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Atherosclerosis and its complications diseases remain leading causes of cardiovascular

morbidity and mortality, bringing a massive burden on public health worldwide.

Atherosclerosis is recognized as chronic inflammation, and involves several highly

correlated processes, including lipid metabolism dysfunction, endothelial cell

dysfunction, inflammation, oxidative stress, vascular smooth muscle cell activation,

platelet activation, thrombosis, altered matrix metabolism, and vascular remodeling.

Within the past few decades, accumulating evidence has shown that the Yes-associated

protein (YAP), the major effector of the Hippo pathway, can play a crucial role in

pathogenesis and development of atherosclerosis. Activation of YAP-related pathways,

which are induced by alerting flow pattern and matrix stiffness among others, can

regulate processes including vascular endothelial cell dysfunction, monocyte infiltration,

and smooth muscle cell migration, which contribute to atherosclerotic lesion formation.

Further, YAP potentially modulates atherosclerotic complications such as vascular

calcification and intraplaque hemorrhage, which require further investigation. Here, we

summarized the relevant literature to outline current findings detailing the relationship

between of YAP and atherosclerosis and highlight areas for future research.

Keywords: atherosclerosis, Yes-associated protein, Hippo pathway, intraplaque hemorrhage, vascular

calcification

INTRODUCTION

Atherosclerosis, a pathologic process underlying most cerebrovascular and cardiovascular diseases
such as ischemic heart disease and stroke, remains a predominant cause of morbidity and mortality
globally, carrying a considerable burden on public health (1, 2). Atherosclerosis is characterized
by chronic inflammation in the arterial wall and, is triggered by endothelial cell dysfunction and
structural alterations, including loss of the continuous luminal elastin layer and the exposure of
proteoglycans (3). This process, impairs the endothelial barrier and permits the subendothelial
aggregation of low-density lipoprotein (LDL) to form asymmetric focal thickenings of the intima.
Endothelial cells can be activated by oxidized LDL (ox-LDL) and other risk factors that promote
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expression of adhesion proteins and release of chemokines,
which prompts intimal immune cell infiltration and deposition
of platelet-derived chemokines. Fatty streaks, the early lesions
that consist of T cells and macrophage-derived foam cells,
are prevalent in young people and, may progress to atheroma
or eventually disappear. Continuous aggregation of cellular
debris and cholesterol crystals can form the necrotic core of
the plaque. Fibrous plaques can be covered by a fibrous cap
composed of collagen fiber and smooth muscle cells, which
can be infiltrated by macrophages in the thinning inflamed
caps that are prone to rupture (4). During plaque formation,
various histological alterations (e.g., calcification, intraplaque
hemorrhage) can occur in the involved artery, which may
contribute to the plaque vulnerability.

Atherosclerotic lesions occur primarily in arterial branches,
bifurcations, and curvatures, with uneven distribution of
lesions throughout the vascular tree (5). This site-specificity
gives rise to the hydromechanics effect on the pathogenesis
of atherosclerosis, where blood flow-induced shear stress
plays a vital role in determining where most vascular lesions
originate. The correlation between shear stress, produced by
different flow patterns, and atherosclerosis has been investigated
since its first introduction by Caro et al. in 1969 (6). Multiple
studies revealed that it was the vascular endothelium has
different behavioral responses to flow patterns both at the
cellular and molecular levels, mediating the hydromechanics
effect. The molecular mechanisms underlying endothelial
cells mechanotransduction by which cells translate these
physical and mechanical cues into biochemical signals, thereby
controlling activation and phenotypic changes include multiple
mechanosensitive transcription factors, such as NF-κB,HIF-1α,
KLF2/4, AP-1, and NRF2 (7). Additionally, Yes-associated
protein (YAP) is involved in the pathogenesis of atherosclerosis
as a critical mediator in mechanosensing and signal transduction
of endothelial cells.

Initially identified as a protein that interacts with the Src
family tyrosine kinase Yes protein (8), YAP is a transcription
cofactor that can act both as a corepressor and a coactivator
and is a critical downstream regulatory target in the Hippo
signaling pathway crucial to cell mechanotransduction
processes (9). In 2014, Chitragari et al. first reported the
relationship between flow pattern and YAP, where altered
flow pattern stimulates changes in YAP expression in
endothelial cells (10). This concept was further studied
by Wang et al. in 2016, whose study showed that YAP
and coactivator TAZ mediate flow-dependent endothelial
phenotypes switching to modulate atheroma formation (11).
Apart from mediating hydromechanics effects, over the past
few years, mounting evidence also has demonstrated YAP
activity in other pathophysiological processes leading to
initiation and progression of atherosclerotic lesions, such
as monocyte infiltration, smooth muscle cell activation,
and trans-differentiation. The emerging roles of YAP makes
it a potential target to develop prevention and treatment
strategies for atherosclerosis. Therefore, we review current
findings to elucidate the role of YAP in atherosclerosis and
related complications.

