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Abstract: Human activity recognition is becoming increasingly important. As contact with oneself
and the environment accompanies almost all human activities, a Smart-Sleeve, made of soft and
stretchable textile pressure sensor matrix, is proposed to sense human contact with the surround-
ings and identify performed activities in this work. Additionally, a dataset including 18 activities,
performed by 14 subjects in 10 repetitions, is generated. The Smart-Sleeve is evaluated over six
classical machine learning classifiers (support vector machine, k-nearest neighbor, logistic regression,
random forest, decision tree and naive Bayes) and a convolutional neural network model. For classical
machine learning, a new normalization approach is proposed to overcome signal differences caused
by different body sizes and statistical, geometric, and symmetry features are used. All classification
techniques are compared in terms of classification accuracy, precision, recall, and F-measure. Average
accuracies of 82.02% (support vector machine) and 82.30% (convolutional neural network) can be
achieved in 10-fold cross-validation, and 72.66% (support vector machine) and 74.84% (convolu-
tional neural network) in leave-one-subject-out validation, which shows that the Smart-Sleeve and
the proposed data processing method are suitable for human activity recognition.

Keywords: human activity recognition; textile pressure matrix; smart sleeves

1. Introduction

Human activity recognition (HAR) is an important task in pervasive computing [1]
and computer vision [2]. While inertial-based and vision-based sensings are enjoying rapid
growth in recent years, mainly thanks to the development of hardware and algorithms, new
aspects such as contact are still to be explored. Pirsiavash et al. [3] suggest that real-world
activities of daily living recognition are “all about the objects”, and, in particular, “all
about the objects being interacted with”. We notice that almost all human activities are
accompanied by contact with oneself or the external environment, which might contain
useful information for human activity recognition. For human beings, the hands are most
frequently used for contact interactions. While a pressure sensing device directly on the
hand might be impractical (e.g., gloves may affect the sense of touch, and it may be rude to
shake hands with gloves in some social situations), we turn our attention to the arm and
propose a Smart-Sleeve consisting of a matrix of textile-based pressure sensors for HAR.

The main contributions of this work are as follows:

1. A Smart-Sleeve based on pressure mapping textiles is proposed for HAR. The sleeve
is soft, stretchable, washable, and can be easily incorporated into ordinary clothing.

2. Both classic machine learning and deep learning methods are used to evaluate the
performance of the Smart-Sleeve for everyday activity recognition. To normalize
the data differences caused by different body sizes, a new preprocessing method is
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adopted . A feature set of 100 features, including statistical, geometric, and symmetry
features, is proposed.

3. Our dataset is open to the public , including 18 daily activities performed by 14 par-
ticipants in an office scenario. To the best of our knowledge, there are no publicly
available datasets of pressure sensor-based sleeves for HAR.

The rest of the paper is organized as follows: literature study is discussed in Section 2,
systematic design and dataset description are explained in Section 3, data processing
methods are presented in Section 4, experimental evaluations are described in Section 5,
the paper is concluded in Section 6 and discussed in Section 7.

2. Related Work
2.1. Systems for Human Activity Recognition

HAR systems can usually be divided into two main categories: environmental and
wearable.

Environmental sensors are usually hidden in the surroundings, such as cameras [4]
and wireless signaling devices [5–7], which are usually not easily detectable and do not
interfere with the normal activities of the user. Particularly, visual sensor-based systems
are widely used [2,8] and have achieved good results. However, they also face challenges
in terms of personal privacy and spatial constraints, such as cameras being placed in
public places, capturing data of the subject while also directly accessing data from other
unrelated people. Pressure sensors have also been used in the format of environmental
systems, as most daily human activities, e.g., locomotion, exercises, and resting, are heavily
synchronized with the tactile interactions between the human and the environment. For
example, Luo et al. [9] propose a 3D human pose estimation approach using the pressure
maps recorded by a tactile carpet as input. Casas et al. [10] estimate the patient’s posture
from pressure sensors’ data mapped to images.

