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Abstract: FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent hereditary
myopathies and is generally characterized by progressive muscle atrophy affecting the face,
scapular fixators; upper arms and distal lower legs. The FSHD locus maps to a macrosatellite
D4Z4 repeat array on chromosome 4q35. Each D474 unit contains a DUX4 gene; the most distal of
which is flanked by a polyadenylation site on FSHD-permissive alleles, which allows for production
of stable DUX4 mRNAs. In addition, an open chromatin structure is required for DUX4 gene
transcription. FSHD thus results from a gain of function of the toxic DUX4 protein that normally
is only expressed in germ line and stem cells. Therapeutic strategies are emerging that aim to
decrease DUX4 expression or toxicity in FSHD muscle cells. We review here the heterogeneity of
DUX4 mRNAs observed in muscle and stem cells; and the use of antisense oligonucleotides (AOs)
targeting the DUX4 mRNA to interfere either with transcript cleavage/polyadenylation or intron
splicing. We show in primary cultures that DUX4-targeted AOs suppress the atrophic FSHD myotube
phenotype; but do not improve the disorganized FSHD myotube phenotype which could be caused
by DUX4c over-expression. Thus; DUX4c might constitute another therapeutic target in FSHD.
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1. Introduction

1.1. Clinical Features of FSHD

FacioScapuloHumeral muscular Dystrophy (FSHD1, OMIM #158900) is an autosomal dominant
hereditary myopathy with a strong epigenetic component that affects 1-9,/100,000 [1], although a recent
re-evaluation of FSHD frequency in The Netherlands suggested up to 12/100,000 births [2]. FSHD is
among the most common diseases of skeletal muscles and involves muscle atrophy, inflammation and
oxidative stress [3,4].

Muscle symptoms may appear during childhood but most patients manifest the disease in their
second or third decade. Often, an asymmetric progressive muscle weakness begins with facial muscles
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causing eyelid drooping (ptosis), and an inability to whistle or smile [5]. These symptoms are missing
in some patients. FSHD may also commonly affect the shoulder girdle leading to the inability to
raise arms above the shoulder line [6]. Biceps, triceps, or deltoid muscles are unequally affected.
Patients may also lose strength in abdominal muscles, which results in a protuberant abdomen and
lordosis. Weakness in the lower legs commonly leads to foot drop, while involvement of other leg
muscles may require wheelchair assistance (20% of patients).

One of the clinical hallmarks of FSHD is its heterogeneity ranging from severely affected
wheelchair bound children to asymptomatic carriers in late adulthood. Disease progression
(inflammation, atrophy and fat infiltration) in individual muscles can now be followed by magnetic
resonance imaging (MRI) demonstrating the heterogeneity among patients [7-9].

Less commonly, FSHD patients may also show non-skeletal muscle phenotypes, such as high
frequency hearing loss and retinal vasculopathy [10]. Although there is no major association with
cardiomyopathy, about 10% of patients show an increased risk of arrhythmia [11,12].

1.2. The DUX4 Gene and Protein

The 4q35 genetic locus associated with FSHD has an unusual structure in that it comprises a
polymorphic D474 macrosatellite repeat array considered as “junk DNA” for a long time. The D474
unit is 3.3-kb in length and belongs to a large family of repeat elements dispersed throughout the
human genome such as on the short arms of the acrocentric chromosomes, and on chromosome
10926 [13-15]. In 1994, an open reading frame (ORF) of a putative gene was mapped in the 4g35
D474 unit. Its 3.3-kb sequence contained a predicted double homeobox, but neither a promoter nor a
transcript had been found [16]. In a search for target genes of the Helicase-Like Transcription Factor
(HLTF) we serendipitously identified a promoter inserted in the 5" part of this ORF that reduced its
size while maintaining the DoUble homeoboX (DUX) reading frame [17,18]. Because of their very high
GC content several sequencing errors had occurred in the first publications on the characterization
of these 3.3-kb elements [16-18]. Thus, based on these data, the D4Z4-resident ORF was thought to
be a pseudogene and initially was not vigorously pursued as a potential FSHD gene. A 424-residue
DUX4 protein of 52-kDa apparent molecular weight (MW) was later confirmed as the form expressed
from the ORF; endogenous DUX4 in FSHD muscle cells appears slightly larger [19-22] most probably
because of post-translational modifications.

