [9]. Another analysis [10], using computer
simulation, estimated the cumulative attack rate during
the 2009 pandemic as 31–38% for European countries.
A serosurveillance study showed that 33% of children
in England were infected in the first season of the
A(H1N1)pdm09 epidemic, while the attack rate in other
age groups was lower [11].

Mode: 0·25
Mean: 0·33
90% PI: 0·86–0·66
S.D.: 0·17

s Severity Beta(1·33,34) Most authors define severity as the proportion of hospitalized in
all symptomatic infections, while we use the proportion in all
infections. The probability of hospitalization for symptomatic
infection was estimated [12] to be 0·12–0·26% during the 2009
pandemic, with probability of developing symptoms ∼50%.

Mode: 0·01
Mean: 0·04
90% PI: 0·01–0·1
S.D.: 0·047

g IC/hospitalization ratio Beta(5·3,40) Estimated [12] as 16%.
Mode: 0·1
Mean: 0·11
90% PI: 0·05–0·2
S.D.: 0·047

αM Mild case ascertainment
probability

Beta(1·33,34) According to previous studies in similar populations only
a small proportion of cases was ascertained: 0·7–2% [13];
10% [11, 14].

Mode: 0·01
Mean: 0·04
90% PI: 0·01–0·1
S.D.: 0·047

αH Hospitalized non-IC case
ascertainment probability in
the first season

Beta(9·6,39) Assumed to be high. No hospitalized cases were ascertained
during the second season.Mode: 0·75

Mean: 0·71
90% PI: 0·5–1
S.D.: 0·119

In the second season =0
αI IC case ascertainment

probability
=1 Due to the high attention to IC cases we take αI=1.

PI, Probability interval; S.D., standard deviation; IC, intensive care.
Prior distributions were defined for the six model parameters. The mode and spread of each distribution reflect our prior
knowledge about the model probabilities. Regarding the prior distribution, a 90% PI means a probability interval within
which lies 90% of the distribution.
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Table 2. The estimated and ascertained numbers of A(H1N1)pdm09 infections during the two seasons (2009/2010 and 2010/2011)

First season (2009/2010) Stratum

Population All infections Hospitalized IC

Total Susceptible Asc. Est. AR Asc. Est. Asc.
N S(1)/N m(1)+h(1)+i(1) M(1)+H(1)+I(1) p(1) h(1)+i(1) H(1)+I(1) I(1)(≡i(1))

0–4 yr 297000 100% 1590 31000 10% 291 386 8
5–14 yr 587000 100% 2960 68200 12% 181 243 5
15–19 yr 333000 100% 1200 33700 10% 128 171 9
20–29 yr 666000 100% 1010 23700 3·6% 191 258 15
30–64 yr 2140000 100% 2430 46200 2·2% 682 833 83
565 yr 1300000 100% 243 7800 0·6% 134 276 13
Helsinki 1820000 100% 3310 73100 4·0% 537 730 49
Turku 692000 100% 1700 26300 3·8% 134 205 10
Tampere 1230000 100% 1750 48300 3·9% 356 484 24
Kuopio 849000 100% 1390 32200 3·8% 284 371 22
Oulu 733000 100% 1270 30700 4·2% 296 375 28
Total 5320000 100% 9420 211000 3·9% 1610 2170 133

Second season (2010/2011) Stratum

Population All infections Hospitalized IC

Total Vac. Susceptible Asc. Est. AR Asc. Est. Asc.
N V/N S(2)/N m(2)+h(2)+i(2) M(2)+H(2)+I(2) p(2) h(2)+i(2)(≡i(2)) H(2)+I(2) I(2)(≡i(2))

0–4 yr 297000 74% 37% 185 4530 4·2% 0 56 0
5–14 yr 587000 81% 31% 182 4580 2·5% 0 17 0
15–19 yr 333000 56% 49% 344 9220 5·6% 0 45 0
20–29 yr 666000 32% 72% 486 10700 2·2% 6 120 6
30–64 yr 2140000 53% 64% 919 18900 1·4% 42 360 42
565 yr 1300000 39% 55% 113 5230 0·73% 4 200 4
Helsinki 1820000 48% 59% 1010 19200 1·8% 24 290 24
Turku 692000 53% 56% 426 6560 1·7% 9 100 9
Tampere 1230000 49% 59% 352 12600 1·7% 9 190 9
Kuopio 849000 57% 52% 298 7690 1·7% 8 120 8
Oulu 733000 56% 53% 143 7110 1·8% 2 100 2
Total 5320000 51% 57% 2230 53100 1·7% 52 800 52

