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Abstract: Epidermal growth factor receptor (EGFR)-targeted monoclonal antibodies, including
cetuximab and panitumumab, are used to treat metastatic colorectal cancer (mCRC). However,
this treatment is only effective for a small subset of mCRC patients positive for the wild-type
KRAS GTPase. GC1118 is a novel, fully humanized anti-EGFR IgG1 antibody that displays potent
inhibitory effects on high-affinity EGFR ligand-induced signaling and enhanced antibody-mediated
cytotoxicity. In this study, using 51 CRC patient-derived xenografts (PDXs), we showed that KRAS
mutants expressed remarkably elevated autocrine levels of high-affinity EGFR ligands compared
with wild-type KRAS. In three KRAS-mutant CRCPDXs, GC1118 was more effective than cetuximab,
whereas the two agents demonstrated comparable efficacy against three wild-type KRAS PDXs.
Persistent phosphatidylinositol-3-kinase (PI3K)/AKT signaling was thought to underlie resistance to
GC1118. In support of these findings, a preliminary improved anti-cancer response was observed in a
CRC PDX harboring mutated KRAS with intrinsically high AKT activity using GC1118 combined with
the dual PI3K/mammalian target of rapamycin (mTOR)/AKT inhibitor BEZ-235, without observed
toxicity. Taken together, the superior antitumor efficacy of GC1118 alone or in combination with
PI3K/mTOR/AKT inhibitors shows great therapeutic potential for the treatment of KRAS-mutant
mCRC with elevated ratios of high- to low-affinity EGFR ligands and PI3K-AKT pathway activation.

Keywords: colorectal cancer; patient-derived xenograft; EGFR-targeting therapeutic antibody; KRAS
mutation; PI3K/mTOR/AKT inhibitor

1. Introduction

At initial diagnosis, approximately 20% of colorectal cancer (CRC) patients present with distant
dissemination, which is associated with a high mortality rate, highlighting the importance of effective
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systemic therapeutic strategies [1,2]. Commonly-affected signaling pathways include the Wnt and
receptor tyrosine kinase (RTK) pathways, the components of which include epidermal growth factor
receptor (EGFR), vascular endothelial growth factor, and insulin-like growth factor 1 receptor (IGF1R) [3].
Currently, only 10 drugs, either administered as a monotherapy or in combination, have been approved
for use against metastatic CRC (mCRC) [4]. Although integrated multi-omics approaches have
improved our understanding of the underlying molecular pathophysiology of mCRC, there is a need
to customize treatment strategies to account for the high inter/intra-tumor heterogeneity and the
involvement of diverse drivers of mCRC [3,5].

EGFR-family hetero-dimerization, ligand affinity, and signaling cross-talk influence cellular
outcomes [6,7]. For example, different binding affinities of various ligands for EGFR result in
different levels of tumor growth in CRC cell lines [8]. Such ligands are classified as high- or
low-affinity EGFR ligands. High-affinity ligands include epidermal growth factor (EGF), transforming
growth factor α (TGF-α), heparin-binding EGF-like growth factor (HB-EGF), and betacellulin (BTC).
Low-affinity ligands include amphiregulin (AREG) and epiregulin (EREG) [6]. The unique effects
of anti-EGFR monoclonal antibodies (MoAbs), including cetuximab and panitumumab, on mCRC
treatment are increasingly being recognized. MoAbs compete with ligands to block downstream
signaling by promoting receptor internalization, antibody-dependent cellular cytotoxicity (ADCC), and
endocytosis-mediated cytotoxicity; however, acquired resistance to such MoAbs occurs over time [4,9].
The EGFR signaling cascade leads to the activation of various transcription factors that modulate
proliferation, migration, angiogenesis, and metastatic spread in mCRC, via three major pathways,
namely rat sarcoma (RAS)–rapidly accelerated fibrosarcoma (RAF)–mitogen-activated protein kinase
(MAPK), phosphatidylinositol 3-kinase (PI3K)–AKT–mammalian target of rapamycin (mTOR), and
Janus kinase/signal transducers and activators of transcription [10,11]. Notably, these pathways have
also been implicated in mechanisms of resistance to antibody-mediated EGFR inhibition [10–12].
Interestingly, activating mutations in the KRAS proto-oncogene GTPase (KRAS) are most common
among CRCs, comprising approximately 35%–45% of alterations (point mutations in exons 2, 3,
and 4) [12–15], and these predict primary resistance to anti-EGFR MoAbs, such as cetuximab and
panitumumab [16–19]. This is because constitutively activated RAS downstream signaling can activate
multiple processes involved in tumor progression without the influence of EGFR and related receptor
kinases [5,10]. There is also circumstantial evidence to suggest that an excess of high-affinity ligands
drives resistance to cetuximab [6,8,20,21].

GC1118 is a human anti-EGFR IgG1 antibody that differs from existing anti-EGFR MoAbs, such as
cetuximab and panitumumab, in its constant region, affinity, mode of action, and efficacy [8,20]. A recent
first-in-human phase I study of GC1118 conducted on patients with refractory solid tumors, including
gastric cancer and CRC, showed promising clinical antitumor efficacy and tolerability [22]. Notably,
GC1118 exhibited superior inhibitory effects on high-affinity ligand-induced signaling in CRC and
gastric cancer cells, regardless of KRAS status, triggering more potent antitumor activity than cetuximab
and panitumumab [8,20]. However, persistent activation of the phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha (PIK3CA)/phosphatase and tensin homolog (PTEN) pathway, one
of the major downstream pathways, might lead to the activation of EGFR-independent downstream
signaling pathways [10], suggesting that the combination of PI3K/mTOR/AKT inhibitors with EGFR
MoAbs might be efficacious [23].