The DUX4 gene is a retrogene normally expressed in germ line and early embryonic cells,
but suppressed by repeat-induced silencing in adult tissues [23]. However, it is activated in FSHD
and expresses a double homeodomain transcription factor that binds to cis-elements containing two
TAAT motifs typical of homeodomain binding sites [19,20,24]. Since some of its identified target genes
encode transcription factors, DUX4 pathological activation leads to a large deregulation cascade and
the main features of the disease. Forced DUX4 expression in muscle cells is toxic, leads to oxidative
stress and interferes with myogenesis [20-22,25-28]. DUX4 expression results in the induction of
several germline genes in FSHD muscles and in transfected cells [20,29]. DUX4 also transactivates
retrotransposons and endogenous retrovirus elements, some of which constitute novel promoters
for genes expressing proteins, long non-coding RNAs, or antisense transcripts. Many of these novel
transcripts are expressed in FSHD muscle cells but not in control cells [30]. DUX4 is now recognized as
the major cause of the pathology since activation of its target genes is the main molecular signature in
FSHD muscle [29,31].

Besides its transcriptional activity, DUX4 disrupts RNA metabolism including RNA splicing,
nonsense mediated RNA decay and transport, microRNA processing, but also nuclear bodies,
cell signaling, polarity and migration pathways [32-35]. DUX4 interferes with quality control not only
of RNAs but also of proteins; for example, it inhibits protein turnover and induces nuclear aggregation
of TAR DNA-binding protein 43 (TDP-43), a transcriptional repressor. Similar pathological changes
are found in diseases such as amyotrophic lateral sclerosis (ALS) and inclusion body myopathy [36].
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DUX4c is a 374-residue homologous protein encoded by a truncated inverted D474 element
mapped 42 kb centromeric of the D474 repeat array. DUX4 and DUX4c share a high sequence similarity
with identical double homeodomain but diverge at the carboxyl-terminal domain. DUX4c is expressed
at low level in healthy muscle cells and is up-regulated in FSHD; it favors myoblast proliferation and
inhibits their differentiation [26,37]. Our group recently showed that DUX4 and DUX4c translocate
from the nucleus to the cytoplasm at the time of myoblast fusion [38]. A search for DUX4/4c partners
identified desmin and other cytoskeleton-associated proteins as well as RNA binding proteins involved
in splicing and translation. Fused in Sarcoma (FUS) is a partner that shares normal and pathological
functions with TDP-43 such as the formation of pathological aggregates in ALS degenerating motor
neurons [36]. FUS and other partners associate with IGF2 mRNA binding proteins and belong to
ribonucleoparticle (mRNP) granules that carry translationally repressed mRNAs (such as beta actin
mRNA) along microtubules for translation at specific sites and times during cell differentiation [38].

1.3. The Genetic and Epigenetic Conditions Required to Develop FSHD

FSHD is an unusual pathology in that its development requires both genetic and epigenetic
conditions. The genetic condition is the presence of a complete DUX4 gene. Every D474 element
contains a promoter and the DUX4 ORE, but lacks a polyadenylation signal (PAS) resulting in a rapid
DUX4 mRNA degradation. In contrast transcripts initiated in the distal D474 unit on a 4qA permissive
allele extend outside of the repeat array and reach a PAS in the flanking pLAM sequence [19,39].
The resulting poly-A tail stabilizes the DUX4 mRNAs and allows for their translation into a toxic
protein. Other mechanisms might provide a PAS to the DUX4 gene. In a patient with FSHD, a 4/10
chromosome rearrangement brought the pLAM PAS at the end of the homologous repeat array on
chromosome 10q26; this repeat array is normally non-pathologic but the PAS translocation caused
10g-associated DUX4 mRNA stabilization [39].