AR, Attack rate; IC, intensive care; Vac., Vaccinated.
Numbers of ascertained cases (Asc.) and the posterior mean estimates of the numbers of infections (Est.) for different outcomes. For the total numbers of infections, the attack
rates (P) are also given. The proportion of susceptible individuals before the second season is the posterior mean estimate (see Methods section). The results are aggregated into
six broad age groups and five tertiary-care districts.
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The attack rate decreased with age in both seasons
with a more pronounced trend in the first season: chil-
dren (<15 years) were 20 times more likely to acquire
infection than the elderly (>60 years). In the second
season, the corresponding ratio was only 6. The attack
rate in teenagers (15–19 years) was noticeably large
(5·6%) in the second season.

A total of 211000 (90% CrI 180000–230000) infec-
tions were estimated to have occurred in the first sea-
son (Table 2). During the second season, an additional
53000 (90% CrI 47000–57000) infections occurred.
We estimated that without vaccination 40000 (90%
CrI 35000–44000) additional infections would have

occurred, including 540 (90% CrI 450–640) hospitali-
zations and 29 IC infections.

Severity

The average severity (hospitalization/infection ratio, s)
in the first season was estimated to be 1% (90% CrI
0·9–1·2), corresponding to 2200 hospitalized cases
(90% CrI 2000–2300). In the second season, the aver-
age severity was higher (1·6%, 90% CrI 1·4–1·8) be-
cause of the older age composition of infected
individuals. This corresponded to 800 hospitalized
cases (90% CrI 680–925). Taken together, in the two

b) Hospitalization/infection ratio s:

a) Attack rate p :

c) IC/hospitalization ratio g :

Season 2009/2010

Prior

Average
0%

0%

5

2 4 6 8

10 15 20%

10% 0% 5 10 15 20%

0% 5 10 15 20%

0–4
5–9

10–14
15–19
20–24
25–29
30–34
35–39
40–44
45–49
50–54
55–59
60–64
65–69

�75
70–74

Prior

Avg. 2009/2010
Avg. 2010/2011

Season 2010/2011

0–4
5–9

10–14
15–19
20–24
25–29
30–34
35–39
40–44
45–49
50–54
55–59
60–64
65–69

�75
70–74

Fig. 3 [colour online]. The attack rate and severity of A(H1N1)pdm09 influenza. (a) The posterior distribution of the
attack rate p (the infected proportion of the susceptible population) by age group in seasons 2009/2010 and 2010/2011. (b)
The posterior distribution of severity s (hospitalization/infection ratio) by age group. (c) The posterior distribution of
intensive care (IC) case/hospitalization ratio g by age group. The parameters s and g were assumed to be the same in the
two seasons. Their averages were different in two seasons due to different age composition of the infected population. The
posterior mean values are highlighted. Note that the scales on the x axes are not the same.
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seasons 1·1% of infections were hospitalized. The
severity followed a V shape (Fig. 3b), with the mini-
mum (0·3%) in those aged 10–14 years, and the two
maximums in the youngest (1%) and the oldest (4%)
individuals.

The average IC/hospitalization ratio (parameter g)
was highest (up to 13%) in the general adult popu-
lation and was lowest in the youngest (3%) and old-
est (4%) individuals. There was wide uncertainty
in the estimates of this parameter. The average IC/
hospitalization ratio was 7% (90% CrI 6–8) in the
first season and 8% (90% CrI 7–9) in the second
season corresponding to 133 and 52 IC cases,
respectively.

Ascertainment probabilities

Figure 4 shows the posterior distributions of the ascer-
tainment probabilities for mild cases (parameter αM),
stratified by age group and region. The weighted aver-
age ascertainment probability was estimated to be

3·9% (90% CrI 3·4–4·3) for the first season, i.e. for
each ascertained case there were about 24 unobserved
infections. The ascertainment probability strongly
depended on region but only weakly on age. During
the first season the estimates varied from 1·3% to
7%, which corresponds to 14–100 unregistered infec-
tions for each ascertained case.

The weighted average ascertainment probability
remained almost the same in the second season
(4·3%, 90% CrI 3·9–4·8). However, there were notable
differences within regions. For example, in Lapland
the ascertainment probability during the second sea-
son was only half that of the first season. Overall,
the regional estimates were more even: from 2% to
6·6%.

The posterior distribution of the ascertainment
probability of hospitalized non-IC infections (par-
ameter αH) followed almost exactly the prior distri-
butions in all age groups. During the second season,
this parameter was known to be zero as no data
were available.