Wearable systems are always with the user, and not limited to certain locations such
as the environmental systems. Pirsiavash et al. [3] use the first-person camera to detect
activities of daily living, but there are significant challenges such as limitations of currently
available battery technology. The rapid development of microelectromechanical systems
technology has contributed to the development of low-power, low-cost, small-size, and-
lightweight inertial sensors [11–13], although recently there has been progress in arm
motion tracking [14] and dynamic motion capture of human lower limbs [15] using a single
inertial measurement unit (IMU) sensor. The number and the placement of inertial sensors
on the human body have a direct impact on activity recognition, in terms of the variety
of activities to monitor and the precision of their classification [16–18]. The use of many
IMU sensors not only limits the deployment phase but also increases the difficulty and
discomfort for users.

Some representative HAR systems are listed in Table 1. Although existing HAR sys-
tems, such as cameras and IMUs, have achieved a good accuracy, the number of researchers
starting to pay attention to textile sensors and their applications is growing due to their soft,
deformable, and stretchable characteristics. Table 2 lists the advantages and disadvantages
of some commonly used sensors for HAR.
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Table 1. Comparison of some existing systems for HAR.

Category Reference Sensor Number of
Activities

Number of
Participants

Classification
Technique Best Accuracy

Khan et al.,
2022 [4]

vision sensor
(Kinect V2) 12 20 Hybrid Deep

Learning Model 91%

Environmental Wang et al.,
2017 [7]

commercial
WiFi device 8 25 Hidden Markov

Model 96%

Sundholm et al.,
2014 [19]

textile pressure
sensor 10 7 K-nearest

Neighbor 90%

Pirsiavash et al.,
2012 [3] GoPro camera 18 20 Support Vector

Machine 77%

Jamieson et al.,
2021 [13]

accelerometer
(ActivPAL) 5 12

Support Vector
Machine and
Long-Short

Term Memory

77%

Wearable Altun et al.,
2010 [12]

miniature
inertial sensor

and
magnetometer

19 8
7 kinds of

classification
techniques 1

99%

Lim et al.,
2021 [16]

accelerometer,
gyroscope,

magnetometer,
object, and

ambient sensor

18 4 Deep
ConvLSTM 91%

Parzer et al.,
2017 [20]

textile pressure
sensor 9 6 Support Vector

Machine 92%

1 Bayesian decision-making, decision tree, least-squares method, k-nearest neighbor, dynamic time warping,
support vector machine, and artificial neural networks.

Table 2. Advantages and disadvantages of some commonly used sensors for HAR.

Sensor Advantages Disadvantages

vision sensors intuitive
high cost, complex setup and

susceptibility to lighting
condition and occlusion

wireless devices device-free and larger coverage vulnerable to interference from
other electromagnetic devices

inertial measurement unit wearable and motion-related drift and instability

textile pressure sensors wearable, contact-related,
deformable and stretchable non-waterproof and instability

2.2. Textile Sensors and Applications

As early as 1996, Inaba et al. [21] presented a tactile system that covers the entire body
of a robot with textile sensors. Since then, textile sensors have received more and more
attention from researchers.

Textile sensors can be easily integrated into the environment and unobtrusively moni-
tor daily life. Sundholm et al. [19] present a textile pressure sensor matrix integrated into
a gym mat for monitoring strength-related exercises that are performed on the ground.
Vega-barbas et al. [22] present a smart toy for the assessment of psychomotor development
in early childhood. Xu et al. [23] propose a smart cushion based on a textile pressure
sensor array to monitor sitting postures. Similarly, some pressure-sensitive bedsheet sys-
tems are designed for sleep posture monitoring [24,25]. However, they, similar to other
environmental sensors, are limited by certain locations.
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Textile sensors have been integrated into clothing owing to their soft, deformable,
and stretchable characteristics. Liu et al. [26] focus on the primary use of conductive
stretchable fabrics to monitor joint angular motion. Voit et al. [27] explore how the arm
posture of the user can be detected with a smart fabric and can be used as input. Both of
them, however, do not take into account the contact information with other limbs and the
external environment.

Recently, advances in wearable textile pressure sensors have benefited applications based
on the contact information in a variety of contexts. Google proposes Project Jacquard [28],
which allows adding interactivity to smart clothing invisibly and unobtrusively, without
compromising the look and feel of clothes. Microsoft also proposes Project Tasca [29],
a pocket-based textile sensor that detects users’ input and recognizes everyday objects
that a user carries in the pockets of a pair of pants. Parzer et al. present SmartSleeve,
a deformable textile sensor, which can sense both surface and deformation gestures in
real-time [20,30]. Leong et al. [31] present a prototype of a prosthetic-sensing wearable
for the sensory augmentation of lower-limb prosthetics. They all focus on enhancing the
interactivity or sensing capabilities of clothing, while there are few efforts to identify and
analyze the daily activities of the wearer.

