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Abstract
Background: Although cigarette smoking is considered one of the key risk fac-
tors for lung cancer, 15% of male patients and 53% of female patients with lung
cancer are non-smokers. Metabolic changes are critical features of cancer. Thera-
peutic target identification from a metabolic perspective in non-small cell lung
cancer (NSCLC) tissue of female non-smokers has long been ignored.
Results: Based on microarray data retrieved from Affymetrix expression arrays
E-GEOD-19804, we found that the downregulated genes in non-smoking female
NSCLC patients tended to participate in protein/amino acid and lipid metabo-
lism, while upregulated genes were more involved in protein/amino acid and car-
bohydrate metabolism. Combining nutrient metabolic co-expression, protein–
protein interaction network construction and overall survival assessment, we
identified NR4A1 and TIE1 as potential therapeutic targets for NSCLC in female
non-smokers. To accelerate the drug development for non-smoking female
NSCLC patients, we identified nilotinib as a potential agonist targeting NR4A1
encoded protein by molecular docking and molecular dynamic stimulation. We
also show that nilotinib inhibited proliferation and induced senescence of cells in
non-smoking female NSCLC patients in vitro.
Conclusions: These results not only uncover nutrient metabolic characteristics
in non-smoking female NSCLC patients, but also provide a new paradigm for
identifying new targets and drugs for novel therapy for such patients.

Introduction

In 2000, it was reported that lung cancer in 15% of men
and 53% of women worldwide was not the result of
smoking.1 Furthermore, Chinese women exhibit higher
rates of lung cancer (20.4 cases per 100 000 women) than
European women despite a lower prevalence of smoking.2

Currently, there is increased interest in the potential for
targeting nutrition metabolism.3–7 This potential treat-
ment strategy originated from the fact that most tumors
are highly dependent on dysregulated carbohydrate,8

lipid9 and protein/amino acid metabolism.10 Striking dif-
ferences in the epidemiological, clinical, and molecular
characteristics of lung cancers arising in never smokers
versus smokers have been identified, suggesting that they
are separate entities.11 To date no systematic study on the

molecular mechanism of tumor metabolism in non-
smoking female NSCLC patients has been conducted. We
believe that it may be feasible to use relevant bioinformat-
ics methods to explore therapeutic targets related to
NSCLC in female non-smokers from the perspective of
nutritional metabolism.
TIE1 may play a role in angiogenesis associated with

tumorigenesis.12,13 It has also been reported that TIE1 is an
independent factor that has a negative impact on the sur-
vival of gastric cancer,14 and a cleaved form is also overex-
pressed in breast cancer cells.15 Although the role of the
TIE1 in lung cancer is still unclear, studies have shown that
the TIE1 is enhanced in the developing lung compared to
other organs, and the expression of TIE1 is markedly
aggravated and continues in the late stage of pulmonary
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vascular development.16 This indicates that TIE1 may play
an important role in the pathogenesis of lung cancer.
NR4A1 (Nur77) is a member of the nuclear receptor

superfamily of transcription factors, and the reported roles
of NR4A1 in cancer are paradoxical. Several studies have
reported that NR4A1 is overexpressed in multiple types of
tumors, and is critical for survival and/or cell proliferation
in pancreatic, cervical, lymphoma, lung, and colon cancer
cells.17 However, several studies have reported that NR4A1
is a tumor suppressor gene. Low NR4A1 expression in
triple-negative breast cancer is associated with advanced
tumor stages, lymph node metastasis, and poor relapse-free
survival.18 These controversial results regarding NR4A1
highlight the possibility that NR4A1 plays a specific role
according to the type or subtype of cancer.
We conducted data mining of microarray data to identify

potential therapeutic targets for female NSCLC patients. The
study was based on the idea of drug repurposing: to screen
FDA-approved drugs to treat non-smoking female NSCLC
patients to save time and cost (Fig 1).19

Methods

Microarray data

The following bioinformatics analysis was based on the
processed microarray data of E-GEOD-19804, submitted
by Lu et al.20 The microarray data included
60 frozen NSCLC and 60 frozen adjacent normal lung
tissues from female non-smokers, and was downloaded
from the ArrayExpress database (http://www.ebi.ac.
uk/arrayexpress).
Gene expression profiles of GSE31210, submitted by