The translationally-relevant CRC patient-derived xenograft (PDX) platform, which maintains a
high degree of genetic and transcriptional fidelity compared to respective parental tumors, coupled with
bioinformatics and high-throughput drug screening, is effective to investigate heterogeneous mCRC
with the aim of uncovering novel therapeutic agents [24–26]. Herein, we investigated the autocrine
expression levels of high- and low-affinity EGFR ligands using a large panel of CRC patient-derived
xenografts (PDXs). We also evaluated the therapeutic efficacy of GC1118 alone or in combination with
the dual PI3K/mTOR inhibitor BEZ-235 [27], while considering the presence of KRAS mutations and
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the expression pattern of EGFR ligands (Figure 1A). Figure 1B and Figure S1 summarize the clinical
and genomic baseline characteristics of 51 stratified CRC patients used to establish a PDX series.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 21 
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Figure 1. Genomic characterization of colorectal cancer (CRC) patient-derived xenografts (PDXs) and 
expression of epidermal growth factor receptor (EGFR) ligands. (A) Schematic overview of the 
analytical workflow used in the study to evaluate therapeutic efficacy. (B) A characteristic profile of 
the associated clinical information and genetic abnormalities of 51 patients with CRC (left panel) and 
distribution of cases according to the tumor site (right panel, upper) and prevalence of KRAS proto-
oncogene GTPase (KRAS) mutations (right panel, lower) in our CRC PDX panel. 

Figure 1. Genomic characterization of colorectal cancer (CRC) patient-derived xenografts (PDXs)
and expression of epidermal growth factor receptor (EGFR) ligands. (A) Schematic overview of the
analytical workflow used in the study to evaluate therapeutic efficacy. (B) A characteristic profile
of the associated clinical information and genetic abnormalities of 51 patients with CRC (left panel)
and distribution of cases according to the tumor site (right panel, upper) and prevalence of KRAS
proto-oncogene GTPase (KRAS) mutations (right panel, lower) in our CRC PDX panel.



Int. J. Mol. Sci. 2019, 20, 5894 4 of 21

2. Results

2.1. Genomic Characterization of CRC PDX Models and Expression Levels of High- and Low-Affinity EGFR
Ligands According to KRAS Status

All patients underwent excisional biopsy of a primary CRC (n = 30, 58.8%) or metastatic lesions
(n = 21, 41.2%) (Figure 1B, left panel). Fourteen (27.5%) and 37 CRC patients (72.5%) were diagnosed
with localized (stage I–III) and metastatic disease (stage IV), respectively (Figure 1B, left panel). The
primary tumor was in the right colon (cecum to proximal transverse) in 11 cases (21.6%) and the left
colon (distal transverse to rectum) in 39 (76.5%) cases. In one case, the location was unknown (n = 1
and 2%) (Figure 1B, upper right panel). In general, KRAS gene mutations are predominant among
RAS family gene alterations in mCRC (85%), and approximately 90% of KRAS mutations occur within
codons 12 and 13 [28]. Here, KRAS mutations were observed in 24 (42.1%) cases (Figure 1B, lower
right panel), whereas no gene alterations were present in B-Raf proto-oncogene serine/threonine kinase
(BRAF) (Figure 1B, left panel). PIK3CA and tumor protein P53 (TP53) mutations were also detected in
seven (16.4 %) and 23 (45.1%) patients (Figure S1), respectively.

Low-affinity ligands EREG and AREG are predominant in CRC, whereas only a small fraction
of high-affinity ligands is expressed [29]. Low expression levels of AREG and EREG associated with
KRAS mutations might indicate a tumor that is less dependent on EGFR and is therefore particularly
prone to developing resistance to anti-EGFR MoAbs [6,8,10,20,21]. Moreover, the expression levels
of AREG and EREG were found to be significantly decreased in mutant-KRAS cases, compared to
those in the wild-type cases [30]. Sustained extracellular signal–regulated kinases (ERK) signaling
mediated by KRAS mutations was shown to boost secretion of the high-affinity EGFR ligands HB-EGF
and TGF-α, which in turn activated EGFR in an autocrine fashion [31]. The total expression level of
each EGFR ligand (nM) did not show any significant association with KRAS mutations as evaluated
by ELISA (Table S1 and Figure S2). Notably, consistent with previous reports [30,31], we found that
KRAS-mutant PDXs tended to show significantly higher fractions of high-affinity EGFR ligands and
lower fractions of low-affinity EGFR ligands (Figure 2A,B), in addition to a higher ratio of high- to
low-affinity EGFR ligands, than did the KRAS wild-type PDXs (Figure 2C,D). This indicates that the
distribution of high- and low-affinity EGFR ligands depends on the presence of a KRAS mutation.
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Figure 2. Percent distribution of ligand expression levels in 51 colorectal cancer (CRC) patient-derived 
xenografts (PDXs). (A) Percent ligand expression levels for EGF, HB-EGF, TGF-α, BTC, AREG 
epidermal growth factor (EGF), heparin-binding EGF-like growth factor (HB-EGF), transforming 
growth factor α (TGF-α), betacellulin (BTC), amphiregulin (AREG) and epiregulin (EREG) in 51 
individual CRC PDXs as determined by ELISA. (B) Proportion of high- and low-affinity EGFR ligands 
in CRC PDX models according to their KRAS status. The graph shows the mean and standard error 
of the mean (SEM). * p < 0.05. (C) High/low-affinity ligand expression ratios in 51 individual CRC 
PDX models. (D) High/low-affinity ligand ratio in CRC PDX models according to their KRAS status. 
The graph shows the mean and SEM. * p < 0.05. 