The epigenetic condition is an open chromatin structure allowing the transcriptional apparatus
accessibility to the DUX4 gene. The 4q35 D4Z4 repeat array is normally associated with
heterochromatin, resulting in very low or absent DUX4 transcription. In FSHD, this region undergoes
epigenetic alterations (DNA hypomethylation) following either contraction of the D4Z4 repeat
array (FSHD1: OMIM #158900; 95% of cases) or by mutation in a chromatin organizer such as the
SMCHD1 [40] or DNMT3B [41] genes (FSHD2: OMIM #158901; digenic inheritance pattern). Both a
full DUX4 gene and its presence in an open chromatin structure are required for FSHD development
(reviewed by [42—44]).

The large clinical heterogeneity in age of onset and disease progression can now largely be
accounted for by epigenetic instability. Patients with FSHD1 and D474 repeat arrays of 1-6 units
usually present a clinical severity related to the array shortening that is itself correlated with DNA
hypomethylation. Individuals with 7-10 repeat units appear more susceptible to epigenetic variations
resulting in a severity range from non-penetrance when D474 DNA is highly methylated, to serious
presentation when D474 DNA has a very low methylation [45-47]. The role of DNA hypomethylation
is exemplified by the high clinical severity observed in patients who inherited combined FSHD1 and
2 defects [48,49]. Besides SMCHD1 and DNMT3B role in DNA methylation, telomere shortening with
ageing [50], proteins of the Polycomb (inhibitors) or Trithorax (activators) family, a long non-coding
RNA [51], and several antisense transcripts [22] can also affect D474 epigenetics in FSHD cells and
additional modifying factors are expected to be identified [43].

1.4. Therapeutic Approaches

As no curative treatment for FSHD is available, clinical management involves physical therapy,
aerobic exercise, respiratory function therapy, and orthopedic interventions [52-54]. Several studies
indicated that a specific oxidative stress was part of the FSHD pathology, and could result from
DUX4 expression [4,25,55]. A randomized, double-blind, placebo-controlled pilot clinical trial was
set up involving oral administration of vitamins C and E, zinc gluconate, and seleno-methionine.
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Following 17-week supplementation, most patients presented a higher strength and endurance of
the quadriceps and a decrease in oxidative stress blood markers [56]. This approach is expected to
stabilize or slow down disease progression, but several therapeutic strategies aiming for the molecular
causes of FSHD (chromatin opening, DUX4 gene expression) are in development [57-60]. Interestingly,
60% of the DUX4 toxicity inhibitors identified in a high throughput screen protected myoblasts from
oxidative stress inducers [61].

In contrast to Duchenne Muscular Dystrophy (DMD), which results from loss of function
mutations in the dystrophin gene, FSHD is linked to a gain of function of the DUX4 protein in
skeletal muscles. Thus, if antisense strategies are designed to restore the dystrophin reading frame in
DMD (reviewed by [62-64]) they aim to decrease or suppress DUX4 in FSHD. In the present article we
review the use of antisense oligonucleotides (AOs) targeting the DUX4 mRNA as therapeutic agents
in FSHD.

2. Material and Methods

2.1. Ethics Statement

Primary human myoblasts were derived from muscle biopsies performed according to the
current ethical and legislative rules of France, and written informed consent was obtained from
all subjects, as directed by the ethical committee of the Centre Hospitalier Universitaire (CHU) Arnaud
de Villeneuve (Montpellier, France) [65,66]. In addition, the use of this material was approved by the
ethics committee of the University of Mons (ref # A901) and the ethics committee of ULB-Erasme
(Brussels ref #B2011/003 and #P2015/516).

The clones of immortalized myoblasts were derived from a mosaic individual [67], and kindly
provided by Profs. S. Van der Maarel and G. Butler-Browne.