Kohno et al.,21,22 were downloaded from the Gene Expres-
sion Omnibus (GEO: https://www.ncbi.nlm.nih.gov/geo/)
as second microarray data to test the expression tendencies
of differentially expressed genes (DEGs) in the E-GEOD-
19804 dataset. Although the GSE31210 dataset contained
246 samples, only 8 met our analytical criteria. The eight
included samples contained four frozen NSCLC and four
frozen adjacent normal lung tissues from female non-
smokers.

Figure 1 Flow diagram of data
mining and virtual screen pro-
cess. DAVID, Database for Anno-
tation, Visualization and
Integrated Discovery; DEGs, dif-
ferentially expressed genes; GEO,
Gene Expression Omnibus; GO,
Gene Ontology; LUAD, lung ade-
nocarcinoma; MD, molecular
dynamic; PPI, protein-protein
interaction; RMSD, root mean
square deviation; TCGA, The
Cancer Genome Atlas.
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Identification of differentially expressed
genes (DEGs) based on microarray data

DEG analysis was carried out using Bioconductor
packages23–25 in R software26 with processed data of E-
GEOD-19804 and GSE31210. We categorized 120 samples
into two groups, which included 60 NSCLC samples as the
experiment and 60 adjacent normal tissues as the control.
Eight samples from GSE31210 were also categorized into
two groups, including four NSCLC samples as the experi-
ment and four adjacent normal tissues as the control. We
used the Moderated T statistic method27 to identify DEGs
by Limma packages28 in R software (R Foundation for Sta-
tistical Computing, Vienna, Austria). We finally identified
DEGs with an absolute value of logarithmic fold change
(logFC) ≥ 1 and defined a cutoff of P < 0.01 as statistically
significant.

DEG enrichment analysis

Gene ontology (GO) analysis is a common and useful
method for annotating gene products and identifying char-
acteristic biological attributes of high-throughput genome
or transcriptome data.29 An Expression Analysis Systematic
Explorer (EASE) score < 0.1 was adopted to refine the GO
terms set in major clusters through Database for Annota-
tion, Visualization and Integrated Discovery Bioinformatics
Resources version 6.8 (DAVID: https://david.ncifcrf.
gov/).30,31

Weighted gene co-expression analysis of
DEGs related to metabolism

Highly co-expressed genes are connected in the network
and therefore can be grouped into modules. Within the
modules, weighted gene co-expression analysis allows the
identification of the central connected genes as so called
“hub” genes.32 Co-expression networks were built in an R
environment33 with a measure of similarity based on a
matrix of pairwise Pearson’s correlation coefficients. The
similarity matrix was then transformed into an adjacency
matrix using a power adjacency function. The co-
expression modules were then identified by raising the soft
thresholding power to 14 to produce a weighted network,
which is the lowest power to guarantee that the scale-free
topology fit index curve flattens out upon reaching a high
value.34

Protein–protein interaction (PPI) data of
DEGs from STRING

The protein–protein interaction (PPI) network provides a
valuable framework to better understand the functional

organization of the proteome. In this network, proteins
interact with several other proteins, suggesting a central
regulatory role, and are likely to be regulatory “hubs.”35

The PPI network was retrieved from STRING version 9.0
(http://STRING.embl.de/). To evaluate the interactive rela-
tionships of DEGs, we mapped the 508 metabolically
related DEGs to STRING, and only human
experimentally-validated interactions with a combined
score > 0.4 were selected as significant.

Intersection of co-expression and PPI
networks of DEGs related to metabolism

To find the genes with connections with both co-
expression and PPI pairs, we intersected the data between
co-expression and PPI data of DEGs related to metabolism.
We then selected candidate hub genes from DEGs with
“co-expression degree ≥ 1,” “STRING degree ≥ 1,” and
“absolute value of logFC ≥ 1.”