In summary, to the best of our knowledge, there are few studies about textile pressure-
sensing sleeves for HAR, and no relevant datasets are available. Therefore, in this work, a
smart sleeve is designed and its ability to recognize daily activities is evaluated.

3. System and Experiment Design
3.1. Smart-Sleeve

Based on the previous work [30,32], the Smart-Sleeve is designed using double-sided
weft-knitted fabrics (shown in Figure 1). The gray stripes are made of metallic conductive
yarns and the black stripes are made of polymer yarns with carbon powder mixed in,
serving as the sensitive layer. The top fabric contains 20 stripes, and the bottom one has
10 stripes. Orthogonally stacked together, they form a matrix with 200 sensing points. The
size is 40 cm × 18 cm. To prevent short circuits caused by adjacent sensors touching in
a bent arm posture, it is covered with a layer of flexible skin-friendly insulating fabric.
The matrix is driven and scanned by a hardware mainly consisting of a STM32F303ZET6
microcontroller and a Bluetooth 4.0 module. Data are sampled by 12-bit ADCs at 50 Hz
and transmitted to a smartphone via Bluetooth. Experiments show that this hardware with
a 2200 mAh battery could carry out more than ten hours of continuous data acquisition and
transmission. A CSV file is used to save the data and is later transferred to the computer
for data processing. Data from all 200 points in a matrix format sampled at the same time
are called a “frame” or “pressure image” and the size is 20 × 10.

𝑽𝒐𝒖𝒕𝒑𝒖𝒕

𝑽𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆

𝑹𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒆

𝑹𝒈𝒓𝒐𝒖𝒏𝒅

Electrodes

Sensing Matrix

Connecting Cables

Driving 
Hardware

(a) (b)

Figure 1. Smart-Sleeve. (a) The textile matrix. (b) The cable and driving hardware can be easily
removed from the textile part.
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3.2. Experiment Design

To evaluate the Smart-Sleeve’s ability in recognizing daily activities, 18 common
activities were selected, as shown in Figure 2, and 14 healthy subjects (3 females) were
invited to participate in the experiment and their related body information were collected,
as shown in Table 3. The participants are all right-handed and therefore wore the sleeve
on their right arm. The experiment was divided into 10 rounds; in each round the 18
activities were placed into random order and repeated once. To simulate everyday usage,
the Smart-Sleeve was taken off and reworn after each round.

 

Figure 2. Eighteen activities and the corresponding pressure distribution on the Smart-Sleeve.
1. Stand. 2. Fold arms. 3. Think. 4. Side against the wall. 5. Back against the wall. 6. Arm on the
baffle. 7. Hug a doll. 8. Carry a box. 9. Lean forward at work. 10. Lean back at work. 11. Sleep on the
table. 12. Hold cheeks. 13. Play mobile phone. 14. Write with a hunchback. 15. Write with a straight
back. 16. Sit with hands on the armrests. 17. Sit leaning to the right. 18. Sit with arms on the legs.
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Most of these activities were in a stationary posture. It was also observed that the
pressure images do not change significantly during dynamic activities such as playing with
the phone and writing. Therefore, in each activity, a sample containing an “average image”
by calculating the average of pixels at the same position of all images was obtained. Finally,
a dataset consisting of 2520 samples (14 subjects, 10 rounds per subject, 18 actions per
round) was generated.

Table 3. The participants’ demographic and anthropometric characteristics.

Parameters Mean (±Standard Deviation) Minimum Maximum

Age (years) 23.2 (±2.0) 21 28

Height (cm) 173.2 (±9.5) 152 184

Weight (kg) 67.4 (±13.5) 40 85

Arm length (cm) 51.9 (±3.4) 47 59

Forearm length (cm) 25.5 (±1.8) 23 28

Biceps circumference (cm) 29.0 (±4.7) 21 38

4. Data Processing
4.1. Preprocessing

The samples are first preprocessed to enhance the signal quality and remove the
influence of the body difference, as shown in Figure 3.