2.2. GC1118 is More Active Than Cetuximab against KRAS-Mutant CRC PDXs 

Figure 2. Percent distribution of ligand expression levels in 51 colorectal cancer (CRC) patient-derived
xenografts (PDXs). (A) Percent ligand expression levels for EGF, HB-EGF, TGF-α, BTC, AREG epidermal
growth factor (EGF), heparin-binding EGF-like growth factor (HB-EGF), transforming growth factor
α (TGF-α), betacellulin (BTC), amphiregulin (AREG) and epiregulin (EREG) in 51 individual CRC
PDXs as determined by ELISA. (B) Proportion of high- and low-affinity EGFR ligands in CRC PDX
models according to their KRAS status. The graph shows the mean and standard error of the mean
(SEM). * p < 0.05. (C) High/low-affinity ligand expression ratios in 51 individual CRC PDX models.
(D) High/low-affinity ligand ratio in CRC PDX models according to their KRAS status. The graph
shows the mean and SEM. * p < 0.05.
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2.2. GC1118 is More Active Than Cetuximab against KRAS-Mutant CRC PDXs

To compare the effectiveness of GC1118 and cetuximab in vivo, 6 CRC PDXs (three KRAS
wild-types and three KRAS mutants; all PIK3CA wild-type) were treated with GC1118 for at least 28
days (Figure 3).
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six individual CRC PDXs. * p < 0.05, ** p < 0.01, *** p < 0.001. (B) Representative images of 
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Figure 3. Antitumor activity of GC1118 against both KRAS-wild-type and mutant colorectal cancer
(CRC) patient-derived xenografts (PDXs). (A) Tumor growth after GC1118 or cetuximab treatment
in six individual CRC PDXs. * p < 0.05, ** p < 0.01, *** p < 0.001. (B) Representative images of
immunohistochemistry (IHC) detection of AKT and ERK signaling activity in six individual CRC PDXs.
(C) Quantification of AKT and ERK activity, as measured by IHC. The results in the bar graph are shown
as the means and standard error of means (SEM). Statistical significance is summarized in Table S3.
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To evaluate the effects of GC1118 and cetuximab, tumor growth inhibition index (TGII) values
were calculated from the average volume of the treated (Vt) and vehicle control (Vvc) groups using the
following equation: TGII (%) = (Vt final -Vt initial)/(Vvc final -Vvc initial) × 100 [32]. For example, if the
treatments resulted in no change in growth vs. vehicle-treated controls, TGII (%) = 100. If GC1118 or
cetuximab resulted in 70% tumor growth compared to vehicle-treated control tumors, TGII (%) = 300.
Both GC1118 (TGII = −36.8%, p = 0.0053) and cetuximab (TGII = −29.4%, p = 0.006) induced complete
tumor regression in CRC-003T PDXs (KRAS-wild-type; high-affinity ligand, 77.2%; low-affinity
ligand, 22.8%) (GC1118 vs. cetuximab, p = 0.09; Figure 3A, upper panel and Table S2). Similarly,
treatment with GC1118 or cetuximab significantly inhibited CRC-077T growth (KRAS-wild-type;
high-affinity ligand, 51.6%; low-affinity ligand, 48.4%) with TGII values of 6.8% (p = 0.0016) and 10.4%
(p = 0.0015), respectively (Figure 3A, upper panel and Table S2), suggesting comparable antitumor
potency of GC1118 to cetuximab in patients harboring wild-type KRAS. Interestingly, GC1118 showed a
significantly superior efficacy (TGII: 36.7%, p = 0.006) to cetuximab (TGII: 36.7%, p = 0.006) in CRC-001T
PDXs (KRAS-wild-type; high-affinity ligand, 88.7%; low-affinity ligand, 11.3%) (GC1118 vs. cetuximab,
p < 0.001; Figure 3A, upper panel and Table S2).

Of note, GC1118 showed a more significant inhibitory effect on tumor growth than did cetuximab
in cases of KRAS-mutant CRC (Figure 3A, lower panel and Table S2). In CRC-026T PDXs (KRAS
G12D; high-affinity ligand, 84.2%; low-affinity ligand, 15.8%), TGII values for GC1118 and cetuximab
were 47.9% (p = 0.006) and 97.5% (p = 0.053), respectively (p = 0.001; Figure 3A, lower panel and
Table S2). Further, TGII values for GC1118 and cetuximab in CRC-034T (KRAS G12V; high-affinity
ligand expression, 72.2%; low-affinity, 27.8%) were 34.5% (p = 0.023) and 103.6% (p = 0.12), respectively
(GC1118 vs. cetuximab, p = 0.019; Figure 3A, lower panel and Table S2). Finally, treating CRC-088T
PDXs (KRAS G12V; high-affinity ligand, 61.3%; low-affinity ligand, 38.7%) with GC1118 and cetuximab
resulted in TGII values of 10.8% (p = 0.001) and 47.6% (p = 0.91), respectively (GC1118 vs. cetuximab,
p = 0.012; Figure 3A, lower panel and Table S2). Overall, no significant differences were observed in
the body weights of animals over the course of this study (Figure S3). The potent inhibitory effect of
GC1118 on high-affinity EGFR ligand-induced signaling is more pronounced for downstream signaling
molecules including AKT and ERK1/2 [8]. GC1118 and cetuximab resulted in variable inhibitory effects
on ERK and AKT activation compared to that in the control group according to each PDX, as measured
by IHC (Figure 3B,C and Table S3) and immunoblotting (Figure S4). Overall, ERK and AKT signaling
activities were significantly suppressed after treatment with GC1118 alone compared to that with
cetuximab alone.