Clinical samples

We searched The Cancer Genome Atlas (TCGA) database
of 389 lung adenocarcinoma (LUAD) patients on 8 July
2018 (https://cancergenome.nih.gov/) for overall survival
(OS) assessment. All patients were white, 44.7% were male
and 55.3% were female, including 70 non-smoking female
LUAD patients. Detailed patient information including
gender, age at diagnosis, tumor stage, days to death, days
to last follow-up, cigarettes per day, and years smoked, is
listed in Table S9.

Identification of DEGs based on TCGA
transcriptome profiling data

DEG analysis was carried out using Bioconductor
packages23–25 in R software26 with transcriptome profiling
data downloaded from TCGA. Genes with very low read
counts are usually not included.36 Thus, log2 (average
count/million) was calculated to determine whether a gene
was reasonably expressed or not.36

Overall survival assessment of two
independent cohorts

The median expression value was a cutoff to define high
versus low candidate DEGs. To model survival, patients
were split into two groups based on the median expression
value of each candidate DEG. Gene expression at or below
median was considered low expressing tumors and above
median was considered high expressing tumors. Kaplan–
Meier plots and landmark analysis were conducted by R26
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and Empower (R) (www.empowerstats.com, X&Y Solu-
tions, Inc., Boston, MA, USA), respectively.

Docking experiment

NR4A1 downregulation is associated with a poor clinical
outcome, while TIE1 downregulation is associated with a
better clinical outcome. Therefore, from the perspective
of drug screening, we needed to screen for small molecu-
lar agonists to increase Nur77 activity and small molecu-
lar antagonists to decrease Tie-1 activity. In order to
improve the accuracy of molecular docking results, we
needed an accurate binding site of the agonist/antagonist
in the target protein. There are two ligand binding
domains in the asymmetric subunit of Nur77, and one of
the domains forms an agonist binding domain of
Nur77.37 In contrast, the protein structure of Tie-1 fibro-
nectin type III domains (Fn3) was only purified and crys-
tallized in 2017.38 The Fn3 domain in Tie-1 contributes to
the heterodimerization of Tie-2/Tie-1.38 However, no
reports have examined the antagonist binding site in the
structure of Tie-1. Therefore, we finally selected NR4A1
as a drug-screening target.
The crystal structure of Nur77 (PDB entry: 3V3E) in

complex with glycerol was derived from the Protein Data
Bank (PDB: http://www.rcsb.org/pdb/home/home.do);39

2748 commercially available molecules in the FDA-
approved database were obtained from a subset in the
ZINC database (http://zinc.docking.org/catalogs/dbap; pH
4.5~9.5).40 Molecular docking between the compounds and
Nur77 was carried out using Dock641 and AutoDock
Vina42 Docking scores were calculated to represent binding
affinities. For the sake of brevity, the details of the docking
process are presented in the supplementary files.
To further improve the accuracy of docking results, we

selected the molecules that existed in the top 10% lowest
GB/SA, descriptor, and autodock scores. The three-
dimensional diagrams of the interactions between Nur77
and ligands were presented by UCSF Chimera (Resource
for Biocomputing, Visualization, and Informatics, San
Francisco, CA, USA)43 and two-dimensional putative dock-
ing pose of candidate ligand in the binding pocket was cal-
culated and exhibited by LigPlot+ software (European
Bioinformatics Institute, Hinxton, UK).44

Molecular dynamic (MD) simulations

Before performing the molecular dynamic (MD) simulations,
the top-ranked ligands were selected as the initial structure
for the simulations. The MD simulations were performed
using the GROMACS package version 4.6.7 (University of
Groningen, Groningen/Netherlands; KTH Royal Institute
of Technology, Stockholm, Sweden; Uppsala University,

Uppsala, Sweden)45 for 30 nanoseconds. For the sake of
brevity, the details of the MD process are presented in the
supplementary material.
After the MD process, root mean square deviation

(RMSD) analysis was carried out using the g_rmsd pro-
grams in the GROMACS package (version 4.6.7)45 and was
performed on the entire 30 nanosecond trajectory for each
receptor-ligand system. The potential, kinetic, and total
energy was calculated using the g_energy program avail-
able in GROMACS. The total energy (Etotal) is the sum of
the potential energy (Epotential) and the kinetic energy
(Ekinetic) (Eqn (1). Additionally, to intuitively compare the
energy levels between the different MD simulation systems,
we normalized the three energy component values as
Equation (2:

Etotal = Epotential + Ekinetic ð1Þ

Energyinor =
Energyi

SUM Energyitar
� � ð2Þ

Energynor indicates the normalized energy and
i indicates the specific kind of three energies. Energyi indi-
cates the original value of energy. SUM Energyitar

� �
indi-

cates the sum of the same kind of energy of Nur77-ligand
complexes.