Raw Sample
Preprocessed Sample

Up-sampling

Smoothing

Scaling 
and Shift

Figure 3. The preprocessing workflow. The number of pressure images is doubled.

4.1.1. Upsampling and Smoothing

Previous work [19] shows that upsampling using bilinear interpolation creates better
images. Not only is the pressure image visually smoother, but its classification result also
improves. We thus upsample every pressure image by 3, then smooth it with a 5 × 5
Gaussian filter. The visual effect is shown in Figure 4.

4.1.2. Scaling and Shift

In contact with the external environment, such as baffles and tables, thin subjects
produce less contact area, as shown in Figure 4. As body size varies considerably among the
subjects, shown in Table 3, scaling the pressure image based on anthropometric information
may improve classification accuracy. The parameters α(i) and β(i) are used to represent
the row and column scale ratios of the i-th subject, as given in Equations (1) and (2).

α(i) =
∑n

k=1 LFA(k)
n

× 1
LFA(i)

(1)

β(i) =
∑n

k=1 LBC(k)
n

× 1
LBC(i)

(2)

where n is the number of subjects, LFA(i) denotes the forearm length of the i-th subject, and
LBC(i) denotes the biceps circumference of the i-th subject. After scaling using bilinear in-
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terpolation, the pressure images from tall and fat subjects become smaller and counterwise
for thin and small subjects.

Because in normal life clothes are put on and taken off every day, the subjects were
instructed to rewear the Smart-Sleeve after each round. Offsets thus exist in each round.
To remove this effect, we first combine all the pressure images in the same round into
one “exposure image” (the image obtained by summing the pixels at the same position
of all images), and calculate the center of mass coordinates of each “exposure image”.
Assuming that these coordinates should be the same in the absence of offsets, the offset for
the pressure images of each round is obtained after using the mean of these coordinates
as the target coordinate. Based on this offset, we perform the same shift operation on all
scaled frames within each round. Data out of the normal region are cropped. To minimize
missing image information, the edges of the images are zero-filled at the beginning of this
step, and the final image size is 84 × 42, which is larger than the smoothed one (the size
of the raw image is 20 × 10, then rises to 60 × 30 after upsampling by 3). The scaled and
shifted pressure image is shown in Figure 4. Because scaling and shifting might discard
some useful information from the original image, the new image is added to the sample
instead of overwriting the original image.

Subject 1
Forearm length: 23

Biceps circumference: 22
α = 1.1364  β = 1.2609

Shift: 𝟎,−𝟔

Subject 2
Forearm length: 27

Biceps circumference: 32
α = 0.7813  β = 1.0741

Shift: −𝟐, 𝟒

Raw Image Up-sampling
Gaussian

Smoothing
Scaling

and Shift.

0

6

2

4

Figure 4. Data preprocessing for different subjects in activity 6 (arm on the baffle).

4.2. Feature Extraction

Guo et al. [33] propose a feature library including 1830 ready-to-use features based on
the work of Zhou et al. [34], which contains 38 spatial features and 23 frame descriptors.
Liu et al. [25] define 32 geometric features for pressure sensor-based smart sheet data,
most of which are related to the location of human body parts. In this work, we organize
the previous work [19,25,33–36], supplement more features, and divide them into three
categories: the statistical, the geometric, and the symmetry. Our static feature set contains
100 features considering only a single pressure image. As each instance is represented by
two pressure frames, 200 features for each instance are obtained.

4.2.1. Statistical Features

For all pixels on the pressure image, the following eight statistical features are calculated:
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Feat1 to Feat4: Maximum, median, sum, and range (maximum–median).
Feat5 to Feat8: Average, variance, mean absolute deviation, and entropy of all

pixel values in the pressure image, as defined in [34].

4.2.2. Geometric Features

Using the image’s upper left corner as the origin, its short side as the x-axis, and the
long side as the y-axis, the coordinate system is defined, shown in Figure 5B. The following
geometric features are extracted.

