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Yuntian Zhang,1,2,9 Lantian Yao,3,4,9 Chia-Ru Chung,5 Yixian Huang,1,2 Shangfu Li,1 Wenyang Zhang,2

Yuxuan Pang,6 and Tzong-Yi Lee7,8,10,*
SUMMARY

Kinases as important enzymes can transfer phosphate groups from high-energy and phosphate-donating
molecules to specific substrates and play essential roles in various cellular processes. Existing algorithms
for kinase activity from phosphorylated proteomics data are often costly, requiring valuable samples.
Moreover, methods to extract kinase activities from bulk RNA sequencing data remain undeveloped. In
this study, we propose a computational framework KinPred-RNA to derive kinase activities from bulk
RNA-sequencing data in cancer samples. KinPred-RNA framework, using the extreme gradient boosting
(XGBoost) regression model, outperforms random forest regression, multiple linear regression, and sup-
port vectormachine regressionmodels in predicting kinase activities from cancer-related RNA sequencing
data. Efficient gene signatures from the LINCS-L1000 dataset were used as inputs for KinPred-RNA. The
results highlight its potential to be related to biological function. In conclusion, KinPred RNA constitutes a
significant advance in cancer research by potentially facilitating the identification of cancer.

INTRODUCTION

Kinases, enzymes that catalyze phosphate group transfer, are critical in cancer pathogenesis.1,2 They are the focus of extensive research as

potential drug targets, particularly with multi-targeted receptor tyrosine kinase (RTK) inhibitors for cancer treatment.2,3 As of 2020, 52 small-

molecule protein kinase inhibitors have received approval from theUnited States Food andDrugAdministration (FDA),4 yet the exploration of

many kinases remains limited.5 Therefore, understanding kinase activity profiles in cancer tissues is fundamental to cancer treatment.

Traditional protein kinase activity measurement methods, involving radioactivity and 32P incorporation,6,7 face challenges such as limita-

tions in simultaneous kinase measurement and health risks.8,9 With recent technological advances, non-radioactive methods based on fluo-

rescent or luminescent peptide substrates are gaining popularity. These methods have the advantage of providing a more natural environ-

ment for studying kinase activity, such as the ability to perform studies in cell lysates and live cells. However, measuring a wide range of kinase

activities is still expensive and challenging.

The high costs of non-radioactive kinase activity measurement have prompted a shift toward high-throughput sequencing technology.

Proteomics sequencing data have been used to calculate the corresponding kinase activities.10 In this context, Crowl et al. developed an al-

gorithm called KSTAR to predict patient-specific kinase activities from phosphoproteomics data.10 Their results demonstrated the potential

of computational tools for integrating multiple data types to identify cancer biomarkers and therapeutic targets. Computational tools for the

prediction of kinase inhibitor resistance and selectivity, such as those of Lo et al.11 and Yang et al.,12 demonstrate the utility of these activities.

In addition, deep learningmodels have been proposed for kinase phosphorylation prediction, such as the generic deep convolutional neural

network framework called NetPhosPan by Fenoy et al.13 and the deep learning model EMBER by Kirchoff et al.14 These models accurately

predict kinase activities and phosphorylation events using machine learning algorithms.

Effective biomarkers for diagnosing and treating cancer have been sought for many years. Despite significant advances in non-radioactive

methods for the measurement of kinase activity, studies have not yet explored the correlation between kinase activity and RNA-seq
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Figure 1. The overall workflow of this study

(A) Data collection and preprocessing: To ensure data quality, phosphorylated proteomics data, bulk RNA-seq data, and scRNA-seq data were collected from

five cancer types, including breast cancer (BC), glioblastoma multiforme (GBM), hepatocellular carcinoma (HCC), lung squamous cell carcinoma (LSCC), and

uterine corpus endometrial carcinoma (UCEC). KESA, preprocessing, and Seurat were used to preprocess the three types of data, respectively, to

standardize the data for downstream analysis.

(B) Kinase activity prediction: normalized bulk RNA-seq gene expression profiles and XGBoost regression model were used to construct the kinase activity

prediction model.

(C) Cancer type classification: XGBoost was also used to develop a classification model to differentiate the different cancer types.

(D) Downstream analysis: after model development, performance evaluation, and analysis of predicted kinase activity profiles for scRNA-seq data, we conducted

further investigations to evaluate model performance.
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expression levels in cancer. In addition, there are no studies that have investigated the potential of specific kinase activities as biomarkers for

the differentiation of different types of cancer.15,16 This study aims to bridge this gap with KinPred-RNA, an interpretable machine learning

model for predicting kinase activities from bulk RNA-seq and phosphorylated proteomics data in various cancers. In addition, high-resolution

profiles of kinase activities of individual cells based on their RNA-seq profiles were obtained using single-cell RNA-seq (scRNA-seq) data from

invasive breast cancer tissues. The use of KinPred-RNA can predict kinase activity, providing insight into how computational methods can

identify potential kinases involved in tumorigenesis and other developmental processes that reflect cell heterogeneity.17–19 In short, this study

would demonstrate the immense potential of high-throughput sequencing and computational tools in identifying cancer biomarkers and

therapeutic targets. These findings would represent a major step forward in the quest for more effective cancer diagnosis and treatment stra-

tegies and highlight the need for continued research in this critical area.

To achieve our research goals, we adopted a structured, multi-step workflow, as shown in Figure 1. Our first step was to collect and

preprocess data from five specific cancer types: breast cancer (BC), glioblastoma multiforme (GBM), hepatocellular carcinoma

(HCC), lung squamous cell carcinoma (LSCC), and uterine corpus endometrial carcinoma (UCEC). These data comprised phosphory-

lated proteomics, bulk RNA-seq, and scRNA-seq datasets. The next step was to apply various regression techniques to predict kinase

activity. These techniques included extreme gradient boosting (XGBoost) regression, random forest (RF) regression, multiple

linear regression, and support vector machine (SVM) regression.15–17 In the final step, we rigorously evaluated the developed

models through analysis of the predicted kinase activity profiles, especially for scRNA-seq data. To ensure the reliability of our models,

we carried out additional investigations and validations, providing a path for future research discoveries. For transparency and repro-

ducibility, all analysis was conducted in Python version 3.8.1, and statistical testing was conducted in the R computing environment

(version 4.0.0). BioRender and the ggplot package in R were used to generate visual representations such as the flowchart and other

graphics.
2 iScience 27, 109333, April 19, 2024
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Figure 2. Non-linear regression model links gene expression and kinase activity

(A) Pearson’s correlation coefficient analysis between kinase activity and gene expression profiles of corresponding substrates for different cancer types. The

figure shows the correlation between the level of kinase activity (y axis) and gene expression profiles (x axis) for different cancer types, highlighting the

extremely varied relationship between kinase activity and gene expression.