The effect of nilotinib on proliferation

A non-smoking female NSCLC cell line, H1975, was
purchased from KeyGEN Biotech. Co., Ltd. (KG342,
Nanjing, China). NSCLC cell lines H1975, A549, and
H1299 were used as the experimental groups, and
human kidney epithelial cell line 293T as a normal con-
trol for testing the effect of nilotinib on cells. All cell
lines were cultured in RPMI-1640 medium containing
10% fetal bovine serum, 100 U/mL penicillin, and
100 μg/mL streptomycin at 37�C in an atmosphere con-
taining 5% CO2. Nilotinib was purchased from Target-
Mol (Catalog No. T1524 CAS 641571-10-0, Shanghai,
China), dissolved in dimethyl sulfoxide, and stored at
−20�C. Cell viability was measured in a 96-well plate
using Cell Counting Kit 8 (CCK-8 Kit, KGA317, Key-
GEN Biotech. Co., Ltd.).

Senescence β-galactosidase assay

Cells were cultured for 24 hours in 12-well plates at a den-
sity of approximately 45 000 cells/well and treated with
nilotinib for 12 and 24 hours, and then fixed and stained
using a senescence β-galactosidase (SA-β-gal) staining kit
(C0602, Beyotime Biotechnology, Shanghai, China).
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Statistical analysis

All experimental data and results were confirmed in at
least three independent experiments. Statistical differences
were determined using multiple comparisons via GraphPad
Prism 6.0 (La Jolla, CA, USA). Statistical significance was
defined as P < 0.05. Error bars indicate the standard error
of the mean unless otherwise indicated.

Results

Identification of DEGs

A total of 1454 DEGs were identified after analyses of E-
GEOD-19804, including 976 downregulated and 478 upre-
gulated genes (Table S1). A total of 6087 genes were identi-
fied after analyses of GSE31210, of which 3239 were
upregulated and 2848 were downregulated (Table S2).

Gene Ontology enrichment analysis
of DEGs

The upregulated and downregulated genes were separately
submitted to the functional annotation tool provided by
DAVID. DAVID clustered 969 downregulated genes into
1951 GO terms (Table S3), and 476 upregulated genes into
784 GO terms (Table S4).
We found that the associated metabolism of downregu-

lated and upregulated genes was different. For downregu-
lated genes, carbohydrate metabolism accounted for only
12% of the GO terms and genes (Fig 2a,b). Whereas for
lipid and protein/amino acid metabolism, although the
number of genes participating in lipid metabolism was
10% lower than the genes participating in protein/amino
acid metabolism (Fig 2b), the GO terms of lipid metabo-
lism were 26% higher than that of protein/amino acid
metabolism (Fig 2a). For downregulated genes, tumor met-
abolic changes tended to involve protein/amino acid
metabolism and lipid metabolism. Most upregulated genes
and their metabolic terms were mainly focused on protein/
amino acid and carbohydrate metabolism (Fig 2c,d).
To analyze the relationship between metabolically

related DEGs, we extracted genes with GO entries associ-
ated with carbohydrate, lipid, and protein/amino acid
metabolism as metabolically related DEGs. We then
removed the repeated genes contained in 106 metabolically
related GO entries (Table S5) to obtain 508 metabolically
related DEGs (Table S6).

Weighted gene co-expression analysis

We constructed co-expression networks based on the
selected 508 metabolically related DEGs (Table S6).