2.3. Activation of AKT Signaling Confers Resistance to GC1118 Monotherapy in KRAS-Mutant CRC
PDX Models

The combined TGII from a panel of CRC PDXs revealed that GC1118 treatment inhibited tumor
growth significantly better than cetuximab in KRAS-mutants (Figure 3 and Table S2); however, complete
tumor regression was not observed. In seven CRC PDXs with varying levels of basal EGFR, AKT, and
ERK1/2 activation before GC1118 treatment (Figure 4A), including an additional CRC-024T model
(KRAS G12D; high-affinity ligand, 88.8%; low-affinity ligand, 11.2%; high basal AKT activity) with
resistance to GC1118 and cetuximab (TGII-GC1118 = 65.6) (Table S2), the efficacy of GC1118 (TGII)
showed a significant positive correlation with basal AKT activity only (Pearson’s r = 0.82, p = 0.024)
(Figure 4B).
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pAKT/AKT, and pERK1/2/ERK1/2, respectively (B) Pearson’s correlation analysis was performed to 
analyze the correlation between EGFR, AKT, and ERK1/2 activities (X-axis) and the tumor growth 
inhibition index (TGII, Y-axis) in six CRC PDXs. 
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Figure 4. Correlation analysis of the inhibitory effects of GC1118 and basal signaling activity level in a
colorectal cancer (CRC) patient-derived xenograft (PDX) model. (A) Basal activity levels of EGFR, AKT,
and ERK1/2 pathways based on western blotting using tumor xenografts from each CRC PDX model.
The tumor samples were isolated when the tumor xenografts reached 200 mm3. For quantification,
images were acquired and signal intensity of each protein band was quantified using the ImageJ
software (NIH, Bethesda, MD, USA) and normalized to β-actin. The activities of EGFR, AKT, and
ERK1/2 were determined by normalization with their total pairs, namely pEGFR/EGFR, pAKT/AKT,
and pERK1/2/ERK1/2, respectively (B) Pearson’s correlation analysis was performed to analyze the
correlation between EGFR, AKT, and ERK1/2 activities (X-axis) and the tumor growth inhibition index
(TGII, Y-axis) in six CRC PDXs.

PI3K activity is the main predictor of mitogen-activated protein kinase kinase (MEK)-inhibitor
resistance in KRAS-driven CRC [33,34] and thus, the additional use of a PI3K inhibitor could overcome
resistance to MEK inhibition [35]. Although KRAS can directly activate PI3K signaling by binding to
the p110-PI3K subunit, there is increasing evidence that PI3K activation, following MEK inhibition, is
correlated with RTK activity, providing the foundation for the use of RTK inhibitors in KRAS-mutant
CRC [36]. Based on these findings, we performed preliminary in vivo experiments, evaluating the
combination of GC1118 and the dual PI3K/mTOR inhibitor BEZ-235 [27], in a relatively GC1118-resistant
CRC-024T model (KRASG12D showing high basal AKT activity (Figure 5). Here, cetuximab was
inactive (TGII = 109.4%, p = 0.600), whereas GC1118 (TGII = 65.6%, p = 0.255) or BEZ-235 (TGII = 67.4%,
p = 0.103) alone had moderate antitumor effects (Figure 5A and Table S2). Furthermore, the combination
of the two molecules exerted significant inhibitory effects on tumor growth (TGII = 31.6%; p = 0.007;
Figure 5A) with no reduction in body weight (Figure 5B) and without any other signs. We also
confirmed significant inhibitory effects on AKT and ERK1/2 activity using IHC (Figure 5C,D and
Table S4) and immunoblotting (Figure 5E).
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Figure 5. Antitumor activity of GC1118 and BEZ-235 in the colorectal cancer (CRC)-024T patient-
derived xenograft (PDX) model. (A) Tumor growth after individual or combined GC1118 and BEZ-
235 treatment in the CRC-024T PDX model. The results in the graph are shown as means and standard 
errors of means (SEM). * p < 0.05, ** p < 0.01. (B) Mouse body weight during the course of the in vivo 
study at indicated time points. Error bars represent SEM. (C) Analysis of signaling pathways based 
on immunohistochemistry (IHC) detection of AKT and ERK1/2 signaling activities in the CRC-024T 
PDX model after treatment with GC1118 and BEZ-235. The results in the graph are shown as the mean 
and SEM. The values indicating the statistical significance between each group based on a T-test were 

Figure 5. Antitumor activity of GC1118 and BEZ-235 in the colorectal cancer (CRC)-024T patient-derived
xenograft (PDX) model. (A) Tumor growth after individual or combined GC1118 and BEZ-235 treatment
in the CRC-024T PDX model. The results in the graph are shown as means and standard errors of
means (SEM). * p < 0.05, ** p < 0.01. (B) Mouse body weight during the course of the in vivo study
at indicated time points. Error bars represent SEM. (C) Analysis of signaling pathways based on
immunohistochemistry (IHC) detection of AKT and ERK1/2 signaling activities in the CRC-024T PDX
model after treatment with GC1118 and BEZ-235. The results in the graph are shown as the mean and
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SEM. The values indicating the statistical significance between each group based on a T-test were
described in Table S4. (D) Representative IHC images of AKT and ERK1/2 signaling activities in the
CRC-024T PDX model treated with GC1118 and BEZ-235. (E) Analysis of signaling pathways by
immunoblotting for AKT and ERK1/2 signaling activities in the CRC-024T PDX model treated with
GC1118 and BEZ-235. For quantification, images were acquired and signal intensity of each protein
band was quantified using the ImageJ software (NIH, Bethesda, MD, USA) and normalized to β-actin.
The activities of EGFR, AKT, and ERK1/2 were determined by normalization with their total pairs,
namely phospho-EGFR/EGFR, phospho-AKT/AKT, and phospho-ERK1/2/ERK1/2, respectively. The
results in the graph are shown as SEM. The significant difference between vehicle and each treatment
group is indicated. * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Discussion