(B) Benchmark results of XGBoost model for kinase activity of ARAF, ABL1, and CSNK1E with random forest regression, multiple linear regression, and SVM

regression, revealing XGBoost model’s better performance and stability within five cancer types. The three kinases were reported to be associated with

multiple types of tumor growth including breast invasive cancer and colorectal cancer.
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RESULTS

Relationships between kinase activities and gene expression of substrates

Pearson’s correlation coefficients (PCC) were used to evaluate the relationship between kinase activities and gene expression of substrates.

The KSEA algorithm was applied to our previous kinase substrate database to calculate kinase activities. The results shown in Figure 2A re-

vealed that under different cancer conditions, the majority of kinase activities did not show a strong correlation with the gene expression

of substrates. TNK2 kinase activity, for instance, correlated differently with CAT gene expression across cancer types: negatively in HCC
iScience 27, 109333, April 19, 2024 3
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(PCC =�0.8) and positively in LSCC (PCC= 0.89). Similar trends were observed for other kinase-substrate pairs, such as the ARAF-CAT pair in

HCC, where the PCC was �0.81, and in LSCC, where the PCC was �0.87.

However, certain kinase/substrate pairs, such as ABL1 andCAT gene expression, consistently showed negative correlations in various can-

cers, including HCC and LSCC. Despite these findings, it is important to note that the majority of the kinase/substrate pairs did not show

obvious associations in terms of PCCs, and the kinase activity did not consistently affect the gene expression of the substrates under different

cancer conditions.

These findings highlight the complex relationship between kinase activities and the expression of substrate genes, which can vary signif-

icantly between cancer types. Therefore, instead of solely depending on the gene expression of individual substrates, it is crucial to use ma-

chine learning techniques to estimate particular kinase activities. This would enable a better comprehension of the intricate connections be-

tween kinase activity and gene expression, as well as their variations in diverse types of cancer.

Performance of machine learning algorithms on predicting kinase activities

Figure 3 illustrates the performance of various predictive models for three kinases across five cancer types, elucidating the intricate nexus

between kinase activities and cancer. Each of these cancers would have unique characteristics that could affect the accuracy of predicting

the kinase activity. Four machine learning algorithms, XGBoost regression, RF regression, multiple linear regression, and SVM regression

were benchmarked to evaluate the performance of the prediction models.

ARAF, ABL1, and CSNK1E were chosen due to their calculable kinase activities from phosphorylated proteomics data across all five

cancer types, and their known association with tumorigenesis. In terms of selection constrains, ARAF, ABL1 and CSNK1E achieved

good performance in the KinPred-RNA model (higher R2, lower RMSE and mean absolute error [MAE]). All the three kinases were also

reported to be associated with cancer growth and invasion. It was reported that ARAF kinase could negatively regulate ERBB3-AKT

signaling and hence suppress tumor metastasis.20 ABL1 was the first oncogene to be associated with the development of leukemias.21

CSNK1E was covered to be a potential marker for prognosis in colorectal cancer.22 That is why the three kinases were chosen as the bench-

mark kinases.

The XGBoost and RF regression models performed better than multiple linear regression and SVM regression models in predicting

kinase activity across all five cancer types. The XGBoost model displays more consistent performance across cancer types (HCC, LSCC,

GBM, BC, and UCEC) with smaller variations in R2, RMSE, and MAE for the three kinases (ARAF, ABL1, and CSNK1E), compared to the

RF model. This finding was particularly noteworthy given the heterogeneity of these cancers, highlighting the importance of accurately

predicting kinase activities across different cancers. That is why XGBoost was chosen as the basic model of KinPred-RNA. Particularly,

the model performed exceptionally well, accurately predicting over 50% of kinase activities with an R2 value greater than 0.5, in HCC

and LSCC (Figure 3A). Accurate kinase activity prediction could facilitate the development of targeted therapies, significantly impacting

cancer diagnosis and treatment. The relatively smaller sample sizes could explain the weaker performance of the model in GBM and

BC. The numbers of BC and GBM individuals (including both bulk RNA-seq datasets and corresponding phosphoproteomics data) are

122 and 108 which are ranked the relative lower two cancer types among the five cancer types (202 in LSCC, 115 in UCEC, and 318 in

HCC). This variability could be attributed to the complex relationships between kinase activity and cancer specificity, alongside batch ef-

fects in samples. Therefore, further research is needed to better understand the complex interactions between kinases and cancer types,

which may ultimately lead to improved diagnosis and treatment of cancer. Another key finding is the positive correlation between the pro-

portion of kinases with an R2 above 0.5 and the sample size in each cancer type dataset, indicating that larger cohorts improve the per-

formance of KinPred-RNA (Figure 3B; PCC = 0.61).

To identify key features in the kinase activity predictionmodel and improve interpretability, we used the feature importance function of the

XGBoost model. In Figure 3C, we selected ARAF, ABL1, and CSNK1E as examples to demonstrate the main contributing genes to the three

kinases (Table 1). Each type of cancer was characterized by specific genes that contribute to the XGBoost model. For example, the top genes

which contribute to ABL1’s activity predictionmodel among the five cancer types (BC,GBM,HCC, LSCC, andUCEC) areAURKB, ETS1, PGM1,

UBE2C, and SNCA. These findings underscore the impact of cancer-specific genes on kinase phosphorylation. AURKB was reported to be a

potential prognostic indicator in early basal-like breast cancer.23 ETS1 was used to be reported to be a key factor in tumor angiogenesis in

GBM.24 PGM1 encodes an enzyme involved in glycogenmetabolism. The downregulation of PGM1 in HCCwas previously known to be asso-

ciated with the malignancy of HCC.25 It was observed that UBE2C could promote squamous cell carcinoma and the expression of UBE2C is

higher in cancer tissue samples than adjacent normal tissues.26 SNCA was previously known for its role in Parkinson’s disease, but recent ev-

idence suggests that it may also be involved in tumorigenesis, and its downregulation has been associated with a better prognosis in LUAD.27

Our results here may indicate the potential influence of specific genes to several kinases’ phosphorylation levels and this influence could be

related to tumorigenesis.