2.2. Myogenic Cell Culture

Primary human myoblasts from an unaffected control and a patient with FSHD were isolated
from muscle biopsies, purified and established as described previously [65,66]. The myoblasts were
grown in 35 mm collagen-coated dishes (Ywaki, Tokyo, Japan) in DMEM with 4.5 g/L glucose and
L-glutamine (Lonza, Verviers, Belgium) as well as gentamycin (50 pg/mL, Sigma-Aldrich, Gillingham,
UK), 10% fetal bovine serum (Invitrogen/Thermo-Fisher Scientific, Waltham, MA, USA ), and 1%
Ultroser G (Pall BioSepra, Cergy-St-Christophe, France) at 37 °C under 5% CO;. Confluent myoblast
cultures were differentiated by switching the medium to DMEM/ gentamicin (50 ug/mL) with 2% FBS.

The immortalized myoblasts were grown and differentiated as described [67].

2.3. siRNA and AOs Transfection

The custom siRNA targeting DUX4 obtained from Ambion/Thermo-Fisher Scientific, and the
cell transfection conditions were previously described [27]. We used the “Silencer siRNA Starter Kit”
(Ambion/Thermo-Fisher Scientific) with the “SiPORT NeoFX” transfection agent and used 4 pL of
siPORTNeoFX and 10 nM siRNA for primary human myoblasts.

The custom AOs and the cell transfection conditions were previously described [27]. We used
Fugene HD with either the negative control AO mGMCSEF3A (=5 + 20) (nc-AO, 600 nM) or the
indicated DUX4-AOs at an optimized concentration. All transfections were performed in duplicate
wells and were repeated 3 times to ensure consistency.

2.4. Immunofluorescence

Human primary myoblasts were fixed in PBS containing 4% paraformaldehyde (Sigma-Aldrich)
and treated with PBS/0.5% Triton X-100. After blocking in PBS/20% FBS, the cells were incubated
with primary antibodies for 2 h at room temperature. The following antibodies and dilutions were
used: mouse monoclonal (mAb) anti-troponin T 1/100 (clone JLT-12, Sigma-Aldrich), and mAb 9A12
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(which we developed against DUX4) 1/50 [19]; clone 9A12, Merck Millipore, Darmstadt, Germany).
After washing and blocking, cells were incubated for 1 h at room temperature with Alexa Fluor
secondary antibodies at 1/100 (goat anti-mouse 488 and anti-rabbit 555, Invitrogen), then washed again
and mounted with Vectashield mounting medium containing DAPI (Vector Laboratories, Burlingame,
CA, USA). Images were acquired with a fluorescence microscope (Olympus, Tokyo, Japan).

2.5. RNA Analysis

Total RNA was extracted from different myoblast cultures and 3'RACE performed as
described [27]. The full DUX4 ORF was specifically amplified by RT-PCR as described [19].

For RT-qPCR, cDNA was synthesized with 1 nug of total RNA and the Maxima First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific,). All qPCRs were performed in triplicate. We used SYBR
green master mix of GoTaq qPCR Systems (Promega, Madison, WI, USA ) and 0.3 uM of each primer
except for DUX4_Rev at 0.9 uM (DUX4 primers (Forward: 5 ACTGCCATTCTTTCCTGGGCAT
3’; Reverse: 5 GGGAGACATTCAGCCAGAATTTC 3'); TRIM43 primers [67]; RPLPO primers
(Forward: 5 TCATCCAGCAGGTGTTCG 3'; Reverse: 5 AGCAAGTGGGAAGGTGTAA 3’; [68].
For gene expression analysis, 3 uL of diluted cDNA was used per reaction on a StepOnePlus
System (Applied Biosystems/ Thermo-Fisher Scientific). Cycling conditions were as follows: initial
denaturation step at 95 °C for 3 min, followed by 40 cycles of 10 s at 95 °C and 60 s at 60 °C, for DUX4
amplification the annealing temperature is 62 °C. The specificity of all the reactions was monitored
by a melting curve analysis. The data were analysed with the StepOnePlus software. The relative
expression was calculated, using RPLPO mRNA as a reference for cDNA input because it was shown
to be stable during muscle differentiation [68] and following M. Pfaffl’s guidelines [69].

2.6. Statistical Analyses

Statistical significance was evaluated using Student’s t-test. A p value < 0.05 * was
considered significant.