As CRCs differ in clinical presentation, molecular heterogeneity, and the involvement of several
molecular pathways and molecular changes [5,37], PDXs represent the fastest and most effective
approach to uncover active therapeutic agents for CRC [24–26]. In contrast to previous studies, we
utilized the PDX platform to evaluate the efficacy of GC1118 and its mechanism of action, as the
induction and expression of high-affinity EGFR ligands have been reported to be more prevalent in
CRC tumor xenografts than in in vitro cultures [8]. GC1118 is a human anti-EGFR IgG1 antibody that
differs from existing anti-EGFR MoAbs, such as cetuximab and panitumumab, in its constant region,
affinity, mode of action, and efficacy [8,20], exhibiting superior binding affinity (resulting in ADCC) to
both the low- and high-affinity variants of FcγRIIIa compared to cetuximab [8,20]. Moreover, the use of
Bagg albino (BALB)/c nude mice with intact innate immune systems could allow for the evaluation of
GC1118-mediated ADCC through Fc receptors present on immune effector cells such as macrophages,
monocytes, and natural killer cells [8,11,38].

A subset of CRCs lacking KRAS pathway mutations and showing “EGFR addiction” is treatable
using two EGFR-targeting MoAbs, namely cetuximab and panitumumab [4,9]. When the oncogenic
stimulus occurs downstream, such as in tumors with KRAS mutations, resistance to these therapies
arises [4,5,7,12,16,39,40]. KRAS mutations in CRC are associated with a more rapid onset and aggressive
metastasis, making it clinically more challenging [16,41,42]. Herein, we showed that efficiently blocking
high-affinity EGFR ligands with GC1118 induces superior therapeutic benefits in KRAS mutated CRC
PDX platform refractory to cetuximab. In addition, the basal up-regulated AKT pathway was correlated
with lower efficacy of GC1118, and our preliminary, promising results indicated that GC1118 combined
with the PI3K/mTOR/AKT inhibitor BEZ-235 showed improved antitumor effects on KRAS-mutant
tumors with intrinsically high AKT activity with favorable safety, encouraging further studies using
novel therapeutic combinations to treat clinically-aggressive KRAS-mutant CRC showing elevated
ratios of high- to low-affinity EGFR ligands and PI3K/mTOR/AKT signaling (Figure 6).

Constitutively active MAPK signaling in KRAS-mutated CRC promotes epithelial–mesenchymal
transition and cancer stemness, independent of external EGFR stimulation [43,44]. Further,
persistent downstream signaling through the RAS axis due to KRAS mutations can activate multiple
processes involved in tumor progression and metastasis without the influence of EGFR and other
cell surface receptor kinases. Previous studies have reported a significant association between
EREG/AREG expression and cetuximab response in KRAS-wild-type patients, but not in KRAS-mutant
patients [6,8–10,20,21,45,46]. Therefore, there is an unmet need for novel EGFR-targeting therapies
as alternative treatment options. Our results showed that CRC PDXs harboring KRAS mutations
expressed remarkably higher levels of high-affinity EGFR ligands than KRAS-wild-type tumors,
suggesting that the expression levels of EGFR ligands could be used as biomarkers to predict the
therapeutic response to EGFR-targeting strategies. Although EREG and AREG are predominant
EGFR ligands expressed in CRC, and only a small fraction of high-affinity ligands is expressed [29],
upon downstream activation of the EGFR/RAS/MAPK axis owing to a mutated KRAS effector, the
expression of AREG and EREG ligands would be biologically irrelevant in terms of any benefit from
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cetuximab [8,20,21,45]. The observed superior antitumor potency of GC1118 over cetuximab against
CRC PDXs harboring activating KRAS mutations could be due to the strong inhibitory activity of the
interaction between EGFR and high-affinity EGFR ligands [8,20,21], providing a rationale for clinical
application of the expression pattern of EGFR ligands as a novel biomarker predictive of the response
to GC1118 in treating patients with refractory mCRC. Supporting our work, increased secretion of
the high-affinity EGFR ligands TGF-α and BTC by some KRAS-mutant clones has been suggested to
be a paracrine resistance mechanism to anti-EGFR antibodies in CRC models [47–49]. Considering
the significant roles of high-affinity EGFR ligands in modulating the tumor microenvironment and
inducing resistance to various cancer therapeutics, our study suggests potential therapeutic advantages
for GC1118 in terms of efficacy and the range of patients for whom it will be beneficial. Genetic and
molecular mechanisms determining the ratio of high-affinity/low-affinity EGFR ligands, other than
KRAS mutation status, should be elucidated through further comparative analyses of the therapeutic
effects of GC1118 on CRC PDXs secreting mainly high- or low-affinity EGFR ligands using a larger
panel of heterogenous CRC PDXs.
Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 11 of 21 

11 
 

 

Figure 6. Our hypothesis of the mechanisms underlying the inhibitory effects of GC1118 on colorectal 
cancer (CRC) with KRAS mutations and circumventing resistance to GC1118 by combining this drug 
with PI3K/mTOR/AKT inhibitors (BEZ-235 in this study) in KRAS-mutated CRCs with persistently 
activated PI3K/mTOR/AKT signaling. 