Performance of machine learning algorithms on identification of cancer types

To illustrate the potential of kinase activity-based differentiation of cancer types, we ranked kinases in cancer tissues by their predictability

(Table S6). The predictive ability was evaluated using the R2 derived from the prediction models developed in this study. Figure 3A visualizes

the proportions of kinases with high prediction results (R2 > 0.3 or 0.5). HCC and LSCC achieve the best prediction results with 53% and 59%

kinases performing high predictability (R2 > 0.5). Yet, only 11% of kinases in GBMdemonstrate good predictability (R2 > 0.3) when utilizing the

bulk RNA-seq dataset. To further investigate the predictive power of these kinases, the 10 highest and lowest predictable kinases were
4 iScience 27, 109333, April 19, 2024
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Figure 3. Kinase activity prediction results and corresponding feature importance

(A) R2 distribution results of kinase activity predictionmodel for five cancer types based on KinPred-RNAmodel. Kinases are classified into three groups according

to their predictability (R2). Dark yellow represents kinases with R2 smaller than 0.3. Dark blue represents kinases with R2 between 0.3 and 0.5. Dark red represents

kinases with R2 larger than 0.5.

(B) Linear relationship between the proportion of kinases with R2 larger than 0.5 and sample size of each cancer type datasets. Each point indicates one cancer

type. (Pearson’s r = 0.61) The dark area is the confidential interval.

(C) Feature importance produced by KinPred-RNA model for kinases ABL1, ARAF, and CSNK1E, indicating cancer-type specific characteristics of contributing

genes among each cell type.
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iteratively selected. The top 10 kinases with the highest predictability were identified and shown in Table 2, while the bottom 10 kinases rep-

resented those with the lowest predictability. These 10 kinases were used as input features for the XGBoost multi-classification model to pre-

dict the corresponding cancer type of each sample.

In particular, using the top 10 kinases as inputs, the model attained a micro F1-score of 0.885 in cancer type differentiation. The confusion

matrix shown in Figure 4A illustrates the classification accuracy. In contrast, the model achieved only 0.627 micro F1-score when using the 10

least predicted kinases as input features (Figure 4B). Apart from that, when we utilized kinases ranked 31–40 and kinases ranked 91–100, the

metrics also corresponds to our hypothesis (micro F1-score = 0.783; micro F1-score = 0.682). This result further confirmed the effectiveness of

the rankingmethod used for evaluating kinase predictability. The classification accuracies achieved with different numbers of kinases as input

features were compared to evaluate the performance of the model. Figure 4C shows ROC curves for the top 10 kinases used in five binary

classification models, each differentiating one specific cancer type from four others. Each plot includes the benchmark results of XGBoost,

RF, logistic regression, and SVM. As we can see from the five plots, XGBoost and RF performed best than logistic regression and SVM in

the binary classification tasks. The area under the receiver operating characteristic curve (AUC) for XGBoost binary classification model in

BC, GBM, HCC, LSCC, and UCEC is 0.937, 0.908, 0.919, 0.894, and 0.923, respectively. F1-score, accuracy, Mathew’s correlation coefficient
iScience 27, 109333, April 19, 2024 5



Table 1. Feature importance of LINCS-L1000 genes contributing to KinPred-RNA model of ARAF, ABL1, and CSNK1E’s kinase activity

Cancer Kinase Gene Importance Cancer Kinase Gene Importance

BC ARAF CDC25A 0.4147 GBM ARAF SNAP25 0.3047

ABL1 AURKB 0.2905 ABL1 ETS1 0.1687

CSNK1E AURKB 0.3099 CSNK1E SNAP25 0.2369

ARAF AURKB 0.1310 ARAF CHAC1 0.0656

ABL1 CDC25A 0.1529 ABL1 SNAP25 0.1164

CSNK1E CDC25A 0.1602 CSNK1E SYNGR3 0.2073

ARAF MTERFD1 0.0378 ARAF SMARCA4 0.0555

ABL1 CDH3 0.0836 ABL1 STXBP1 0.0940

CSNK1E CDK1 0.0782 CSNK1E ALDOC 0.0544

ARAF PLK1 0.0350 ARAF UBE2L6 0.0536

ABL1 XBP1 0.0681 ABL1 KIF20A 0.0671

CSNK1E MVP 0.0565 CSNK1E EIF4EBP1 0.0538

ARAF EPHA3 0.0332 ARAF TRAM2 0.0402

ABL1 CCND1 0.0532 ABL1 PYCR1 0.0564

CSNK1E WASF3 0.0516 CSNK1E GDPD5 0.0372

HCC ARAF PHKB 0.5638 LSCC ARAF UBE2C 0.7429

ABL1 PGM1 0.2892 ABL1 UBE2C 0.6572

CSNK1E MSRA 0.2810 CSNK1E UBE2C 0.5706

ARAF AGL 0.1478 ARAF E2F2 0.0345

ABL1 PHKB 0.2859 ABL1 KIF20A 0.1376

CSNK1E AGL 0.2387 CSNK1E CCNB1 0.1446

ARAF PGM1 0.0505 ARAF PYCR1 0.0314

ABL1 MSRA 0.1501 ABL1 EIF4EBP1 0.0366

CSNK1E MYLK 0.1296 CSNK1E TIMELESS 0.0735

ARAF MSRA 0.0499 ARAF GAPDH 0.0168

ABL1 PXMP2 0.0419 ABL1 ADRB2 0.0159

CSNK1E PGM1 0.0509 CSNK1E ORC1 0.0731

ARAF TOP2A 0.0204 ARAF TLR4 0.0142

ABL1 GSTZ1 0.0390 ABL1 GAPDH 0.0152

CSNK1E GRWD1 0.0396 CSNK1E CDC25A 0.0380

UCEC ARAF RGS2 0.2565 UCEC CSNK1E GHR 0.0858

ABL1 SNCA 0.4648 ARAF GHR 0.0715

CSNK1E RGS2 0.3986 ABL1 ADRB2 0.0527

ARAF TPM1 0.2484 CSNK1E TCEAL4 0.0834

ABL1 GHR 0.1222 ARAF SNCA 0.0686

CSNK1E ILK 0.1469 ABL1 LBR 0.0380

ARAF PLK1 0.0763 CSNK1E TUBB6 0.0487

ABL1 CGRRF1 0.0718
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(MCC), AUC of the four models for five cancer types can be found in Table 3. These results confirm the robustness of the model in predicting

kinase activities in different cancer types and highlight the importance of selecting kinases with the highest predictability as input features to

achieve the highest accuracy rate in classifying specific cancer types.
Investigations for applying kinase activities prediction models on scRNA-seq data