Prior

Varsinais-Suomi
Pohjois-Savo

Lappi
Satakunta

Helsinki ja Uusimaa(*)
Ita-Savo

Pirkanmaa
Paijat-Hame

Kainuu
Keski-Pohjanmaa

Lansi-Pohja
Etela-Karjala

Pohjois-Karjala
Keski-Suomi

Phohjois-Pohjanmaa

Etela-Pohjanmaa

Etela-Savo
Vaasa

Kanta-Hame
Kymenlaakso

Average

0–4
5–9

10–14
15–19
20–24
25–29
30–34
35–39
40–44
45–49
50–54
55–59
60–64
65–69

�75
70–74

0% 2 4 6 8 10% 0% 2 4 6 8 10%

Fig. 4 [colour online]. The ascertainment probability. The posterior distribution of the ascertainment probability for mild
cases αM by age group and region. The posterior mean values are highlighted. The order of the regions is arbitrary.
Helsinki and Uusimaa(*), i.e. the capital region, contains 28% of the population.
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Posterior uncertainty and sensitivity analyses

There was clear posterior dependence in parameters
p, s and αM (see Supplementary Fig. S2). For example,
the proportion of the ascertained number of mild
infections (m/S) was mainly determined by the prod-
uct p×αM. By combining the prior evidence for
these parameters, as well as the data from the several
‘age×region’ strata we were able to identify the mar-
ginal posterior intervals for each parameter.

The choice of prior distributions affected the
estimates (see Supplementary material). The prior
for the ascertainment probability (αM) had the largest
effect. Using a less concentrated prior [a beta
distribution with the same mode 0·25 but a different
standard deviation 0·062 (vs. 0·032)] reduced the esti-
mate of the total number of infections over the two
seasons to half that of the base-case analysis. On the
other hand, using a more localized and shifted prior
(mode 0, standard deviation 0·019) doubled the esti-
mate. The prior distributions for the other parameters
had less pronounced effects on the estimates. For
example, using the uniform prior distribution for
the attack rates decreased the estimate of the total
number of infections by only 3% (8000 infections)
from the base-case analysis. The choice of the prior
distributions had no effect on the observed trends in
the parameters (e.g. attack rates increasing with age).

The base-case model assumed all parameters
(except αM) sharing the same value across the regions.
Allowing the attack rate (p) to vary by region led to
considerably large posterior estimates of the attack
rates and the age trend showing in the ascertainment
probability (αM). This was probably due to the rela-
tively flat prior on the attack rates. However, these
results appear implausible on subjective grounds.
Moreover, the Bayesian Information Criterion (BIC)
favours the base-case model (26000 vs. 31000).

DISCUSSION

We estimated the proportion of the Finnish popu-
lation infected with pandemic influenza strain
A(H1N1)pdm09 during two successive autumn/winter
seasons (2009/2010 2010/2011). In the first season, the
attack rate was 3·9%, corresponding to 211000 in-
fected individuals. During the second season, an ad-
ditional 53000 infections (1% of the total population)
were estimated to have occurred, after accounting
for immunity due to vaccination or infection during the
first season. Most infections were mild and remained

unnotified. In particular, only 4% of infections were
estimated to have been ascertained in the national
registries. The probability of requiring hospitalization,
given influenza infection, was estimated to be ∼1%.

In both seasons, the estimated attack rates
decreased markedly with age. This probably reflects
the increasing age trend in pre-existing immunity
against A(H1N1)pdm09 before the first season, as
indicated by the presence of pre-existing antibodies
against the virus in serum samples collected in
Finland before the present pandemic [1]. In particular,
if the numbers of susceptible individuals in older age
groups had been smaller, the estimated attack rates
would have been larger, while the estimated numbers
of cases would have remained about the same.

The average attack rate in the second season
was estimated to be half of that in the pandemic
(first) season (1·7% vs. 3·9%) even when adjusted for
protection due to infection or vaccination. This may
indicate that it was more difficult for the virus to
spread in the partially immune population. The attack
rate in teenagers (15–19 years) in the second season
was markedly larger than in the other age groups.
This pattern reflects the data, in which the number
of ascertained cases per population in this age group
was significantly larger. Importantly, the proportion
vaccinated in this age range was clearly smaller and
the estimated proportion of susceptible individuals be-
fore the second season was larger than in the younger
age group (Table 2). This could explain why the se-
cond season attacked teenagers disproportionally.