Constitutively active MAPK signaling in KRAS-mutated CRC promotes epithelial–
mesenchymal transition and cancer stemness, independent of external EGFR stimulation [43,44]. 
Further, persistent downstream signaling through the RAS axis due to KRAS mutations can activate 
multiple processes involved in tumor progression and metastasis without the influence of EGFR and 
other cell surface receptor kinases. Previous studies have reported a significant association between 
EREG/AREG expression and cetuximab response in KRAS-wild-type patients, but not in KRAS-
mutant patients [6,8–10,20,21,45,46]. Therefore, there is an unmet need for novel EGFR-targeting 
therapies as alternative treatment options. Our results showed that CRC PDXs harboring KRAS 
mutations expressed remarkably higher levels of high-affinity EGFR ligands than KRAS-wild-type 
tumors, suggesting that the expression levels of EGFR ligands could be used as biomarkers to predict 
the therapeutic response to EGFR-targeting strategies. Although EREG and AREG are predominant 
EGFR ligands expressed in CRC, and only a small fraction of high-affinity ligands is expressed [29], 
upon downstream activation of the EGFR/RAS/MAPK axis owing to a mutated KRAS effector, the 
expression of AREG and EREG ligands would be biologically irrelevant in terms of any benefit from 
cetuximab [8,20,21,45]. The observed superior antitumor potency of GC1118 over cetuximab against 
CRC PDXs harboring activating KRAS mutations could be due to the strong inhibitory activity of the 
interaction between EGFR and high-affinity EGFR ligands [8,20,21], providing a rationale for clinical 
application of the expression pattern of EGFR ligands as a novel biomarker predictive of the response 
to GC1118 in treating patients with refractory mCRC. Supporting our work, increased secretion of 
the high-affinity EGFR ligands TGF-α and BTC by some KRAS-mutant clones has been suggested to 

Figure 6. Our hypothesis of the mechanisms underlying the inhibitory effects of GC1118 on colorectal
cancer (CRC) with KRAS mutations and circumventing resistance to GC1118 by combining this drug
with PI3K/mTOR/AKT inhibitors (BEZ-235 in this study) in KRAS-mutated CRCs with persistently
activated PI3K/mTOR/AKT signaling.

Here, importantly, we found that resistance to GC1118 was associated with increased activation
of AKT signaling, suggesting that persistent activation of the PI3K/AKT/mTOR signaling axis by
high-affinity EGFR ligands could be a potential feedback and resistance mechanism inducing EGFR
inhibition. Although we focused on CRC PDX cases harboring only KRAS mutations to validate the
potential of combined PI3K/mTOR/AKT and EGFR inhibition in KRAS-mutant CRC cells with high
AKT activity due to several mechanisms such as the ratio of high- to low-affinity EGFR ligands, further
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investigations on CRC PDXs harboring concurrent mutations in both KRAS and the genes activating
PI3K/mTOR/AKT pathway (e.g., PIK3CA) are required to strengthen the importance of PI3K/mTOR/AKT
pathway in the resistance to GC-1118. Genetic mutations in the PI3K and MAPK pathways are frequently
implicated in CRC [10–12]. CRC patients with PIK3CA and KRAS mutations are unlikely to respond to
the inhibition of the MEK pathway alone or the PI3K pathway alone but will require effective inhibition
of both MEK and PI3K/AKT signaling pathways [12,13,16,34,39,50–55]. For example, BEZ-235, in
combination with EGFR inhibitors, is more effective for less mTOR inhibitor-sensitive and EGFR
inhibitor-resistant CRC cell lines, especially HCT116 (which harbors KRAS and PIK3CA mutations),
as shown in a recent study [39]. Previous findings suggest that acquired resistance to anti-EGFR
MoAbs biochemically converges on RAS/RAF/MEK/ERK and PI3K/mTOR/AKT pathways, coupled
with cross-talk mechanisms between other members of the EGFR family, such as HER2 and HER3,
as well as IGF1R [39,55–59]. Additionally, it is well established that autophagy is associated with
resistance to anti-EGFR MoAb therapy because EGFR stimulates multiple downstream signaling
pathways that affect autophagy, including the PI3K–AKT–mTOR axis [7,60]. Combination therapy
comprising anti-EGFR MoAbs together with autophagy-inducing PI3K/mTOR inhibitors could be used
to develop an active therapeutic strategy for mCRC patients by inducing autophagic cell death [61,62].

Activating mutations in PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit
alpha) are present in 15%–20% of CRCs, and the prevalence of PIK3CA exon 9 and/or exon 20 hotspot
mutations increases continuously from rectal (10%) to cecal (25%) cancers, supporting the colorectal
continuum paradigm [13,14,55,63–73]. Coexisting PIK3CA and KRAS mutations, which occur in
approximately 8%–9% of CRC cases [55,66–68,73–78], predict resistance to anti-EGFR therapy, as well
as worse prognosis, in CRC [16,39,52,55,66,68,76,79–86]. Interestingly, mutations in PIK3CA exon 9 (and
to a lesser extent exon 20) are associated with features of the traditional serrated pathway (CpG island
methylator phenotype-low (CIMP-low)/KRAS mutation) of tumorigenesis [66,68,76,78]. Insight into
KRAS-driven CRCs will stimulate new research to find the best approach to treat this aggressive type
of cancer, encouraging further evaluations of novel combination strategies including PI3K/mTOR/AKT
inhibitors [39,56,87]. Although only one case was tested in the present study, our data highlight the
potential of combined PI3K/mTOR and EGFR inhibition for KRAS-mutant CRC cells with relatively
high levels of high-affinity EGFR ligands, although further investigation on the therapeutic efficacy,
mode of action, and tolerability of this combination based on additional KRAS-mutant PDX models
concurrently harboring other genetic alterations (with different genetic backgrounds) is required. In
fact, there were three cases with mutations in both KRAS and PIK3CA among our panel (CRC-017T:
KRAS G13D, PIK3A Q546K, TP53 R81X and P27R; CRC-021T: KRAS G13D); however, they could not be
used for in vivo validation due to the difficulty in obtaining sufficient PDX cells for in vivo combination
efficacy test. The verification of the synergy of GC1118 and BEZ-235 in several KRAS-mutant CRC
PDX cases less susceptible to GC1118 by high AKT activity is essential to provide clinical reliability
and strong support for our hypothesis, highlighting the potential of combined PI3K/mTOR and EGFR
inhibition in KRAS-mutant CRC cells with relative high levels of high-affinity EGFR ligands. Our data
highlight the potential of combined PI3K/mTOR/AKT and EGFR inhibition in KRAS-mutant CRC cells
with relatively high levels of high-affinity EGFR ligands, with a need for further investigations on the
therapeutic efficacy, mode of action, and tolerability for optimizing this combination in additional
KRAS-mutant PDX models concurrently harboring other genetic alterations. As the low frequency of
these double-mutant cases underscores the need for collaborative international efforts to undertake
such drug combination studies, optimizing the design of such clinical trials for CRC requires a detailed
knowledge of the prevalence of these respective mutant genotypes.