YAP AND ITS REGULATION

Basic Structure of YAP
YAP (also termed as YAP65 or YAP1) is a 65 kDa, proline-
rich phosphoprotein. It was first identified in 1994 by Sudol
et al. due to its binding to the SH3 domain of the Src family
of non-receptor tyrosine kinase Yes, from which it got its
name (8). According to the human genome database (http://
www.ncbi.nlm.nih.gov), the coding gene named Yes1 associated
transcriptional regulator (YAP1) has nine transcripts encoding
nine YAP isoforms. From N-terminus to C-terminus, YAP
contains a proline-rich domain, a transcriptional enhancer
associate domain (TEAD)-binding domain, one or two WW
domains, an SH3-binding domain, a coiled-coil domain, a
transcription activation domain, and a C-terminal PDZ-binding
domain (12). YAP isoforms mainly differ in the number of
WW domains and in the amino acids sequence in the TEAD-
binding domain (13). In Figure 1, we have illustrated the YAP
domain structure and several associated binding factors. The
WW domain, composed of two strictly conserved tryptophan
residues, refers to a protein-protein interaction domain and
recognizes the PPxY (proline/proline/any amino acid/tyrosine)
motif contained in various protein factors (14, 15). These protein
factors include transcription factors and regulatory proteins
that interact with YAP, such as large tumor suppressor (LATS)
(15), runt-related transcription factor (RUNX) (16), activating
protein-2 (AP-2) (17), angiomotins (AMOTs) (18), c-Jun, and
C/EBPα (19). Whether YAP bears one or two WW domains
is dependent on alternative splicing, classifying YAP into two
isoforms: YAP1-1 (with one WW domain) and YAP1-2 (with
two WW domains) (13). As a transcriptional cofactor, it lacks
the DNA-binding domain, which requires interaction with
other cofactors or transcriptional factors through the structural
binding site to perform transcriptional regulation. Biological
activity of YAP is mainly mediated by forming a complex with
the TEAD transcription factors family members 1–4. A highly
conserved loop called the PXX8P (proline/ any amino acid/
any amino acid/ hydrophobic residue/ proline) motif in the N-
terminal TEAD-binding domain is crucial to the interaction
between YAP and TEAD factors (12).

Regulation of YAP
YAP transcriptional activity depends on its subcellular location,
which is regulated by multiple signaling pathways through which
YAP can exert versatile effects on various biological processes
such as cell proliferation, cell fate determination, tumorigenesis
and mechanosensing. The regulatory signal pathways of YAP are
illustrated in Figure 2.

Hippo Pathway

Amongst those pathways associated with YAP, the Hippo
pathway is the most classical. The Hippo pathway was first
discovered in Drosophila and is highly conserved. The pathway
in mammals mainly consists of mammalian STE20-like protein
kinase 1/2 (MST1/2), large tumor suppressor 1/2 (LATS1/2),
Salvador familyWWdomain-containing protein 1 (SAV1), MOB
kinase activator 1A/B (MOB1), mitogen-activated protein 4
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FIGURE 1 | Schematic of YAP domain architecture, major binding sites and factors. From N-terminus to C-terminus, YAP contains a proline-rich domain, a

TEAD-binding domain, one or two WW domains, an SH3-binding domain, a coiled-coil domain, a transcription activation domain, and a C-terminal PDZ-binding

domain. The PXX8P motif in the TEAD binding domain is important for the interaction between YAP and TEAD 1-4. S127, S397, primary phosphorylation sites by

LATS1/2, which is a major modulation of YAP function.

kinase 4, YAP, transcriptional co-activator with PDZ-binding
motif (TAZ), and its downstream target TEAD family members
1–4 (15, 20–23). TAZ, homologous to YAP, has similar molecular
architectures and biological functions, often referred to as
YAP/TAZ (24). The Hippo pathway mainly suppresses tumor
oncogenesis in the physiological state, and activation can be
induced via multiple stimuli. After being activated by upstream
stimuli, the pathway is initiated by phosphorylation of MST1/2
associated with SAV1, which can further stimulate LATS1/2
and its cofactor MOB1 by phosphorylation. Phosphorylation of
the complex further phosphorylates the transcription cofactors
YAP, in turn, leading to YAP binding with 14-3-3 protein in
the cytoplasm and inhibiting nuclear translocation of YAP.
While the Hippo pathway is inactivated, the unphosphorylated
YAP translocates to the nucleus and binds to the TEAD
transcription factor family to regulate the expression of target
genes including MYC proto-oncogene bHLH transcription
factor (MYC), baculoviral IAP repeat-containing 5 (BIRC5),
AXL receptor tyrosine kinase (AXL), connective tissue growth
factor (CTGF), or cysteine rich angiogenic inducer 61 (CYR61).
Moreover, the stability of YAP can be modulated through
its phosphorylation by the casein kinase 1 ε/δ (CK1 ε/δ)
complex, further inducing its ubiquitination by the recruitment
of the E3 ubiquitin ligase Skp1-Cul1-F-box β-transducin repeat-
containing protein (SCF-β-TrCP). The process above ultimately
leads to degradation of YAP by the proteasome (25).