After demonstrating the effectiveness of KinPred-RNAwith bulk RNA-seqdatasets, we assessed its robustness using two separate scRNA-seq

datasets. First, we tested our kinase model in invasive breast cancer tissue samples. We utilized scRNA-seq data from GSE180286, encom-

passing samples from five primary breast cancer donors, as provided by Xu et al.28 Figure 5A shows the UMAP29 plot of primary breast cancer
6 iScience 27, 109333, April 19, 2024



Table 2. The top 10 kinases ranked according to their R2 values for five different cancer types based on KinPred-RNA (LINCS-L1000 gene signatures + XGBoost)

Kinase BC Kinase GBM Kinase HCC Kinase LSCC Kinase UCEC

MAPK3 R2 0.7862 MAP4K5 R2 0.7340 CIT R2 0.9336 ERN1 R2 0.9104 MAP4K5 R2 0.9308

RMSE 0.4402 RMSE 0.3833 RMSE 0.2540 RMSE 0.3114 RMSE 0.2404

MAE 0.3491 MAE 0.3141 MAE 0.1728 MAE 0.2066 MAE 0.1849

MAPK1 R2 0.7408 PRKCI R2 0.7045 CDK1 R2 0.9293 IRAK1 R2 0.9058 MAP3K1 R2 0.9032

RMSE 0.5375 RMSE 0.3920 RMSE 0.2479 RMSE 0.3173 RMSE 0.2852

MAE 0.4574 MAE 0.3069 MAE 0.2001 MAE 0.2210 MAE 0.2193

CSNK1E R2 0.7374 SRPK1 R2 0.6560 TAOK3 R2 0.9289 SRPK3 R2 0.9036 IRAK1 R2 0.9019

RMSE 0.4487 RMSE 0.3945 RMSE 0.2636 RMSE 0.3240 RMSE 0.2891

MAE 0.3681 MAE 0.3297 MAE 0.1931 MAE 0.2478 MAE 0.2403

ABL1 R2 0.7319 ABL2 R2 0.6423 TNK2 R2 0.9272 MAPK14 R2 0.9018 MAPK3 R2 0.8972

RMSE 0.4601 RMSE 0.4665 RMSE 0.2603 RMSE 0.3223 RMSE 0.2866

MAE 0.3770 MAE 0.3821 MAE 0.1912 MAE 0.2432 MAE 0.2064

ERN1 R2 0.7267 CDK2 R2 0.5996 CAMKK2 R2 0.9250 CSNK2A1 R2 0.8988 CIT R2 0.8967

RMSE 0.4712 RMSE 0.5396 RMSE 0.2706 RMSE 0.3267 RMSE 0.2807

MAE 0.3664 MAE 0.4313 MAE 0.1954 MAE 0.2290 MAE 0.2367

CDK2 R2 0.6577 KIT R2 0.5931 IRAK1 R2 0.9177 MAP3K1 R2 0.8907 CAMKK2 R2 0.8857

RMSE 0.4874 RMSE 0.4429 RMSE 0.2901 RMSE 0.3350 RMSE 0.2996

MAE 0.4053 MAE 0.3430 MAE 0.2198 MAE 0.2399 MAE 0.2346

CDK1 R2 0.6396 ABL1 R2 0.5819 PIK3CA R2 0.9141 CAMKK2 R2 0.8887 PLK1 R2 0.8818

RMSE 0.5724 RMSE 0.6341 RMSE 0.2854 RMSE 0.3471 RMSE 0.3073

MAE 0.4873 MAE 0.5011 MAE 0.2126 MAE 0.2207 MAE 0.2343

MAPK13 R2 0.5416 CAMK2G R2 0.5774 MAP4K5 R2 0.9104 TAOK3 R2 0.8881 TNK2 R2 0.8816

RMSE 0.6154 RMSE 0.6329 RMSE 0.2845 RMSE 0.3502 RMSE 0.3049

MAE 0.4907 MAE 0.4973 MAE 0.2187 MAE 0.2125 MAE 0.2556

ARAF R2 0.5281 LATS1 R2 0.5759 CDK2 R2 0.9072 ARAF R2 0.8881 ARAF R2 0.8805

RMSE 0.6487 RMSE 0.4937 RMSE 0.2987 RMSE 0.3247 RMSE 0.3188

MAE 0.5428 MAE 0.4156 MAE 0.2376 MAE 0.2302 MAE 0.2614

PAK1 R2 0.5272 CAMKK2 R2 0.5600 PAK1 R2 0.8985 PLK1 R2 0.8858 MAP4K4 R2 0.8798

RMSE 0.5986 RMSE 0.4486 RMSE 0.2996 RMSE 0.3210 RMSE 0.3221

MAE 0.4931 MAE 0.3422 MAE 0.2356 MAE 0.2241 MAE 0.2414

The R2 values represent the goodness of fit of the developed prediction models for each kinase in each cancer type. RMSE means root-mean-square error and MAE means mean absolute error.
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Figure 4. Cancer type classification ability of high predictable kinases’ activity as input features based on XGBoost classification model

(A) Confusion matrix of XGBoost multi-classification model with ten highest predictable kinases’ activity as the input features and with ten lowest predictable

kinases’ activity as the input features, indicating better performance of higher predictable kinases’ activity as the input features in classifying cancer types.

(B) Classification performances of XGBoost multi-classification model with combinations of kinases with different predictability (ranked according R2).