In the current study, we used 80% vaccine efficacy,
irrespective of age group. A lower efficacy would have
meant more individuals remained susceptible before
the second season, therefore the attack rates in the se-
cond season would have been even lower than esti-
mated here. We estimated that vaccination against
A(H1N1)pdm09 prevented 40000 mild, 550 severe,
and 29 IC infections in Finland during the second sea-
son. This was based on a simplifying assumption that
vaccination had no indirect effect on a susceptible
individual’s probability to acquire infection. However,
because the large-scale vaccination probably induced
considerable herd immunity, the numbers of pre-
vented cases may have been under-estimated.

We estimated that there were 24 unobserved
A(H1N1)pdm09 infections for each ascertained case,
with considerable variation across regions (range
14–100). Of note, the average ascertainment probab-
ilities were similar (4%) in both seasons. Nevertheless,
it would have been reasonable to assume that
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underreporting was more common in the second sea-
son due to the reduced concern about A(H1N1)
pdm09. This would have signified a higher attack
rate in the second season. The ascertainment prob-
abilities for mild cases were the only parameters our
analysis allowed to vary by region. Consequently,
some of the regional variation in the estimated ascer-
tainment rates could be accounted for by regional
variation in the actual attack rates.

Given the amount of the data available in this
study, the identifiability of the model is admittedly
an issue. In particular, some rather informative
prior distributions were necessary because otherwise
the parameters would have been unidentifiable.
We chose relatively weakly informative priors for
the attack rates and severities whereas the ascertain-
ment probabilities for mild infection had more in-
formative priors. In addition, to improve the model
identifiability, we assumed some shared parameter
values, e.g. the age-specific attack rates were taken
to be the same across regions.

Although the hospitalization/infection ratio in
a given age group was assumed to be the same over
the two seasons, the generally older age of infected
individuals in the second season led to a higher
average severity. There was a clear V shape in the hos-
pitalization/infection ratio with the youngest and
the elderly more often requiring hospitalization
(Fig. 3b). Some previous studies have estimated the
death/infection ratio as one of the main aims of infer-
ence. In Finland, only a few fatal infections were regis-
tered (44 during the first season and 13 during the
second), complicating statistical inference on this
ratio. A broad definition of A(H1N1)pdm09 infection
was used, including mild asymptomatic infection. This
was necessary because there were no data on sympto-
matic cases due to the lack of outpatient data.

A similar analysis using Bayesian methodology esti-
mated that 11% of the population in the UK was
infected with A(H1N1)pdm09 over two waves in the
2009 pandemic season [6]. The highest (30%) attack
rates were found in the 5–14 years age group. Our esti-
mates of the cumulative incidence of A(H1N1)pdm09
infection in Finland were lower even when accounting
for two successive seasons. However, the severity as
measured by the hospitalization/infection ratio was
actually higher in Finland (all ages: average 1·1% vs.
0·19% in the UK). This also translates into a higher
per-population risk of hospitalization in Finland
(0·06% vs. 0·02%). Another study combined sero-
logical, virological and epidemiological data from

London in a dynamic model leading to even higher
estimates of the attack rate (19% in the population,
52% in the 5–14 years age group) [7]. A comparison
of pre- and post-pandemic serological surveys yielded
an estimated attack rate of 7·6% in the general Dutch
population and a much higher (35%) attack rate in
children aged 5–19 years [15]. The hospitalization
ratio was 0·14%. A meta-analysis of seroepidemiologi-
cal data collected pre- and post-pandemic in 11 count-
ries suggests that more than 20% of the population in
these areas was infected with A(H1N1)pdm09 during
the first year of the pandemic [16]. It would have been
interesting to repeat such analysis. However, post-
pandemic serological data from Finland were not
available.

By applying a more rigid prior distribution for the
ascertainment probabilities, we would have obtained
estimates more similar to those obtained in other
studies [6, 7, 15, 16]. However, we believe that the
less informative prior better reflected our knowledge
about the surveillance in Finland. The estimates of
attack rates and severity in our study were based on
surveillance data about laboratory-confirmed cases
and reasonably vague prior knowledge about the
attack rate, severity and the ascertainment probability
of mild infections. Improved estimates of the burden
and severity of influenza seasons could be obtained
if data, e.g. on symptomatic cases and their hospitali-
zation ratio, could be collected. In the meantime, we
have demonstrated how the overall burden and sever-
ity of influenza outbreaks can be estimated from
specific surveillance data in the presence of underre-
porting and observation biases for severe infections.
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