Non-Hippo Pathways

Other signaling pathways, such as the G protein-coupled receptor
(GPCR), Wnt, transforming growth factor-β (TGFβ), epidermal
growth factor (EGF), and Notch pathways, also have regulatory
effects on YAP transcriptional activity through crosstalk with the
Hippo pathway or independent of the Hippo pathway (26–30).
Moreover, YAP/TAZ can also be regulated by mechanical signals

from cell microenvironment (9, 31, 32). In fact, YAP/TAZ plays
crucial roles in cellular mechanosensing, affecting differentiation
direction and cell fate. Extracellular matrix rigidity and cell
geometry regulate YAP/TAZ transcriptional activity through Rho
GTPase activity and tension of the actomyosin, independent of
the Hippo cascade (9). High extracellular matrix rigidity and
wide cell spreading upshift YAP/TAZ nuclear location. Chang
et al. reported a completely differentmechanism in 2018, showing
that the switch/sucrose non-fermentable (SWI/SNF) chromatin-
remodeling complexes competitively inhibit interaction between
YAP/TAZ and TEAD factors by binding with YAP/TAZ via
mediation of the AT-rich interactive domain-containing protein
1A (ARID1A) subunit. This kind of modulation of YAP activity
can be regulated by cellular mechanical signals under low
mechanical stimulation, the SWI/SNF–YAP/TAZ complex forms,
while under conditions of high mechanical stress, nuclear F-
actin fibers bond with SWI/SNF complexes, which promotes
formation of YAP/TAZ-TEAD complexes to exert transcriptional
activities (33).

Post-translational Modifications

Some PTMs on various amino acid residues, including
phosphorylation, O-GlcNAcylation, acetylation, methylation,
and ubiquitination, also can regulate YAP transcriptional
activity, some signal pathways mentioned above also have
modulating effects. Phosphorylation is the primary post-
translational regulator of YAP activity. In the context of the
Hippo pathway, YAP is phosphorylated by LATS1/2 at five
serine residues (Ser61, Ser109, Ser127, Ser164, and Ser397), two
of which are major sites involved in regulating YAP activity
(34). Phosphorylation of the Ser127 site by LATS1/2 leads to
interaction with 14-3-3 protein, causing cytoplasmic retention
and activity inhibition of YAP. Further, the nuclear Dbf2-
related kinases (NDR1/2) also can phosphorylate Ser127 of YAP,
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FIGURE 2 | Schematic of the YAP regulatory pathway. The biological function of YAP are regulated by the Hippo-dependent pathways (including the Hippo pathway

and other cross-talk signal pathways such as GPCR-mediated pathways and Integrin-mediated pathways) and Hippo-independent pathways such as BMP, TGF-β,

WNT, etc. YAP, yes-associated protein; GPCR, G protein-coupled receptors; BMP, bone morphogenetic protein; AMOT, angiomotin; FRMD, FERM domain-containing

protein; MST1/2, Mammalian STE20-like protein kinase 1/2; SAV, Salvador family WW domain-containing protein; LAST1/2, Large tumor suppressor 1/2; MOB1,

MOB kinase activator 1; FTK, fusion tyrosine kinases; TEAD, transcriptional enhancer associate domain; ARID1A, AT-rich interactive domain-containing protein 1A;

SWI/SNF, switch/sucrose non-fermentable complex.

leading to cytoplasmic retention and promotion of apoptosis and
cell cycle regulation (35). LATS1/2 phosphorylation of Ser397
regulates protein stability by facilitating further phosphorylation
of YAP on Ser400 and Ser403 by CK1ε/δ, leading to a
“phosphodegron motif” formed with pS397/pS311 in the C-
terminal region of YAP. This motif can recognize and recruit an
adaptor of SCF E3 ubiquitin ligase called β-TrCP, which targets
YAP for ubiquitination and facilitates proteasomal degradation
(36). JUN N-terminal kinases (JNK1 and JNK2), in addition to
the Hippo pathway, can phosphorylate YAP at five sites (Thr119,
Ser138, Thr154, Ser317, and Thr362), leading to various effects
dependent on cell context (37). The non-receptor tyrosine kinase
c-Abl is reported to phosphorylate YAP at Tyr357 to promote the
binding affinity of YAP and p73, leading to proapoptotic gene
expression (38). However, another non-receptor tyrosine kinase
Yes phosphorylates YAP on the same site with c-Abl to induce
an opposite effect. The phosphorylation promotes formation
of the β-catenin–YAP complex, leading to YAP inhibition and

downregulation of gene expression (39). The Ser/Thr protein
kinase cyclin-dependent protein kinase 1 (CDK1) phosphorylates
YAP at three residues (Thr119, Ser289, and Ser367), to regulate
the cell cycle and promote cell migration and invasion (40).
However, evidence indicates another three residues where CDK
phosphorylates YAP: Ser138, Thr143, and Ser367 (41).