Consequently, 82 DEGs with 171 co-expression pairs
were identified (Table S7). Our analysis found that
12 DEGs were co-expressed with other metabolically
related DEGs among lipid and protein/amino acid meta-
bolically related downregulated genes (Fig 3a). TEK
showed the largest degree of co-expression (Fig 3b). Ten
metabolic-related DEGs were co-expressed with TEK.
The co-expression degree of CAV1 reached 7. FABP4,
LOC102724428, NR4A1, SIK1, and TIE1 had the least
co-expression degrees with only one gene association. In
contrast, no gene pairs showed co-expression associa-
tions for carbohydrate and protein/amino acid metabo-
lism in upregulated genes.

Construction of PPI network

STRING furnished original reliable protein data for conse-
quent analysis. In order to generate PPI networks, 426 out
of 508 metabolically related DEGs were mapped. A PPI
network was formed with 130 upregulated DEGs and
296 downregulated DEGs containing 426 nodes and 2404
edges (Table S8, Fig 4a). Based on the total PPI network,
we then analyzed whether 12 DEGs (proteins) identified
from the co-expression network interacted with other met-
abolically related DEGs (proteins). Interestingly, the
12 DEGs identified overlapped with 10 genes (proteins) in

Figure 2 The metabolically related Gene Ontology (GO) terms and
gene proportions of upregulated and downregulated genes by GO
functional annotation. The GO term proportions of three metabolic
components for (a) downregulated and (c) upregulated genes. The pro-
portions of gene numbers of three metabolic components for (b)
downregulated and (d) upregulated genes. ( ) Lipid metabolism, ( )
Protein/amino acid metabolism, ( ) Carbohydrate metabolism.
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155 PPI pairs (Fig 4b,c), including AGER, CAV1, CD36,
EDNRB, FABP4, KL, NR4A1, SIK1, TEK, and TIE1.
The 10 downregulated DEGs obtained by co-expression

and PPI network analyses presented consistent expression
tendencies in gene expression profiles of GSE31210. That
is, the 10 downregulated DEGs were reliable for further OS
assessment.

Deregulated expression of NR4A1 and TIE1
in tissues is associated with poor clinical
outcome

We further analyzed the relationship between candidate
targets and proliferation levels among LUAD and non-
smoking female LUAD patients. However, because we had
no access to the clinical data of the patients who provided
samples for microarray experiments, we chose other

independent cohorts from TCGA to further investigate the
association between the expression of candidate targets and
OS. To reduce the variations resulting from different
NSCLC subtypes, only patients with LUAD were examined
(Table S9). Kaplan–Meier plots showed no difference in
OS between low and high TIE1/NR4A1 expression groups
(Figs 5a, 6a) (including smoking and non-smoking
patients). However, female non-smoking LUAD patients in
the high TIE1 expression group had significantly poorer
OS than the low TIE1 expression group (P < 0.05)
(Fig 5b).
Although no significant difference in OS (P = 0.483) was

found between female non-smoking LUAD patients in the
low and high NR4A1 expression groups, we noted that the
Kaplan–Meier curves crossover and separate after
3.89 years (Fig 6b). Thus, 3.89 years was chosen as a “land-
mark” to conduct further analysis. Standard OS assessment
techniques before and after 3.89 years were used (Fig 6c).
Although no significant difference in OS (P = 0.84) was
found between low and high NR4A1 expression groups
during the first 3.89 years (Fig 6c), the low NR4A1 expres-
sion group had significantly poorer OS after 3.89 years
(P < 0.05) (Fig 6c). The Kaplan–Meier plots of the other
eight candidate targets are presented in Figure S1, which
shows no difference in the OS of non-smoking female
LUAD patients between low and high candidate expression
target groups. Accordingly, NR4A1 and TIE1 may be iden-
tified as potential therapeutic targets for NSCLC in female
non-smokers.

Screening of potential ligands targeting
Nur77 by molecular docking and
AutoDock Vina

Based on an RMSD value < 2 Å, which is the standard
criterion for successful molecular docking,46 we ranked
compounds by descriptor and Hawkins GB/SA scores,
respectively. The detailed screening information of com-
pounds with the top 10% lowest score are presented in
Table S10. After overlapping the lists of AutoDock Vina
and two Dock6 scoring, we identified the top 6 scored
compounds that can target the agonist binding site of
Nur77. These compounds may have high potential to
serve as agonists for Nur77. The detailed docking results
of these six compounds and crystal ligand are listed in
Table 1.