Feat9, Feat10: The centroid coordinate x and y.
Feat11, Feat12: The centre of mass coordinate x and y.
Feat13: The distance from the centroid to the origin.
Feat14: The distance from the centre of mass to the origin.
Feat15: The angle between the line from the origin to the centroid and

the positive direction of the x-axis.
Feat16: The angle between the line from the origin to the centre of mass

and the positive direction of the x-axis.
Feat17 to Feat20: Width, height, aspect ratio, and area of the bounding rectangle

of the pressure image.
Feat21: Area (the number of pixels after thresholding with a value of 2).
Feat22 to Feat28: Hu’s seven invariant moments [37], which are rotation, transla-

tion, and scale invariant.
Feat29: Coverage (proportion of image covered).
Feat30 to Feat32: The coverage for the pixels that contain 25%, 50%, and 75% of

the total pressure.
Feat33 to Feat36: The coverage over four fixed rectangular regions.
Feat37: The number of contours.
Feat38: Area of the contour containing the largest area.
Feat39: Pressure of the contour containing the largest pressure.
Feat40: Intensity of pressure of the contour containing the largest inten-

sity of pressure.
Feat41 to Feat52: Feat9 to Feat20 of the masked image.

Liu et al. [25] define the coverage which is “the number of pixels that have non-
negative sensor values divided by the total number of pixels”. The coverages (Feat29 to
Feat32) are calculated, and for the Smart-Sleeve, the pressure image is divided into four
regions using the upper third point of the long side and the center point of the short side,
as shown in Figure 5C. We calculate the coverage by regions (Feat33 to Feat36).

The contours of the pressure image also contain a lot of information. Using the mean
value of all pixels in the image as the threshold, we binarize the pressure image and obtain
the contours. The number of the contours is counted as Feat37. For each contour, area
(number of pixels), pressure (sum of pixels), and intensity of pressure (pressure divided
by area) of the contained area are calculated, and we take the maximum value of each of
them as Feat38, Feat39, and Feat40. By leaving only the pixels surrounded by the contour
with maximum pressure, a masked image is obtained, as in Figure 5D, and then is used to
calculate Feat9 to Feat20 again as Feat41 to Feat52.
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x

y

angle

centroid

A

Upper Arm

Elbow

WristB C D

Figure 5. Geometric features calculation. (A) Activity 7 (hug a doll), corresponding to the pres-
sure image. (B) The coordinates (Feat9, Feat10), the distance from the origin (Feat13), and the an-
gle (Feat15) of the centroid. (C) Coverage by regions (Feat33 to Feat36). (D) The masked image and
the bounding rectangle.

4.2.3. Symmetry Features

The pressure image is divided into the left and the right parts by the x-coordinate of
the center of mass, and the following features are extracted.

Feat53, Feat54: The area of each side.
Feat55, Feat56: the pressure of each side.
Feat57: The ratio of area of both sides.
Feat58: The ratio of pressure of both sides.

Similarly, the y-coordinate of the center of mass is used to divide the pressure image
into the upper and the lower parts, and Feat53 to Feat58 is calculated again as Feat59 to
Feat64. For the centroid, the same steps are performed and Feat65 to Feat76 are obtained.
For the masked image mentioned above, we also calculate its symmetry features Feat77
to Feat100.

5. Evaluations

The performance of the Smart-Sleeve is evaluated by using both classical machine
learning classifiers and a CNN model. The classical machine learning methods are imple-
mented using Python and Scikit-learn [38] on an Intel Core i7-8700 CPU. The CNN model
is implemented using PyTorch [39] on an NVIDIA GeForce 2060 Super GPU. The impacts
of the normalization method and the feature set proposed in Section 4 are also evaluated.

5.1. Classical Machine Learning Method

The features described above are used to train the following classifiers: support vec-
tor machine (SVM), k-nearest neighbor (KNN), logistic regression (LR), random forest (RF),
decision tree (DT), and naive Bayes (NB). These algorithms are used widely in IoT devices
for HAR [11,40]. The overall workflow is shown in Figure 6. The parameters of these classi-
fiers, such as the number of nearest neighbors (n_neighbors) in KNN and kernel in SVM,
are listed in Table 4. The not-specified parameters adopt the default values in Scikit-learn.
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Table 4. The specified parameters for classical classifiers.