Apart from phosphorylation, O-GlcNAcylation is another
PTM that alters YAP function, in which O-linked b-N-
acetylglucosamine (O-GlcNAc) modifications are attached to
serine or threonine residues by O-GlcNAc transferase (42).
Zhang et al. found that O-GlcNAc transferase acts at the Thr241
site on YAP to promote YAP stabilization and target gene
expression (43). At Ser109, O-GlcNAc transferase acts on YAP
to disrupt the interaction between YAP and LAST1 (44). Other
PTMs that have a regulatory effect on YAP include acetylation,
methylation, and ubiquitination. The key enzymes and acting
sites involved in these PTMs are summarized in Table 1 with the
sequential effects.
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TABLE 1 | Summary of major post-translational modifications (PTM) patterns of YAP.

Modification Enzyme Acting Site Effect References

Phosphorylation LATS1/2 Ser 127 Cytoplasmic retention by binding of 14-3-3 (45)

Ser 397 Facilitates further serine site

phosphorylations

CK1δ/ε Ser 400 Ser 403 Generates a “phosphodegron” with Ser

397

(45)

c-Abl Tyr 357 Increasing the binding affinity of YAP1 and

p73, activating proapoptotic gene

expression

(38)

Activate endothelial cell dysfunction (46)

Src/YES1 Induces formation of the β-catenin–YAP

complex

(39)

CDK1 Thr119, Ser289,

Ser367

Regulating cell cycle (40)

Ser138, Thr143,

Ser367

(41)

NDR1/2 Ser127 Cytoplasmic retention by binding of 14-3-3 (35)

JNK (JNK1 and JNK2) Thr119 Ser138, Thr154

Ser317, Thr362

Inducing cell-context dependent effect of

YAP

(37)

Ubiquitination SCFβ-TRCP / Protein degradation (36)

Fbxw7 (47)

TRAF6 Lys252 Upregulates chemokine production and

macrophage migration

(48)

Monomethylation Set7 Lys 494 Cytoplasmic retention (49)

Acetylation CBP/p300 Changing transcriptional activity (50)

Methylation SETD7 Lys494 Cytoplasmic localization (49)

YAP/β-catenin complex stabilization and

β-catenin nuclear relocalization upon WNT

stimulation

(51)

O-GlcNAcylation O-GlcNAc transferase Thr241 Stabilizes YAP and promotes oncogenic

functions of YAP

(43)

Ser109 Disrupts the interaction between YAP and

LATS1

(44)

YAP IN THE INITIATION AND
DEVELOPMENT OF ATHEROSCLEROSIS

YAP and Endothelial Cell Dysfunction
Endothelial cells, lining the inner layer of the vasculature and
located at the interface between the circulation and extracellular
matrix of the vessel wall, respond to multiple environmental
stimuli, mainly from blood flow, such as ox-LDL and shear
stress, leading to endothelium inflammation and dysfunction
which triggers the process of atherosclerosis. Among these
stimuli, shear stress is responsible for the uneven distribution of
atherosclerotic lesions throughout the arterial tree. Shear stress is
produced by different blood flow patterns, including laminar flow
and distributed flow, and can modulate endothelial phenotypes
and intercellular junctions, playing crucial roles in endothelial
dysfunction. YAP mediates this process as a mechanosensitive
transcription factor, in which laminar flow (unidirectional flow)
with high shear stress induces endothelial protective effects
and disturbed flow with oscillatory wall shear stress evokes
proatherogenic responses (5, 7).