In summary, the superior inhibitory activity of GC1118 on high-affinity EGFR ligands, for
which current clinical antibodies show restricted inhibitory activity, reflects the potential therapeutic
advantage of this drug for the treatment of cancer in which high-affinity EGFR ligands are implicated
in tumor progression, metastasis, and resistance to current cancer therapeutics. Although future
work should focus on the development of predictive biomarkers and hypothesis-driven rational
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combinations, GC1118 might be of therapeutic benefit, alone or in combination with other agents,
for KRAS-mutant mCRCs with elevated ratios of high- to low-affinity EGFR ligands and intrinsic
PI3K–AKT pathway activation. Further validation based on mouse trials is required based on an
expanded CRC PDX panel to overcome the heterogeneity encountered in the clinic and optimize
clinical trial designs and further define a patient enrichment strategy.

4. Materials and Methods

4.1. CRC Patient Clinical Information

All CRC patients provided informed consent for the use of their tissues in this study, in accordance
with protocols approved by the Samsung Medical Center (Seoul, Korea) Institutional Review Boards
(IRB 2010-04-004). Sequencing analysis (after polymerase chain reaction (PCR) amplification) was
performed on 51 patient-derived tissues to confirm the presence of KRAS, BRAF, PIK3CA, and TP53
mutations. Clinical information derived from histological examination and diagnosis based on biopsies
from 51 patients with CRC was provided by the Samsung Medical Center. PCRs were carried out
in a 20 µL reaction volume containing 100 ng genomic DNA, 10 pmol of each primer, and Maxime
PCR premix (iNtRON Biotechnology, Seongnam, Korea). Bidirectional sequencing was performed
using a BigDye Terminator v1.1 kit (Applied Biosystems, Foster City, CA, USA) on an ABI 3130XL
Genetic Analyzer (Applied Biosystems). Sequence analysis was performed using the software package
Sequencher 4.10.1 (Gene Codes Corporation, Ann Arbor, MI, USA).

4.2. Establishment of CRC PDXs and Analysis of EGFR Ligand Expression

To evaluate autocrine-derived EGFR ligands (and not paracrine ligands produced by stromal
cells in the tumor microenvironment), we implanted CRC tumor fragments obtained from 51 patients
into the subcutaneous layer of immunodeficient BALB/c nude mice, generating PDXs, as described
previously [88]. Animal experiments were conducted in accordance with the Institute for Laboratory
Animal Research Guide for the Care and Use of Laboratory Animals, and all protocols were approved
by the Samsung Medical Center. Tumors that reached a volume of 1000 mm3 were considered
tumorigenic. Tumor tissues were isolated from subcutaneous CRC PDXs when the tumor volume
reached approximately 200 mm3. The tumors were homogenized, extracted in 1 mL lysis buffer (Cell
Signaling Technology, Danvers, MA, USA), and centrifuged to remove tissue residue. The supernatant
components were measured using multiplex ELISA arrays. Human EGF/HB-EGF/TGF-α/BTC/AREG
ELISA kits (Ray Biotech, Norcross, GA, USA) and human EREG ELISA kits (USCN Life Science Inc.,
Houston, TX, USA) were used according to the manufacturers’ protocols to quantify the expression
level of each EGFR ligand.

4.3. In Vivo Therapeutic Efficacy Evaluation Using a Panel of CRC PDX Models

All in vivo experiments were conducted according to the guidelines of the Association for
Assessment and Accreditation of Laboratory Animal Care, from the Samsung Medical Center Animal
Use and Care Committee (Approval No. 20151209001) and the National Institute of Health (NIH;
Bethesda, MD, USA) Guide for the Care and Use of Laboratory Animals (NIH publication 80-23). We
propagated CRC PDXs to evaluate the therapeutic efficacy of cetuximab, GC1118, and BEZ-235 by
implanting PDX tumors into the flanks of 6–8-week-old female BALB/c nude mice purchased from
Orient Bio Inc. (Seongnam, Korea). Tumors were harvested when they reached approximately 500
mm3, and dissociated single cells were isolated, added to Hank’s Buffered Salt Solution medium and
Matrigel Basement Membrane Matrix mixture (1:1), and subcutaneously injected into the flanks of
6–8-week-old female BALB/c-nude mice.