Classifiers Parameters

SVM kernel = poly

KNN n_neighbors = 5

LR penalty = l2, max_iter = 8000, random_state = 40

RF class_weight = balanced, criterion = gini, max_features = log2, random_state = 40

DT random_state = 40

NB GaussianNB is used, with default parameters

Raw Pressure Image

Pre-
processing

Pre-processed Image

Feature 
Extraction

Feature Set

Input

Machine Learning
Classifier

KNNSVM Output

Category

RFLR

NBDT

Statistical Features

Symmetry Features

Geometric Features 

Figure 6. The workflow of classical machine learning method.

5.2. Deep Learning Method

A deep learning approach (CNN) is also adopted, taking the original samples as the
input. As shown in Figure 7, the network consists of three main blocks. Each block is
composed of a convolutional layer, a batch normalization layer, a Relu, and a MaxPolling
layer. For each convolutional layer, the convolution kernel is 3 × 3 with a stride of 1
and padding of 1, and the out channels are separately set as 64, 128, and 256. For each
Maxpolling layer, the kernel is 2 × 2 with a stride of 2, and the padding is separately set
as (0, 1), (1, 1) and none. Processed by the three blocks, the input-sized 20 × 10 × 1 is
converted into the output-sized 3 × 2 × 256. We flatten it into a one-dimensional feature
vector and employ a fully connected (FC) layer to classify the activities. We use Adam
optimizer at the training stage with the learning rate of 10−4 and train the network for
30 epochs and the batch size of 40.

Conv
Batch Norm

Max Pool
FC

SoftMax

Category

Raw 
Pressure Image

Input Output

20 × 10 × 1

CNN Model

20 × 10 × 64

10 × 6 × 128
6 × 4 × 256

Figure 7. The CNN model. A network consisting of three main blocks is designed to convert the
pressure image into a feature space, which is then fed to one dense layer leading to a logistic regressor
for recognition of activities.
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5.3. Evaluation Metrics

To assess the effectiveness of our methods we use the standard metrics of accuracy,
macro precision (Macro_P), macro recall (Macro_R), and Macro_F1 [41]. Accuracy shows
the performance of the model by calculating the number of correct classifications and then
dividing it by the number of all samples. Ci is used to denote the i-th class. The precision
of the Ci is the ratio of the number of activities classified correctly to the total activities
predicted as Ci. The recall of the Ci is the ratio of the number of activities correctly classified
to the number of activities in Ci. The Macro_P and the Macro_R are defined as follows.

Macro_P =
1
m

×
m

∑
i=1

Pi (3)

Macro_R =
1
m

×
m

∑
i=1

Ri (4)

Where m is the number of classes, Pi denotes the precision of Ci , and Ri denotes the
recall of Ci. Macro_F1 is defined in Equation (5), which considers equally important the
effectiveness in each class, independently of the relative size of the class.

Macro_F1 =
2 × Macro_P × Macro_R

Macro_P + Macro_R
(5)

5.4. Classical Machine Learning Results

All features are normalized by min–max normalization [42] before classification.
Our model is validated based on 10-fold cross-validation (10-fold) and leave-one-subject-
out (LOSO). In the 10-fold, we split the data into 10 subsets, where 10% are used for testing
and 90% are used for training. The process is repeated 10 times. Finally, we average all the
results. In the LOSO scheme, one subject is kept aside at each iteration for testing and the
rest of the subjects are used in training. The results are shown in Table 5.

Table 5. The results (in %). The classical machine learning classifiers use the results after all the
preprocessing methods and features extraction described in Section 4 as input, while the CNN model
uses raw samples as input. The best classifier and all best results are bolded.

Classifiers Accuracy Macro_P Macro_R Macro_F1

10-Fold

SVM 82.02 82.20 82.24 81.61
KNN 75.67 76.49 75.95 75.18

LR 76.55 76.33 77.00 75.95
RF 80.20 80.16 80.32 79.51
DT 61.79 62.01 62.19 61.19
NB 61.51 63.08 61.77 60.49

CNN 82.30 82.56 82.42 81.79

LOSO

SVM 72.66 75.76 72.66 71.28
KNN 64.80 67.06 64.80 63.02

LR 70.16 72.64 70.16 68.24
RF 69.72 71.64 69.72 67.62
DT 51.90 52.88 51.90 49.93
NB 57.62 61.34 57.62 54.54

CNN 74.84 76.98 74.84 73.32

Among all classical classifiers, SVM is the best in all evaluation metrics, which has an
accuracy of 82.02% (10-fold) and 72.66% (LOSO). The detailed result is given in Figure 8.
Compared to other HAR systems, as illustrated in Table 1, the accuracy of Smart-Sleeve
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is acceptable. In detail, compared to the first-person camera solution [3], with the same
consideration of 18 activities and information about interactions with objects, Smart-Sleeve
is not only more accurate but also supports unobtrusive HAR for longer periods of time.
Due to the large differences in body size and behavioral habits of different subjects, LOSO
exhibits higher errors compared to 10-fold.