Structural stability of the backbone of
three models during MD simulations

We selected the top 2 scoring Nur77 candidates for further
MD simulations. For comparison, we also performed
30 nanosecond Nur77-glycerol MD simulation. The

Figure 3 Co-expression network of metabolically related differentially
expressed genes (DEGs). (a) Co-expression network of downregulated
metabolically related DEGs presented by nodes and edge by analyzer of
cytoscape. The deeper the blue and the larger the node indicates more
proteins that could interact with this node, while the deeper the yellow
and the smaller the node indicates less protein interactors. (b) The exact
number of co-expression degree numbers for the 12 DEGs, which are
associated with both lipid and protein/amino acid metabolism.
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backbone RMSD values with respect to the X-ray structure
were calculated to assess the stability of the three protein-
ligand binding models during MD simulations. Figure 7a
shows that three binding systems of Nur77 remained stable
with average RMSD fluctuations of 0.179 nm (Nur77-
ZINC64622551), 0.233 nm (Nur77-ZINC06716957), and
0.216 nm (Nur77-glycerol) during the 30 nanosecond MD
simulation process.

Binding free energy of MD simulation
systems

To intuitively compare the energy levels between different
MD simulation systems, we normalized the three energy
component values. The Nur77-ZINC06716957 binding sys-
tem presented the lowest value of the three types of energy
(Table 2). Figure 7b also shows that ZINC06716957 had

the highest normalized value of potential and total energy,
and the lowest normalized value of kinetic energy in
Nur77-ligand binding systems, indicating that
ZINC06716957 might have a better affinity than other
ligands.

Nilotinib inhibits cell proliferation and
induces senescence in H1975 cells

ZINC06716957 refers to the old drug nilotinib, which is
a small molecular tyrosine kinase inhibitor approved for
the treatment of imatinib-resistant chronic myelogenous
leukemia.47 To examine the effect of nilotinib on
NSCLC cells, human NSCLC lines H1975, H1299, and
A549 were treated with different concentrations of nilo-
tinib for 24 hours, and the cell viability was measured
by CCK-8 assay. As shown in Figure 8a, nilotinib

Figure 4 Protein-protein interaction (PPI) network of metabolically related differentially expressed genes (DEGs). (a) PPI networks of 426 out of
508 metabolically related DEGs. The red triangle nodes represent upregulated genes and the green circle represents downregulated genes. The gray
edge indicates the protein interaction between both ends of the edge. (b) The PPI network is represented by a node and edge graph. The 10 orange
nodes indicate that the genes overlapped with the 12 DEGs, which were co-expressed with other metabolically related DEGs. The blue nodes indi-
cate other metabolically related DEGs. The larger node indicates more interaction pairs. (c) The exact number of PPI degree numbers for 10 DEGs.
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treatment markedly decreased cell viability in a dose-
dependent manner in both H1975 and H1299 cells, but
had less cytotoxic effect in 293T and A549 cells. We
observed a characteristic change in H1975 cell shape to
an enlarged and flattened phenotype, which is reminis-
cent of senescence.48 Consistently, SA-β-gal assays
showed that nilotinib significantly enhanced senescence
in dose and time-dependent manners, as indicated by a
significant increase in the percentage of SA-β-gal-
positive cells (Fig 8b,c).

Discussion

Network-based biological analysis is a promising
approach to uncover key genes and biological processes
from a network viewpoint that cannot be recognized from
individual gene-based signatures.49,50 Using weighted gene
co-expression analysis methodology and constructing a
PPI network, we found that 10 downregulated genes in
the metabolic-related DEGs had both co-expressive and
interactive relationships with other metabolic-related
DEGs, respectively. In addition to the GSE31210 dataset,
Lee et al. provided an RNA-sequencing study of LUAD
and adjacent normal tissues of six female Korean never-
smoker patients.51 These 10 downregulated DEGs pre-
sented consistent expression tendencies in gene expres-
sion profiles of GSE31210 and RNA-seq study. That is,