(C) ROC curves of four binary classification models including XGBoost, random forest, logistic regression, and support vector machine for tasks including BC vs.

others; GBM vs. others; HCC vs. others; LSCC vs. others; UCEC vs. others.
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tissues. Total cells were grouped into 14 clusters. PTPRC and EPCAM, recognized as marker genes for immune and epithelial cells respec-

tively,30,31 were used for cell type identification. EPCAM was reported to be an indicator for epithelial status of primary and systemic tumor

cells. Here, PTPRC shows high expression level in clusters 3, 4, 5, 7, 10, and 12 while EPCAM shows high expression level in clusters 2, 8, 9, and

11 (Figure 5B). Thus, we annotated clusters 3, 4, 5, 7, 10, and 12 as immune cells and clusters 2, 8, 9, and 11 as epithelial cells (Figure 5C). We

applied KinPred-RNA model based on bulk RNA-seq datasets previously to the breast cancer scRNA-seq model. The results of the kinase

activity for each cell recapitulate specific kinases that could be associated with tumorigenesis. For example, Polo-like kinase 1 (PLK1), a

serine/threonine protein kinase, was upregulated in breast cancer compared to normal.32 KinPred-RNA identifies PLK1 to be differentially
8 iScience 27, 109333, April 19, 2024



Table 3. Benchmarking results of using top 10 kinases with highest predictability (highest R2) for binary classifying cancer types based on four models

Cancer type metric XGBoost RF Logistic Regression SVM

BC F1-score 0.9765 0.9661 0.7890 0.8368

Accuracy 0.9770 0.9677 0.8525 0.8756

MCC 0.9086 0.8712 0.1607 0.3982

AUC 0.9367 0.8939 0.5152 0.5909

GBM F1-score 0.9714 0.9760 0.8512 0.9063

Accuracy 0.9724 0.9770 0.8894 0.9217

MCC 0.8723 0.8946 0.3560 0.6004

AUC 0.9081 0.9107 0.5714 0.6964

HCC F1-score 0.9260 0.9256 0.6529 0.6707

Accuracy 0.9263 0.9263 0.6774 0.7097

MCC 0.8460 0.8467 0.3003 0.3976

AUC 0.9195 0.9156 0.6281 0.6474

LSCC F1-score 0.9389 0.9428 0.9468 0.9468

Accuracy 0.9401 0.9447 0.9493 0.9493

MCC 0.8214 0.8347 0.8507 0.8507

AUC 0.8944 0.8899 0.8854 0.8854

UCEC F1-score 0.9767 0.9860 0.9367 0.9430

Accuracy 0.9770 0.9862 0.9447 0.9493

MCC 0.8656 0.9195 0.6349 0.6710

AUC 0.9235 0.9498 0.7355 0.7594

The R2 values represent the goodness of fit of the developed prediction models for each kinase in each cancer type.

Note: AUC: area under the receiver operating characteristic curve; MCC: Matthew’s correlation coefficient.
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activated between epithelial cells and immune cells (mean expression 2.147–1.810; p value <2.23 10�16; Figure 5D). Additionally, PAK1 was

known to be a breast cancer oncogene and the activation of PAK1 could lead to malignant transformation.33 Our results reveal that PAK1

activity is differentially expressed between epithelial cells and immune cells (mean expression 3.905–1.966; p value <2.2 3 10�16). CDK2

was reported to be required for breast cancer through low molecular weight isoform of cyclin E and CDK2 inhibitor together with CDK4/6

inhibitor could be used for the treatment of breast cancers.34,35 We found CDK2 was differentially activated between epithelial cells and im-

mune cells (mean expression 12.418–9.357; p value <2.23 10�16). Overall, these findings indicate KinPred-RNA recovers previous findings in

breast cancer samples.

On the other hand, lung cancer tissues were used to evaluate the efficacy of KinPred RNA. We collected primary lung adenocarcinomas

scRNA-seq datasets (GSE131907).36 The scRNA datasets of Lung cancer sample 8th and normal sample 8th were used to build kinase activity

profiles through KinPred-RNA model obtained previously. t-SNE plot showing the two samples were visualized in Figure 5E.37 ROCK1 and

ROCK2 are protein serine/threonine kinases and the key modulators in tumor cell invasion. It was reported that ROCK1 and ROCK2 are

required for non-small cell lung cancer anchorage-independent growth38; and suppression of ROCK1 and ROCK2 was sufficient to impair

this type of growth. Here, KinPred-RNA reports UBE2C as the main contributing genes to the ROCK1 and ROCK2 activity prediction, high-

lighting cancer type specific factors contributing to kinase activity prediction (Figure 5F). The differential expression of ROCK1 and ROCK2

activities between lung cancer and normal samples was confirmed by our analysis (ROCK1 mean expression: 0.220–0.215; p value <2.2 3

10�16; ROCK2 mean expression: 7.457–6.071; p value <2.2 3 10�16; Figure 5G). These findings suggest that KinPred-RNA could accurately

infer the relative kinase activities in the cell-type specific levels. Our tools could implicate the possibility of utilizing pan-cancer scRNA-seq

datasets to understand cell-type specific activities comprehensively.

DISCUSSION

Given the limited knowledge about many kinases, understanding kinase activity profiles in cancer tissues is crucial. To address this issue, we

developed KinPred-RNA, a machine-learning model that uses bulk RNA-seq data to predict kinase activities in various cancers. Our model

was used todistinguish cancer types based on kinase activities and to estimate these profiles using single-cell RNAdata.When predicting kinase

activity from cancer tissue-derived bulk RNA-seq datasets, KinPred-RNA outperformed baseline models. To further validate our model, we

generated a list of kinases ranked by their predictability, revealing those that were most reliable in classifying multiple cancer types. Our kinase

activity predictionmodels identified kinases with significantly different activities between cell groups from scRNA-seq samples of invasive breast

cancer. Our results demonstrate the reliability of KinPred-RNA and its potential downstream applications. Our approach, utilizing bulk RNA-seq
iScience 27, 109333, April 19, 2024 9
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Figure 5. Application of KinPred-RNA model to pan-cancer scRNA-seq datasets

(A) UMAP plot of a breast invasive scRNA-seq dataset (GSE180286) clustered into 14 groups.

(B) Relative log-transformed transcriptional expression level of PTPRC and EPCAM among 14 clusters. PTPRC is used as the marker gene for immune cells and

EPCAM is used as the marker gene for epithelial cells.

(C) Annotated results of UMAP plot indicated in (A). Immune cells group and epithelial cells group are labeled.

(D) Violin plot of PLK1 predicted kinase activity among immune cells and epithelial cells. PLK1, mean level 2.147 � 1.810, p < 2.2 3 10–16.

(E) t-SNE plot of a primary lung adenocarcinomas scRNA-seq dataset containing LUNG 08 tumor sample donor and LUNG 08 normal sample donor (GSE131907).