Some of the activities, such as activity 3 (think), where most subjects would brace their
right arm with their left hand, have better classification accuracies under both SVM and
CNN models, due to the fact that they produce significant pressure on the textile surface
and have less variation type across subjects. Other activities, such as activity 13 (play with
phone), have low classification accuracy. We believe this is caused by different personal
habits. For example, we observe that the tilt angle of the right arm to the desktop during
playing varies greatly among subjects; some subjects even place their arms directly flat
on the desktop. Activity 9 (lean forward at work), activity 14 (write with a hunchback),
activity 15 (write with a straight back), and activity 16 (sit with hands on the armrests)
all have the forearm placed onto a flat surface, and thus could be easily confused with
one another.

To further understand the roles of the normalization method and the new feature set
proposed in Section 4, the results with and without the scaling and shift method (A) and
the new feature set (B) are compared, listed in Table 6. The 38 spatial features in [33] are
used in the situation without the new feature set. All classical machine learning methods
listed in Table 4 are used to evaluate based on 10-fold and LOSO.

Table 6. Evaluations of the normalization method and the feature set (accuracy, in %). All best results
are bolded.

Classifiers
with A 1

with B
(10-Fold)

without A
with B

(10-Fold)

with A
without B
(10-Fold)

without A
without B
(10-Fold)

with A
with B

(LOSO)

without A
with B

(LOSO)

with A
without B
(LOSO)

without A
without B
(LOSO)

SVM 82.02 78.61 74.72 69.52 72.66 69.56 66.55 62.42
KNN 75.47 75.12 70.40 65.12 64.80 63.81 58.37 54.37

LR 76.55 71.87 68.61 60.99 70.16 66.43 62.94 56.63
RF 80.20 78.25 75.87 73.41 69.72 67.70 65.60 60.16
DT 61.79 59.44 56.51 56.87 51.90 50.63 48.37 47.02
NB 61.51 59.37 50.83 46.55 57.62 55.20 46.94 42.86

1 A is used to represent the normalization method and B is used to represent the new feature set.

For each classifier, the result of configuration A is always better than the other. Both
the normalization method and the new feature set significantly improve the results. When
the number of features is small, the RF classifier shows better results, especially in 10-fold.
In general, SVM performs well in a variety of situations.

5.5. Deep Learning Results

Table 5 illustrates the deep learning method’s performance, and the average accuracies
are 82.30% (10-fold) and 74.84% (LOSO). The CNN model achieves the best result compared
to all classical classifiers used in this work. In particular, it performs robustly when faced
with samples from subjects not involved in training (LOSO). The detailed result is given in
Figure 9. Overall, the variability of classification accuracy across activities is similar to that
of SVM. For some activities, such as activity 9 (lean forward at work) and activity 13 (play
with phone), the diversity brought by different subjects’ habits and the insufficient number
of training samples may lead to lower accuracy. In general, deep learning models require a
larger number of training samples.
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0 0.01 0.94 0 0.01 0 0 0.01 0.01 0 0 0.02 0.01 0 0 0 0 0

0.04 0.01 0 0.89 0.01 0 0.01 0.01 0.01 0.01 0.01 0 0 0 0.01 0.01 0 0
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0 0.01 0.01 0 0.01 0.01 0 0 0.04 0.01 0 0 0.03 0.02 0.05 0.05 0.71 0.06

0 0 0 0 0 0 0 0 0 0 0 0.07 0.02 0 0 0 0.04 0.87

(a)
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0 0 0 0.01 0 0.01 0 0.05 0.09 0.06 0 0.01 0.01 0.01 0.08 0.61 0.06 0

0 0.01 0.01 0.01 0.01 0 0 0 0.05 0 0 0 0.01 0.05 0.06 0.08 0.63 0.09

0 0 0 0 0 0.02 0 0 0.01 0 0 0.07 0.04 0 0 0 0.06 0.8

(b)

Figure 8. Confusion matrices using the SVM classifier with 10-fold and LOSO validation scheme.
The posture categories are represented in Figure 2. (a) 10-Fold (SVM). (b) LOSO (SVM).
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Figure 9. Confusion matrices using CNN. (a) 10-Fold (CNN). (b) LOSO (CNN).