In 2016, three research teams reported independently that
flow-dependent transactivation of YAP in endothelial cells
regulates initiation and development of atherosclerosis (11, 52,
53). By exposing cultured endothelial cells (including human
umbilical vein endothelial cells (HUVEC) and human aortic
endothelial cells) to disturbed flow, Wang et al. found that YAP
was activated and translocated into the nucleus to increase the
expression of target genes. These target genes, including CYR61,
CTGF, and ankyrin repeat domain 1 (ANKRD1), prompted
inflammation and proliferation in endothelial cells and were
inhibited by laminar flow exposure through YAP inactivation.
The authors further explored the effect of YAP inhibition
on atherosclerotic lesion development in the partial-ligation
ApoE−/− mouse model and found that in vivo inhibition of
YAP/TAZ activation significantly reduces the total burden of
atherosclerotic plaques. These results indicated that disturbed
flow induces YAP activation to promote the atheroprone
phenotypes switch in endothelial cells and atherosclerosis
development (52). However, the mechanism through which flow
patterns act on YAP translocation remained unexplained.
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Another study conducted by Xu et al. may provide a plausible
answer that shear stress-regulated YAP/TAZ activity is dependent
on the Hippo pathway. They discovered that laminar flow
markedly increases YAP phosphorylation at Ser127 in a LATS1/2-
dependent manner of in the HUVEC model, which leads to
cytoplasmic retention and activity inhibition of YAP (53). This
study, however, failed to provide further information about how
the flow pattern influenced signaling the upstream of the Hippo
pathway. More detailed research performed by Wang et al.
demonstrated that overexpression of integrin β3 by cytoplasmic-
domain-deleted integrin (β31cyto) reversed laminar flow-
induced YAP phosphorylation in HUVECs, whereas knockdown
of integrin β3 or G-protein subunit Gα13 attenuates YAP
phosphorylation. Given that the physical interaction between
integrin β3 and Gα13 induces RhoA inhibition, the study
also found that overexpression of RhoA by transfecting
HUVECs with constitutively active RhoA (Q63L) reduces YAP
phosphorylation induced by laminar flow. Further experiments
showed that activation of YAP increased JNK signaling to
induce adhesion molecule expression and inflammation in
endothelial cells. These results indicated that the atheroprone
phenotype disturbs flow-induced endothelial YAP activation,
which promotes inflammation and atherogenesis by enhancing
JNK activity. By contrast, laminar flow exerts an atheroprotective
effect by inhibiting YAP through the integrin β3/ Gα13/RhoA
pathway (11).

Another integrin-related pathway is be involved in the
regulation of YAP activity by disturbed flow. Li et al. found
that oscillatory shear stress led to YAP phosphorylation at
Y357 instead of Ser127 following integrin α5β1 activation,
which eventually promotes nuclear translocation of YAP in
endothelial cells. Further mechanistic studies showed that a
non-receptor protein tyrosine phosphatase c-Abl mediates this
process. Inhibition of c-Abl attenuates the integrin α5β1-induced
YAP tyrosine phosphorylation. Thus, disturbed flow activates
YAP transcriptional activity by phosphorylation at Y357 through
the integrin α5β1/c-Abl pathway (46). Li et al. also found
that specific knock-down of YAP in endothelial cells obviously
retarded plaque formation compared with control group in
carotid ligation model of ApoE−/− mice. However, more detailed
information about plaque morphology, stability indices and cell
composition of YAP knock-down artery was not given in the
article. Interestingly, integrin α5β1 also mediates another mode
of YAP activity by fibronectin (54), a substance that can be
induced by atherogenic shear stress and contributes significantly
to inflammation signaling in the atheroprone site (55, 56).
Yun et al. found that fibronectin bonded with integrin α5 and
then recruited and activated phosphodiesterase 4D5 (PDE4D5)
by inducing its dephosphorylation. Activated PDE4D5 then
facilitated B55α-PP2A complex assembly, which promoted
YAP dephosphorylation and activation, leading to endothelial
inflammation and atherosclerosis initiation (54). This study
provided a novel mechanism regulating flow-dependent YAP
transactivation. Moreover, Yuan et al. conferred a novel insight
into this issue. Their experiment showed that unidirectional flow
(laminar flow) inhibits YAP activity by promoting autophagy
and inducing SIRT1-mediated YAP deacetylation, which further

facilitates nuclear export and subsequent degradation of YAP,
while in the context of this experiment, disturbed flow had no
effect on autophagy and YAP acetylation (57). The molecular
mechanism underlying disturbed flow-dependent YAP nuclear
translocation and activation requires further exploration.

Amongst cellular microenvironment, matrix stiffness
is another mechanical cue that is highly associated with
atherosclerotic burden and able to regulate YAP/TAZ activity.
Carotid-femoral pulse wave velocity (cf-PWV), a gold standard
for arterial stiffness measurement (58), has been proven to have
positive correlation with atherosclerotic burden indicators such
as carotid intima–media thickness and carotid plaque presence
(59). Through atomic force microscopic study (ATM), Hayashi
et al. have found in rabbit model endothelial cells in medial wall
of aortic bifurcation, where the flow pattern is turbulent, are
stiffer than other regions, indicating that matrix stiffness can be
regulated by shear stress (60). In turn, matrix stiffness can also
affect endothelial response to shear stress via YAP/TAZ Recently,
a study performed on vessel-chip model revealed that substrate
stiffness modulated the endothelial shear mechanoresponse
(61). Stiffer substrates increased nuclear localization of YAP in
endothelial even under high shear, whereas low shear strongly
increased nuclear localization of YAP across stiffnesses. Combing
with previous findings, this result indicates that high matrix
stiffness play a casual role in initiation of atherosclerosis via
activation of YAP/TAZ.