the 10 downregulated DEGs were reliable for further sur-
vival analyses.
Although a number of agonists targeting Nur77 have

been reported in the database,52 they have not been
approved as anti-tumor clinical drugs. There are more
than 2000 US Food and Drug Administration approved
drugs available in the DrugBank, with diverse structural
types and well-known pharmacological features. Re-
evaluation of these drugs might identify a new use for the
treatment of female non-smoking NSCLC patients with
low NR4A1 expression. We identified nilotinib, which
combines well into the agonist-binding pocket of Nur77
(Fig 7c). Although nilotinib was less stable than glycerol
during the 30 nanosecond MD simulation process
(Fig 7a), the results of three different energies (Fig 7b)
showed that nilotinib had higher affinity than glycerol.
Additionally, nilotinib formed two hydrogen bonds with
Thr48 outside of binding pockets (Fig 7d), which
improved the binding affinity of nilotinib with Nur77.
Therefore, nilotinib may be a promising new agonist tar-
geting Nur77.
Striking differences in response rates to EGFR-

tyrosine kinase inhibitors have been observed between
lung cancer in never smokers and smokers. It has been
reported that gefitinib, an EGFR-TKI, responds approxi-
mately fourfold higher in non-smoking metastatic
NSCLC.53,54 Similar differential effects of EGFR-TKIs

Figure 5 Kaplan–Meier estimates of TIE1 expression with clinical outcome in two independent cohorts of lung adenocarcinoma (LUAD) patients. (a)
LUAD patients include smoking and non-smoking patients (n = 406). ( ) High TIE1 expression (n = 203), and ( ) low TIE1 expression (n = 203). (b)
Non-smoking female LUAD patients (n = 70), ( ) high TIE1 expression (n = 35), ( ) low TIE1 expression (n = 35).
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have also been observed in subgroup analyses from
large, multicenter, randomized studies of gefitinib and
erlotinib.55,56 However, almost all patients with NSCLC
acquire resistance to EGFR-TKIs after a period of time,
leading to disease progression.57–59 Thus, the identifica-
tion of new therapeutic targets for non-smoking with
NSCLC and the development of new drugs is critical.
However, bringing new drugs to the market is a lengthy
and expensive process. Nilotinib significantly inhibits
the proliferation of H1975 cells in a dose-dependent
manner, and significantly induces the senescence of
H1975 cells in time and dose-dependent manners. The
bioinformatics analysis methods and results detailed
herein could potentially provide a new paradigm for

Figure 6 Kaplan–Meier estimates of NR4A1 expression with clinical outcome in two independent cohorts of lung adenocarcinoma (LUAD) patients.
(a) LUAD patients include smoking and non-smoking patients (n = 406). ( ) High NR4A1 expression (n = 203), ( ) low NR4A1 expression (n = 203).
(b) Non-smoking female LUAD patients (n = 70). ( ) High NR4A1 expression (n = 35), ( ) low NR4A1 expression (n = 35). (c) Landmark analysis dis-
criminating between events occurring before and after 3.89 years in non-smoking female LUAD patients (n = 70). ( ) High NR4A1 expression
(n = 35), ( ) low NR4A1 expression (n = 35).

Table 1 The docking results of the six identified compounds

Compounds

Descriptor
score

(kcal/mol)
Hawkins GB/SA
score (kcal/mol)

AutoDock
score

(kcal/mol)

ZINC06716957 −52.19 −46.90 −7.70
ZINC64622551 −48.40 −52.43 −7.30
ZINC12503300 −48.67 −43.33 −7.50
ZINC12503303 −49.03 −46.40 −7.50
ZINC13818943 −49.03 −47.52 −7.60
ZINC19796084 −48.61 −45.17 −7.40

Glycerol −23.15 −23.25 −3.80

Glycerol is the compound in complex with ligand-binding domain in
the crystal structure of Nur77.
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identifying new targets and drugs as novel therapy for
non-smoking female NSCLC patients. Future work
should concentrate on in vivo experiments of nilotinib
to determine the mechanism of antitumor effect.
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