The CNN framework achieves slightly better results than the SVM classifier without
data preprocessing and feature extraction. With sufficient computing power, this will
substantially improve our efficiency in developing similar applications. However, our
preprocessing and feature extraction are still useful, and methods such as feature selection
will help us understand which feature plays a significant role in the model generation
process, and thus provide insights into the problems or tasks. More importantly, the



Sensors 2022, 22, 1702 14 of 17

workflow of traditional machine learning is better suited to run on inexpensive and low-
power IoT devices, supporting real-time HAR applications.

6. Conclusions

Human activity recognition is a very challenging research area for the past decades.
Our proposed Smart-Sleeve uses pressure information for HAR, which has not been widely
studied in the wearable field. Compared to other wearable behavior recognition sensors,
the textile pressure sensor array brings good accuracy without compromising wearer com-
fort. Six classical machine learning classifiers and a convolutional neural network model
are used to evaluate the system. Average accuracies of 82.30% (CNN) and 82.02% (SVM)
can be achieved in 10-fold cross-validation and 72.66% (SVM) and 74.84% (CNN) in leave-
one-subject-out validation. In classical machine learning workflow, to normalize the data
differences caused by different body sizes, a new preprocessing method is adopted and a
feature set of 100 features, including statistical, geometric, and symmetry features, is pro-
posed. Through experiments, the normalization method and the new feature set are proved
to improve classification accuracy significantly, and the proposed CNN model achieves
the best result without any data preprocessing and feature extraction. These methods may
serve as a reference for similar systems. Our data is also made publicly available.

7. Discussions

In the raw pressure image, such as in Figure 4, some of the adjacent points have very
different values and the boundary of the pressure area is jagged, which may mean that
our sensor density is not high enough. Although upsampling and smoothing are used
to attenuate this effect in the data processing, in future work, we plan to further increase
the sensor density to provide more accurate activity recognition. In addition, the textile
matrix has been tested with simple washing, including the use of household detergent, hot
water, and household washing machines, and, subjectively, its sensing performance did not
deteriorate significantly. However, more specific indicators, such as sensitivity and range
of variation, should be further measured and compared under different washing methods
to assess its durability and application scope. For example, if the performance remains
good after washing with medical disinfectant, the Smart-Sleeve may be used in hospitals
to detect patient activity to assist doctors in tracking the development of disease. We also
note that in the results, the recognition accuracies of activities such as playing with phones
and working are relatively low, and the accuracy may be further improved by obtaining
the usage data of cell phones and computers.

Author Contributions: Conceptualization, J.C. and G.X.; methodology, G.X.; software, G.X., Q.W.,
W.D. and T.G.; validation, G.X. and Q.W.; formal analysis, G.X. and J.C.; investigation, G.X.; resources,
J.C., W.D. and T.G.; data curation, G.X.; writing—original draft preparation, G.X.; writing—review
and editing, J.C., T.G., Q.W. and G.X.; visualization, G.X.; supervision, J.C.; project administration,
G.X.; funding acquisition, J.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by “The National Natural Science Foundation of China” grant
number 62072420 and “The Fundamental Research Funds for the Central Universities” grant number
2150110020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Written informed consent has been obtained from all subjects involved
in the study to publish this paper.

Data Availability Statement: The data presented in this paper are available in a publicly accessible
repository (https://github.com/xghgithub/Smart-Sleeve-Dataset (accessed on 26 January 2022)).

Acknowledgments: We would like to acknowledge all the subjects who participated in the experiment.

https://github.com/xghgithub/Smart-Sleeve-Dataset


Sensors 2022, 22, 1702 15 of 17

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

HAR Human activity recognition
IMU Inertial measurement units
ADC Analog to digital converter
SVM Support vector machine
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