When tumors reached approximately 200–250 mm3, the animals were randomized into groups
based on tumor volume to minimize intragroup and intergroup variation (n = 3–7 mice/group). The
start of dosing was defined as day 1, and tumor volumes and body weights were measured twice per
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week for 28–52 days, depending on the growth of each PDX. Tumor volume was calculated as (length
×width2) × 0.52 [32]. Relative tumor volume was normalized to the initial tumor volume on day 1.
GC1118 or cetuximab was administered at 50 mg/kg (1 mg/mouse) [8,20]. A vehicle was administered
intraperitoneally twice per week, and BEZ-235 was administered at 20 mg/kg (0.4 mg/mouse) orally
five times per week [89]. TGII values was used for antitumor efficacy [32]. Mice were monitored daily
for signs of toxicity. After sacrificing each mouse, tumor tissue was harvested and divided into two
parts, one for IHC examination and the other for protein extraction.

4.4. IHC

At the indicated post-treatment times, additional tumor-bearing mice were sacrificed and tumors
were harvested to generate formalin-fixed paraffin-embedded (FFPE) specimens. FFPE samples were
processed according to conventional experimental protocols for IHC analysis. Specimens were fixed
with 4% paraformaldehyde in phosphate-buffered saline (PBS; Gibco), embedded in paraffin, and
cut into sections that were blocked and permeabilized with 0.3% triton X-100 (Sigma-Aldrich, St.
Louis, MO, USA) and 10% horse serum in PBS. Deparaffinization and antigen retrieval were followed
by primary antibody staining and hematoxylin counterstaining. Primary antibodies used to label
proteins were as follows: anti-phospho-AKT (Ser473; 1:50) and anti-phospho-ERK1/2 (Thr202/Tyr204;
1:100) (Cell Signaling Technology). These were labeled with secondary antibodies, as previously
described [90]. To quantify AKT and ERK activity based on IHC, images were captured with an
automatic histologic imaging system (TissueFAXS, TissueGnostics GmbH, Vienna, Austria). The
expression of anti-phospho-AKT and anti-phospho-ERK1/2 was quantified by HistoQuest Analysis
Software using TissueFAXS system (TissueGnostics) after defining regions of interest. Several
parameters, such as nuclei size and intensity of staining, were adjusted to achieve optimal cell
detection. Cells were plotted to scattergrams according to human-specific marker signals. Cutoff

thresholds were determined using signal intensity of the secondary antibody alone as a negative
control. Positive cell counts from images of immune-histolabeled sections were measured by two
independent observers blinded to the experimental conditions. Mean values for positive cells counted
in five locations were evaluated.

4.5. Immunoblotting Analysis

The tissues of tumor-bearing mice treated with GC1118, cetuximab, or BEZ-235 were prepared for
western blotting. All tissues were lysed in NP40 buffer (50 mM Tris, pH 7.4, 250 mM NaCl, 5 mM EDTA,
50 mM NaF, 1 mM Na3VO4, 1% Nonidet P-40, 0.02% NaN3) with additional protease inhibitor cocktail
tablets (Sigma-Aldrich, St. Louis, MO, USA) and phenylmethanesulfonyl fluoride (Sigma-Aldrich).
Equal amounts of protein were subjected to SDS-PAGE and transferred to polyvinylidene difluoride
membranes (Millipore). After blocking nonspecific binding with 5% skimmed milk or 5% bovine serum
albumin (BSA)(Sigma-Aldrich) for 2 h at room temperature, the membranes were incubated with the
indicated primary antibodies overnight at 4 ◦C and then with the appropriate secondary antibodies
for 1 h at room temperature. EGFR-mediated downstream pathway proteins were confirmed using
rabbit monoclonal antibodies, including anti-phospho-EGFR, anti-EGFR, anti-phospho-AKT(Ser473),
anti-AKT, anti-phospho-ERK1/2 (Thr202/Tyr204), anti-ERK1/2 (Cell Signaling Technology Danvers,
MA, USA), and anti-β-actin (Abcam, Cambridge, MA, USA) antibodies, with the Amersham ECL
Prime western blotting detection reagent (GE Healthcare, Anaheim, CA, USA). For quantification,
images were acquired and the signal intensity of each protein band was quantified using ImageJ
software (NIH, Bethesda, MD, USA) and normalized to β-actin. The activities of EGFR, AKT, and
ERK1/2 were determined by normalization with their total pairs, namely pEGFR/EGFR, pAKT/AKT,
and pERK1/2/ERK1/2, respectively [91].
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4.6. Statistics

Results were analyzed for statistical significance using GraphPad Prism V5.04 software and
SPSS v.16 (SPSS Inc., Chicago, IL, USA). All data are expressed as the mean ± standard error of the
mean (SEM) from at least three independent experiments. Two-tailed t-tests and one-way analysis
of covariance were used to assess the differences between two groups of continuous variables, and p
values < 0.05 were considered significant. Pearson’s correlation coefficients and two-tailed significance
were calculated for each case. An unpaired t-test was used to compare TGIIs between different
treatments. We used a key to indicate levels of significance as follows: * p < 0.05, ** p < 0.01, and *** p <

0.001.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/23/
5894/s1.
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EGFR epidermal growth factor receptor
mCRC metastatic colorectal cancer
PDXs patient-derived xenografts
PI3K phosphatidylinositol-3-kinase
mTOR mammalian target of rapamycin
CRC colorectal cancer
RTK receptor tyrosine kinase
IGF1R insulin like growth factor 1 receptor
TGF-α transforming growth factor α
HB-EGF heparin-binding EGF-like growth factor
BTC betacellulin
AREG amphiregulin
EREG Epiregulin
RAS rat sarcoma
RAF rapidly accelerated fibrosarcoma
ADCC antibody-dependent cellular cytotoxicity
MAPK mitogen-activated protein kinase
KRAS KRAS proto-oncogene GTPase
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
PTEN phosphatase and tensin homolog
TP53 Tumor Protein P53
MEK mitogen-activated protein kinase kinase
BALB Bagg albino
BSA bovine serum albumin
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