(F) Violin plot of PAK1 and CDK2 predicted kinase activity among immune cells and epithelial cells. PAK1, mean level 3.905� 1.966, p < 2.23 10–16; CDK2, mean

level 12.418 � 9.357, p < 2.2310–16.

(G) Relative feature importance of genes contributing to KinPred-RNA model of kinases ROCK1 and ROCK2. Gene UBE2C was observed to be the main

contribution of the model.

(H) Violin plot of ROCK1, ROCK2 predicted kinase activity among tumor cells and normal cells. ROCK1, mean level 0.220 � 0.215, p < 2.2310–16; ROCK2, mean

level 7.457 � 6.071, p < 2.2310–16.

ll
OPEN ACCESS

iScience
Article
datasets fromhuman tissues for kinase activity prediction, is rare and novel.Ourmethodbridges the gap betweenbulk RNA-seqdata and kinase

activities without requiring prior access to phosphoproteomics data from cancer tissues, as done in previous research such as the KSTAR algo-

rithm by Crowl et al.10 Our kinase activity prediction model could be used to construct kinase activity profiles for different cancer types. In brief,

our study provides valuable insights into the complex and poorly understood field of kinase activity profiling in cancer.

The identification of cancer types has been a major concern in the bioinformatics community for a long time. In the past, as shown by Lu

et al.,39 researchers have used miRNA profiles to classify cancers. Our study introduces an innovative approach for cancer type identification

by analyzing kinase activities. We validated this approach by achieving high classification accuracy, demonstrating that highly predictable

kinases based on bulk RNA-seq data can be used to accurately classify specific cancer types. scRNA sequencing technology has revolution-

ized our ability to study biological processes in detail. To identify differentially expressed kinases that can be used to distinguish between

different cell groups, our research takes advantage of this cutting-edge technology. Through the construction of kinase activity profiles for

invasive breast cancer at the single cell level, we identified kinases with potential as clinical markers for cancer diagnosis and treatment.

Further experimental validation of our findings could lead to a significant improvement in the health care system.

Researchers have thoroughly examined kinase functions, identifying multiple ligand-receptor pairs influencing phosphorylation. Attrib-

uting kinase phosphorylation to a limited number of ligand bindings oversimplifies its regulation and ignores the complexity of multiple influ-

encing factors. The lack of paired bulk RNA-seq and proteomics datasets, crucial for linking mRNA levels with kinase activity, presents a sig-

nificant challenge. Furthermore, tissue samples possess inherent complexity and scRNA-seq data are sparse, exacerbating the already

challenging situation. These difficulties have always hindered the ability to draw definite inferences. To address data sparsity, utilizing

bulk RNA-seq data have proven significantly effective. Furthermore, the inclusion of LINCS-L1000 gene signatures can estimate the remaining

80% of unmeasured transcripts, which helps to substantially reduce the noise generated by excessive features in the data. Given these ad-

vancements, KinPred-RNA emerges as a promising tool. Its interpretive power and capacity tomodel non-linear relationships enable effective

linking of mRNA expression with pan-cancer kinase activity. Understanding the intricate relationship between mRNA levels and kinase func-

tional mechanisms is a major step forward with this groundbreaking approach.

KinPred-RNA outperformed other methods in predicting kinase activity in the five studied cancer types. It accurately estimatedmore than

50%of kinase activities with R-squared greater than 0.5 in HCCand LSCC tissues. Thismodel has enormous potential as a powerful tool for the

construction of kinase activity profiles of specific cancer types, as well as for the identification of abnormal kinases that contribute to the path-

ogenesis of specific cancer diseases. Furthermore, our model could rapidly estimate the functions of specific kinases in cancer and help to

predict clinical prognosis. In the future, to improve the applicability of our model and to gain a broader understanding of the functions of

specific kinases in the pathogenesis of cancer diseases, we aim to include more cancer tissue samples. KinPred-RNA will play an important

role in advancing the field of bioinformatics and promoting the improvement of healthcare in the fight against cancer.
Limitations of the study

Although our research has demonstrated the utility of our model in the prediction of specific kinase activities and the classification of cancer

types, it is not without limitations. A major limitation of our model is that its performance varies across cancer types. While our model has

proven effective in predicting kinase activity in HCC and LSCC, its accuracy in GBM is comparatively lower. Moreover, in vivo and in vitro ex-

periments are crucial to validate the functions of kinases identified by our model. These experiments would be essential for the confirmation

of the potential clinical significance of our findings and for the identification of themost promising targets for therapeutic intervention. Never-

theless, we are confident in the potential of our model, which combines LINCS-L1000 gene signatures and bulk RNA-seq data, to accurately

predict kinase activity profiles of specific cancer types.

We also recognized the challenge posed by the lack of corresponding phosphorylated proteomics and bulk RNA-seq data in developing our

model. This challenge could be addressed with more research focusing on pan-cancer gene expression and phosphorylated proteomics. Addi-

tionally, the complex landscapeof pan-cancer samples is another challenge since various cancer typeandpatients’ personal conditionsmay have

agreat impact on the trainingofKinPred-RNA.Conqueringbatch effectsduringmodel training is another critical issue, especially considering the

diverse nature of cancer types and patient conditions. To address this issue, we applied a 0–1 transformation to the gene expression levels within

the same type of cancer. Despite the challenges, KinPred-RNA is a promising tool for the advancement of kinase phosphorylation research.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

BC bulk RNA-seq https://gdc.cancer.gov/ dbGaP: phs000892

GBM bulk RNA-seq https://gdc.cancer.gov/ dbGaP: phs001287

HCC bulk RNA-seq https://ega-archive.org/ Access ID: EGAS00001005074

LSCC bulk RNA-seq http://www.iprox.org/index Access ID: IPX0001833000

UCEC bulk RNA-seq https://gdc.cancer.gov/ dbGaP: phs001287

BC phosphorylated proteomics data https://pdc.cancer.gov/ Access ID: PDC000120

GBM phosphorylated proteomics data https://pdc.cancer.gov/ Access ID: PDC000205

HCC phosphorylated proteomics data https://www.ebi.ac.uk/ Access ID: PXD025836

LSCC phosphorylated proteomics data http://www.iprox.org/index Access ID: IPX0001833000

UCEC phosphorylated proteomics data https://pdc.cancer.gov/ Access ID: PDC000441

BC scRNA-seq https://www.ncbi.nlm.nih.gov/ Access ID: GSE180286

LSCC scRNA-seq https://www.ncbi.nlm.nih.gov/ Access ID: GSE131907

Software and algorithms

KinPred-RNA This paper https://github.com/tibettiger/kinase_prediction

XGBoost Chen T et al.15 https://xgboost.readthedocs.io/en/stable/

R Seurat package CRAN https://cran.r-project.org/web/packages/Seurat/index.html

sklearn Pedregosa et al.40 https://scikit-learn.org/stable/

R ggplot2 package CRAN https://cran.r-project.org/web/packages/ggplot2/index.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Prof. Tzong-Yi Lee (leetzongyi@

nycu.edu.tw).