Moreover, YAP also is involved in many other atherogenic
factors that mediated endothelial cells dysfunctions. Junctional
protein associated with coronary artery disease (JCAD) is
an intercellular junctional protein in endothelial cells that
is, significantly associated with myocardial infarction and
coronary artery disease (62, 63). JCAD regulates pathological
angiogenesis, promotes endothelial cells proliferation, and
inhibits apoptosis (62). Recent studies reveal that JCAD
also can promote atherosclerosis by inducing endothelial
cells dysfunction via YAP regulation (64, 65). Jones et al.
found that JCAD activates YAP by interacting with LATS2
and inhibiting its activity, resulting in YAP activation and
expression of target genes (e.g., CTGF, CCND1, and BIRC5).
They also found that JCAD mediated Hippo/YAP pathway
regulation in a RhoA-dependent manner (64). Given that
RhoA is downstream of the integrin β3/ Gα13/RhoA pathway
mentioned above (11), this result complements previous work
and indicates that JCAD regulation can be flow-pattern
dependent. Intriguingly, this concept was validated by another
study showing that atheroprotective unidirectional laminar
flow inhibited, while atheroprone disturbed flow enhanced,
JCAD expression in human endothelial cells (65). Additionally,
ox-LDL and cholesterol crystal treatment increase JCAD
gene expression, adding an alternative explanation to ox-
LDL regulation of YAP in the context of atherosclerosis.
JCAD promotes YAP/TEAD formation by interacting with
the actin-binding protein TRIOBP, leading to stabilization
of F-actin stress fibers. Additionally, a cytosolic adaptor
protein called ShcA promotes atherosclerotic progression
by triggering nuclear translocation of YAP, which further
prompts intercellular adhesion molecule (ICAM) expression and
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endothelial inflammation (66). ox-LDL, a potent atherogenic
factor (67), induces endothelial cells dysfunction through
suppression of YAP rather than activation (68–70). Hu et al.
showed that ox-LDL induces endothelial cells dysfunction and
atherosclerosis by increasing miR-496 expression, followed by
reducing YAP protein expression (68). Vestigial-like 4 (VGLL4)
and naringin protect endothelial cells from apoptosis and
inflammation by reversing ox-LDL-induced YAP attenuation
(69, 70). Given that endothelial cell-specific knockdown of YAP1
gene attenuates endothelial cells inflammation in vitro and
atherosclerotic plaque burden in vivo (11, 46, 52), it stands to
reason that these contradictory results mentioned above still have
doubts in credibility due to the lack of information about YAP
subcellular location protein and need further exploration and
validation. Different cell types and inflammatory stimuli may be
possible causes of these discrepancies.

YAP and Monocyte Infiltration and
Macrophage Activation
During atherosclerosis development, activated endothelial cells
recruit blood monocytes to migrate into the intima. Then
monocytes differentiate into macrophages that absorb lipid
deposits and cellular debris to form foam cells, further
accumulating to form a lipid pool (71). By specific YAP/TAZ
knockdown in monocytes, Wang et al. (52) found that the
up-regulation of β2 integrin and ICAM1 induced by tumor
necrosis factor-α (TNFα) in THP1 cells is blunted, leading to
inhibition of their adherence to the activated endothelial cells
without altering the plasticity of THP1monocyte-to-macrophage
differentiation (52). Moreover, YAP activation in macrophages
by TNF receptor-associated factor 6 (TRAF6)-mediated YAP
ubiquitination at Lys252 upregulates chemokine production
and macrophage migration, accelerating atherosclerotic lesions
formation (48). Macrophage phenotype switching from M1 to
M2 subtypes plays a crucial role in atherosclerotic inflammation
recession and plaque regression (72). In chronic inflammatory
disease that YAP impairs the interleukin-4 (IL-4)/IL-13-
induced M2 macrophage polarization, whereas YAP promotes
the lipopolysaccharide/interferon γ -triggered M1 macrophage
activation (73). However, it remains unclear how YAP regulates
macrophage polarization in atherosclerosis. Thus, further study
on this aspect is needed in the future. YAP roles played in
endothelial cells and monocytes in the context of atherosclerosis
initiation are summarized in Figure 3.

YAP and Vascular Smooth Muscle Cell
Proliferation and Migration
In response to multiple atherogenic factors, vascular smooth
muscle cells (VSMCs) undergo a phenotype switch from
contractile to synthetic, migrate to the intima from the media,
and proliferate, leading to atherosclerotic plaque development
(74, 75). VSMCs also can transdifferentiate into macrophage-
like cells in the plaque (76). YAP also is associated with
VSMC migration and proliferation. Although study has shown
that specific YAP1 knockout in VSMCs in mice results in
abnormal development of large arteries and perinatal lethality