Materials availability

No new unique reagents were generated in this study.

Data and code availability

� Pan-cancer bulk RNA-seq data and corresponding phosphorylated proteomics data have been deposited at the NCI’s Genomic Data

Commons (https://gdc.cancer.gov/, https://pdc.cancer.gov/), the European Genome-phenome Archive (https://www.ebi.ac.uk/),

iProx (http://www.iprox.org/index) and are publicly available as of the date of publication. Accession numbers are listed in the key re-

sources table.
� Single-cell RNA-seqdata have been deposited atGEO (https://www.ncbi.nlm.nih.gov/) and are publicly available as of the date of pub-

lication. Accession numbers are listed in the key resources table.
� All original code has been deposited at https://github.com/tibettiger/kinase_prediction and is publicly available as of the date of

publication.
� Additional information to reanalyze the data reported in this paper is available from the lead contact.

METHOD DETAILS

Data collection and preprocessing

The rigorous data collection process for the development of the kinase activity prediction models was critical to this study. To ensure the

accuracy and reliability of the model, a large collection of independent cancer samples was obtained from recent research studies,28,41–45

including breast cancer (BC), glioblastoma multiforme (GBM), hepatocellular carcinoma (HCC), lung squamous cell carcinoma (LSCC), and
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uterine corpus endometrial carcinoma (UCEC). For the input RNA-seq dataset, log2 transcripts per kilobase million (TPM) normalized

RNA-seq datasets of multiple pan-cancer samples were obtained. Including such diverse cancers allowed for a more comprehensive and

nuanced analysis of kinase activity. In addition to the RNA-seq data, the study also included corresponding phosphorylated proteomics data-

sets to complement the transcriptomic information from previous studies.28,41–45 Paired bulk RNA-seq data and phosphorylated proteomics

datasets were collected in parallel. This comprehensive approach allowed to better understand kinase activities in these five cancers. The

kinase activities were then calculated from the phosphorylation proteomics data based on the kinase substrate enrichment method. We

downloaded phosphoproteomics data from the National Cancer Institute’s Proteomic Data Commons (PDC, https://proteomic.

datacommons.cancer.gov/pdc/). Abnormal samples in the data were screened out by quality control analysis. Phosphorylation sites with

more than 50% missing values were filtered. K-nearest neighbor (k-NN) imputation was applied to impute the missing values. Then the

data was normalized and used for kinase activity analysis. Phosphoproteomics-based single-sample kinase activity was calculated with refer-

ence to a single-sample gene function enrichment analysis method. The main steps were to utilize the in-house constructed kinase-substrate

dataset with kinase as the name and substrate as the member of the dataset, and utilize the already well-established single-sample gene

function enrichment analysis algorithm, plage, to compute the activity of the kinase by R package gene set variation analysis (GSVA).43 As

a valuable resource for future studies, the calculated kinase activity profiles were deposited on GitHub for public access (https://github.

com/tibettiger/kinase_prediction/tree/main/data/kinase_activity).

The LINC-L1000 dataset, a set of gene signatures that was reported to represent another 81% non-measured transcripts in the whole

genome was used in this study to predict kinase activity in cancer settings.44 The LINC-L1000 dataset has previously demonstrated efficacy

in predicting drug-induced cell viability and drug-drug interactions (DDI),36 and in this study it outperformed other gene signatures in pre-

dicting kinase activity under cancer conditions. To expand the scope of the kinase activity prediction model, scRNA-seq data from invasive

breast cancer (GSE180286) and lung adenocarcinomas (GSE131907) was also incorporated into the study.28,36 The integration of the scRNA-

seq data allowed for a more detailed understanding of the cellular mechanisms underlying the initiation and progression of cancer. As an

essential resource for future research in this field, the data collection methods used in this study provide a rich and diverse dataset for the

development and validation of kinase activity prediction models.
Development of kinase activities prediction models

The development of a reliable tool for the prediction of kinase activity levels in specific cancer types is a critical task, and the process has two

major steps. For training themodel, 60% of the bulk RNA-seq datasets and corresponding kinase activities’ profiles were used as training sets,

20% as testing sets, and 20% as validation sets. In the first step, all of the transcriptomic data is processed to create a refined data set that

consists only of the LINCS-L1000 gene signatures that have been shown to be effective in predicting drug-induced cell viability and

DDI.45 Genes not included in this set are excluded to ensure the most accurate prediction of kinase activity. In order to deal with batch effects

caused by individual samples, the expression profiles of LINCS-L1000 genes were 0-1 normalized per sample base before used as features.

In the second step, the LINCS-L1000 transformed gene expression dataset is applied to four powerful predictionmodels, XGBoost regres-

sion, RF regression, multiple linear regression, and SVM regression.15–17 RF regression, multiple linear regression and SVM regression are

well-established methods for modeling the relationship between dependent and independent variables, while XGBoost has demonstrated

its effectiveness in predicting both continuous and discrete data. Through analysis of the gene expression levels in each sample, XGBoost

generates a prediction score for each leaf node of the decision tree. This score is then used to construct multiple weak estimators through

numerous iterations, allowing the model to accurately predict kinase activity levels under specific cancer conditions. The prediction of kinase

activity is then defined as the sum of the prediction scores of all trees, as shown below.

KA =
XK

k = 1
fk
�
samplei½GEL�� (Equation 1)

KA, fk(samplei[GEL]), and K represent kinase activity values, predicted score of k-th decision tree for i-th sample on LINCS-L1000 trans-

formed gene expression values, and number of decision trees, respectively. Then, the prediction score KA of the model can be described

as follows during the t-th iteration of the sample.