(77), there is a lack of studies performing SMC-specific
knock-down of YAP in atherosclerosis models. Kimura et al.
reported that Hippo pathway activation promotes cAMP-
induced actin-cytoskeleton remodeling to inhibit YAP/TEAD
complex-dependent expression of pro-mitogenic genes, leading
to proliferation inhibition (78). A Kunitz-type proteinase
inhibitor called tissue factor pathway inhibitor-1 (TFPI-1) is
a major physiological inhibitor of the TF-initiated coagulation
process. Xiao et al. found that TFPI-1 knockout in VSMCs
reduces interaction between TFPI-1 and AMOT, which led to
a decrease in YAP phosphorylation, thus increasing nuclear
translocation of YAP. Further, this induces VSMC migration
and proliferation, contributing to atherosclerosis (79). Above all,
these results indicate that activation of YAP can promote VSMC
proliferation and migration which contribute to atherosclerotic
plaque development. However, VSMC can also generate
extracellular matrix to form the fibrous cap and hence stabilize
plaques in late-stage lesion (69). There is a lack of studies
on YAP’ activity in VSMC of late-stage lesions which need
further exploration.

YAP IN ATHEROSCLEROTIC
COMPLICATIONS

YAP and Atherosclerotic Calcification
Arteriosclerotic calcification, commonly regarded as a late-
stage complication of atherosclerotic plaques, is an active
process under tight regulations and is an independent predictor
of cardiovascular morbidity and mortality (80). Although
calcification of atherosclerosis plaques used to be considered
unregulated and a passive deposition of calcium in the arterial
wall, it is now well-recognized as a complex pathophysiological
phenomenon resembling intramembranous ossification (81).
YAP can interact with various factors involved in osteoblast
development and maturation, such as Runx2 (82), bone
morphogenic protein-2 (BMP-2) (83), and β-catenin (84). YAP
plays a crucial role in human adipose-osteogenic differentiation,
where increasing YAP activity, either pharmacologically or by
genetic manipulation, enhances osteogenic differentiation but
suppresses differentiation to adipocytes (85). VSMCs undergo
trans-differentiation and osteogenic differentiation and make a
significant contribution to vascular calcification (86). A recent
study showed that cytoplasmic YAP/TAZ in VSMCs interacts
with disheveled 3 (DVL3) to avoid its nuclear translocation,
thereby inhibiting osteogenic differentiation (87). In high
phosphate-induced vascular calcification models, increasing YAP
activity through glycosylation byO-GlcNAc transferase promotes
VSMC osteogenesis and vascular calcification (88). However, the
network regulating YAP activity in atherosclerotic calcification
still requires further research.

YAP and Intraplaque Hemorrhage
Intraplaque hemorrhage is a feature of advanced atherosclerotic
plaques and is considered a critical factor in plaque growth
and vulnerability (89). Angiogenesis in the vasculature is a
significant cause of intraplaque hemorrhages (90). Recently,
several studies have discovered that YAP plays a critical role
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FIGURE 3 | YAP roles played in endothelial cells and monocytes in the context of atherosclerosis initiation. YAP-related pathways involved in the initiation and

development of atherosclerosis are summarized.

during angiogenesis. Activation of YAP, induced by multiple
stimuli, such as knockdown of the E3 ligase HECW2, vascular
endothelial growth factor (VEGF), and Cellular communication
network factor 1 (CCN1), upregulatesANG-2 expression, thereby
promoting angiogenic sprouting (91–93). These results indicate
that YAP has a potential role in intraplaque hemorrhage by
promoting angiogenesis, although further research is needed to
elucidate a direct linkage.

YAP AS THE TARGET OF
ANTI-ATHEROSCLEROSIS THERAPEUTIC
STRATEGIES

Verteporfin
Verteporfin (VP) is a second-generation lipophilic
photosensitizer derived from benzoporphyrin and, contains

an aromatic heterocyclic ring molecule and four modified
pyrrole units interconnected through methine bridges. It is
used clinically in photodynamic therapy to treat neovascular
macular degeneration (94, 95). VP is a potent YAP inhibitor
and disrupts physical interactions between YAP and TEAD
(96). In a study performed in an ApoE−/− mouse model by Jain
et al., intra-arterial administration of VP caused accumulated of
VP in atherosclerotic plaques in a short time inducing plaque
macrophages apoptosis which may inhibit plaque development.
However, evidence is still lacking regarding the direct effect
of VP on the size of atherosclerotic plaques. Additionally,
further detailed research required on the efficacy and safety of
photodynamic therapy on atherosclerosis using VP.

Statins
As the most commonly used anti-atherosclerosis drug, statins
inhibit YAP activation and prevent YAP-mediated tumor growth;
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this effect is, regarded as one of the pleiotropic effects of statins
(97, 98). Wang et al. provided an alternative explanation for
the pleiotropic effect where simvastatin inhibition of endothelial
proliferation and inflammation is mediated by suppression of
YAP activities. Simvastatin also can reverse YAP activation
induced by disturbed flow (52). By performing a YAP reporter
gene activity assay of various common anti-atherosclerotic
agents, Wang et al. showed that statins produced the most
substantial inhibitory effect on YAP activity (11).

Methotrexate
Methotrexate (MTX) has beneficial effects in cardiovascular
disease treatment. Long-term low dose MTX treatment
reduced cardiovascular disease and cardiovascular mortality in
rheumatoid arthritis patients (99). A recent study found that
MTX inhibited disturbed flow-induced atherosclerosis lesion
formation by attenuating inflammation processes in endothelial
cells (100). Mechanism experiments showed that MTX represses
disturbed flow-induced endothelial YAP and TAZ activation
in an AMP-dependent, kinase-dependent manner. These
results indicate that MTX exhibits an atheroprotective effect by
inactivating YAP and TAZ via AMPK inhibition, leading to a
reduction of endothelial cells inflammation.

Harmine
Harmine is a kind of β-carboline alkaloid complex extracted
from Peganum. harmala, a traditional Chinese medicinal
plant that has been used to treat cardiovascular diseases (101).
Yang et al. found that harmine had a potent atheroprotective
role, inhibiting atherogenesis in both ApoE−/− and LDLR−/−

mice by attenuating endothelial inflammation. Harmine
inhibits disturbed flow-induced YAP nuclear translocation and
endothelial cell activation by reducing phosphorylation of YAP
at Tyr357. Further study showed harmine acted on YAP through
protein tyrosine phosphatase non-receptor type 14 (PTPN14).
These results indicated that harmine inhibits disturbed flow-
induced endothelial cells activation via a PTPN14/YAPY357
pathway (102).

Manganese Chloride
Manganese chloride (MnCl2) has anti-atherosclerotic effects
in animal model (103). Oral administration of MnCl2 has
been confirmed by Wang et al. to decrease atherosclerotic
plaque formation by inhibiting YAP activation via activation
of integrin in high-fat diet-fed ApoE−/− mice (11). Its anti-
atherosclerotic effect was also validated by Zhang et al. (104)
recently. However, it still needs safety and effectiveness study
performed on human body.

Salvianolic Acid B
Salvianolic acid B (Sal -B) is an active constituent extracted
from the root and rhizome of Salvia miltiorrhiza, a traditional
Chinese herb beneficial to the cardiovascular system. Yang et al.
provided evidence showing that Sal-B could protect endothelial
cells and pericytes from inflammation, oxidative stress, and
apoptosis to delay the atherogenesis. Further mechanistic studies
showed that Sal-B inhibits of ox-LDL production possesses and

anti-inflammatory functions by regulating the YAP/TAZ/JNK
pathway. These results suggest that Sal-B inhibited YAP/TAZ
activation and the subsequent JNK cascade to protect endothelial
cells from inflammation in vitro and slow atherosclerosis
development in vivo (105).

Naringin
Naringin is a major compound extracted from citrus fruits
such as grapefruits and tomatoes and has potential protective
effects against atherosclerosis (106, 107). Zhao et al. revealed
that Naringin protected endothelial cells from ox-LDL -induced
cell injury and apoptosis, restored endothelial barrier integrity
by preventing VE-cadherin disassembly and F-actin remodeling,
and inhibited expression of pro-inflammatory factors including
IL-1β, IL-6, and IL-18 in the HUVEC model. Mechanistic
examination showed that naringin restored YAP inhibition
induced by ox-LDL, indicating that naringin can promote
YAP activity to reverse endothelial cell apoptosis, endothelial–
mesenchymal transition and inflammation induced by ox-
LDL (69).

Scutellarin
Scutellarin is the main active flavonoid component extracted
from breviscapine, has antioxidant, and anti-inflammatory
effects, and is capable of scavenging oxygen-free radicals (108,
109). Fu et al. showed that Scutellarin inhibited phosphorylation
of MST1, YAP, and forkhead box O3A (FOXO3A) to enhance
nuclear translocation of FOXO3A, leading to the subsequent
suppression of angiotensin II (AngII) induced apoptosis in the
human aortic endothelial cells model and atherosclerotic burden
in a rat model (110).

CONCLUSION AND FUTURE
PERSPECTIVES

YAP is a crucial transcriptional cofactor that is regulated
by multiple stimuli and, mediates various pathways to
initiate atherosclerosis development. The function of YAP
is characterized by high cell-type dependence. Most of
these researches, however, are performed on animal model,
unanswered questions still remain regarding how in the
regulation of YAP impacts atherosclerosis in human, requiring
further exploration.

Furthermore, the crucial role of YAP in osteogenesis and
angiogenesis can link it to the atherosclerosis complications
which adds to the vulnerability of plaques such as vascular
calcification and intraplaque hemorrhage. Recently a study
conducted by our lab showed that the YAP expression is increased
in symptomatic carotid plaques compared to non-symptomatic
plaques, and these trends are mainly distributed close to
angiogenesis and calcification areas, indicating the potential role
of YAP in plaque stability (111). Hence, a hypothesis can be raised
that YAP may have a role in determining plaque vulnerability for
its involvement in angiogenesis and vascular calcification. This
hypothesis requires further investigation in future studies.
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