KAðtÞ = KAðt � 1Þ+ ft
�
samplei½GEL�� (Equation 2)

To ensure highest accuracy and reduce prediction bias, 5-fold cross-validation was performed using GridSearchCV from Python package

scikit-learn version 0.19.1.46 The adjustable parameters of the XGBoost model, including max_depth and n_estimators, were optimized to

achieve the best performance in predicting the corresponding kinase activity levels. The max_depth was set in the range of 4 to 7 and the

n_estimators in the range of 100 to 500, allowing an extensive search for the best combination of parameters. This rigorous parameter tuning

approach helped to reduce prediction bias and improve the predictive accuracy of the model, making it more effective at identifying kinase

activity associated with cancer.30,31

A comprehensive approach was used to evaluate the effectiveness of different gene signatures in predicting kinase activity in different

cancers. XGBoost regression, RF regression, multiple linear regression, and SVM regression were used to develop models for each type

of gene signature. R2, root mean square error (RMSE), and mean absolute error (MAE) were used as the performance metrics to evaluate

the accuracy of the models in predicting kinase activity in five different cancer types: BC, GBM, HCC, LSCC, and UCEC. R2 represents the

proportion of variation in the dependent variable, kinase activities, explained by the independent variable, gene expression levels. It ranges
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from negative infinite to 1, where 1 indicates a perfect fit between the predicted and actual values. Therefore, a more accurate prediction of

kinase activity is indicated by a higher R2 value. The R2 formula used in this study is shown below.

R2 = 1 � SSresidual

SStotal
(Equation 3)
SSresidual =
X

i
ðyi � by iÞ2 (Equation 4)
SStotal =
X

i
ðyi � yÞ2 (Equation 5)

SSresidual represents the residual sum of squares, SStotal represents the total sum of squares, yi represents the actual number of targets, by i

represents the predicted number of targets, and y represents the average number of all targets.

RMSE means root mean square error and MAE means mean absolute error. Both the two metrics could be used for measuring the differ-

ence between true or predicted values. The RMSE and MAE formula used in this study is shown below.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1

ðYi � XiÞ2
s

(Equation 6)
MAE =

Pn
i = 1

jYi � Xij
n

(Equation 7)

n represents the total number of samples,Xi represents the actual value of the sample, and Yi represents the predicted value of the sample.
Classifying five types of cancer using kinase activities

To gain a deeper understanding of the differences between the five types of cancer, classification models based on different kinase activities

were developed. The models were constructed using the 10 kinase activities that had the highest R2 values from the prediction models as the

input features including ABL1, MAPK3, CDK2, CAMKK2, TAOK3, MAPK1, MAPK5, ERN1, PLK1 and TNK2. In this study, we developed an

XGBoostmulti-classificationmodel and five binary classificationmodels. The XGBoostmodel serves the purpose of simultaneously classifying

all five types of cancer, to obtain an organized overview. Conversely, each binary model is specifically tailored to differentiate between one

type of cancer and the remaining four. For example, one of our models focuses on BC compared to the other types. To assess the effective-

ness of our models in binary classification tasks, we compared their performance against four widely utilized machine learning algorithms:

XGBoost classification, RF classification, logistic regression, and SVM classification. Through this comparison, we evaluated the relative

strengths and weaknesses of our models as compared to established methods in the field. The AUC was used to evaluate the performance

of the binary classifier. AUCmeasures the ability of themodel to discriminate between positive and negative samples and is a commonmetric

used to evaluate the performance of classification models. It ranges from 0 to 1, with 1 indicating perfect classification. A higher AUC value

indicates better classification performance. F1-score, accuracy and MCC were also utilized to measure the binary classification performance.

All kinases were ranked according to their predictability, as assessed by the R2 values of the kinase activity predictionmodel, to identify the

most important kinases for cancer classification. The top 10 kinases with the highest predictability were selected as input features for the clas-

sifier, while the bottom 10 kinases including PRKACB,MAP2K2, BRAF, BMP2K, PAK4, RET, IKBKB, RAF1, PIM2 and PIM3 were also selected to

demonstrate the superiority of the top 10 kinases in classifying specific cancer types. In short, these approaches allowed for a comprehensive

evaluation of the effectiveness of different kinases in predicting and classifying specific cancer types.

Analysis of kinase activity profiles predicted by KinPred-RNA for breast cancer tissues and lung cancer tissues

In this study, we applied the KinPred-RNA model to infer cell-specific kinase activity in scRNA-seq datasets, with the goal of evaluating the

effectiveness of the KinPred-RNA model, which was originally developed using bulk RNA-seq data. To determine the validity of the model’s

performance, we focused on two cancer tissues: invasive breast cancer (GSE180286)47 and lung cancer (GSE131907).36 The composition of

cancer tissues includes a variety of cell types. These include immune cells, epithelial cells, and stromal cells. To accurately identify and label

these cell types in breast cancer tissue, we used well-established marker genes such as PTPRC for immune cells and EPCAM for epithelial

cells.30,31 In addition, to improve our understanding of cell composition, we used Seurat20 to cluster and analyze multiple cell groups within

the breast cancer scRNA-seq datasets. Each cell groupwasmanually identified and annotated to ensure the accuracy of cell type labeling.We

analyzed scRNA-seq data from both tumor (LUNG_T08) and normal (LUNG_N08) tissue samples of lung cancer tissue to determine differen-

tial kinase activation patterns. The scRNA-seq data was aligned with the pretrained KinPred-RNAmodel through normalization of the data by

transforming the log2 transcripts per kilobasemillion (TPM) gene expression values to a 0-1 scale for each cell. Our analysis identifiedmultiple

kinases that displayed varied activation levels between immune and epithelial cells. Notably, kinases linked with tumor invasion exhibited
16 iScience 27, 109333, April 19, 2024
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distinctive activation patterns. This discovery is significant for cancer diagnosis and treatment as it introduces new kinases thatmay function as

biomarkers for discerning between different cell categories within cancerous tissues.
QUANTIFICATION AND STATISTICAL ANALYSIS

Model construction and computations were performed in the Python programming language. The graphic abstract and Figure 1 were gener-

ated byMicrosoft PowerPoint. R ggplot2 packagewas used for generating all other plots appearing in this study. scRNA-seq dataset analyses

andUMAPplot generating are performed using the standard pipeline of R package Seurat. In the comparison of phosphorylation levelmeans

in each group, Student’s t test was performed.
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