3. Results and Discussion

We have first aligned the structures of the different DUX4 mRNAs that have been characterized
to-date. We shall then summarize the strategies established to interfere with either processing of the
mRNA 3’ end or pre-mRNA splicing, and the regions that were targeted to develop specific AOs.
Finally, we shall present data that indicate DUX4 is not the only target gene to be considered in
treating FSHD.

3.1. The Heterogeneity of DUX4 Transcripts

A major difficulty in the study of endogenous DUX4 gene expression is the very low abundance,
high GC content and rapid turnover of its mRNAs. Despite these challenges, investigators of
different groups have characterized several transcription starts sites, alternative splicing and use
of polyadenylation signals, as well as additional exons in the 3’ untranslated region (3" UTR) in
different cell types. Some of these variations result in the expression of DUX4 protein forms either
shorter [22,23] or extended on the amino-terminus [70] as compared to the bona fide 424-residue protein
described in muscle cells. In Figure 1 we have summarized the different characteristics of these
DUX4 mRNAs.

In FSHD primary muscle cells an alternative splicing of intron I was identified downstream of the
stop codon, thus not affecting the protein sequence. In healthy control muscles DUX4 mRNA levels
are much lower and another splicing event was described that could lead to the expression of a shorter
protein missing the carboxyl-terminal part outside of the homeodomains. This led to the distinction
between full length (DUX4-1l, 424 residues) and short (DUX4-s, 161 residues) proteins [22,23]. All those
mRNAs present a micro-heterogeneity in the 3’ end, with 3 cleavage sites located 16 to 22 nucleotides
(nt) downstream from the PAS [71].
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As transcription could initiate in each D474 element [19] and because of the repetitive nature of
the array, some DUX4 mRNAs could extend across several D4Z4 units and end up at the PAS in the
pLAM region. These RNAs could be submitted to complex splicing processes resulting in truncated
DUX4 ORFs. Several examples of such RNA sequences are shown in Figure 1 (other mRNAs).

= DUX4 ORF o
DUX4 ORF | Exonl (different TS) [ | HUTT46 | Exon3y
[ I T T 77777777
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In germline and testis
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Figure 1. DUX4 mRNA variants. Schematic representation of the D474 repeat array (Genbank #
AF117653), the last D474 unit and the adjacent pLAM region (Genbank #U7746). The DUX4 ORF
is contained in the first exon. Two polyadenylation signals (PAS) were reported, one in exon 3 and
one in exon 7 [19,23]. All the mRNAs reported to date or identified in our group and not published
yet are represented as detected in primary FSHD myoblasts/tubes [19,22], in immortalized myotubes
from clones of a mosaic individual, in human Mesenchymal Stromal cells [70] and in germline and
testis [23]. We observed two different transcription start sites (TSS) and different splice donor sites for
intron II. These mRNAs derived exclusively from chromosome 4. The short mRNA (*) found in FSHD
immortalized myotubes is discussed in the text.

We did not find any PAS for those mRNAs. They ended in intron II at positions 10,450 or 10,551
(GenBank #AF117653) or at the homologous positions in the pLAM sequence (GenBank #U74497).
In those mRNAs, intron I was spliced out as usual and the alternative intron Ila was comprised
between positions 9045 to 10,085. Such mRNAs are rare but observed in several experiments and in
different cell types. In addition to the primary FSHD myotubes we detected such splicing in control
cells such as immortalized myoblasts (data not show in this paper) and embryonic stem cells (bottom of
Figure 1). In ES cells, this mRNA ended at position 10,224, and an alternative intron II (named intron
ITa tris) mapped between positions 9045 to 9840.

Myoblasts grown from a biopsy of a mosaic individual were immortalized by transduction
with a recombinant virus expressing the hTERT telomerase gene. The resulting individual clones
are genetically identical, except for the size of the D474 repeat array, that is either large (control) or
contracted as in FSHD1 [67].Total RN A was extracted from immortalized FSHD (54-12; 54-2) or control
(54-6; 54-A1) myotubes at 5 days of differentiation. We performed 3’'RACE as described [27] and
analyzed the resulting products by agarose gel electrophoresis (Supplementary Materials Figure S1A).
In the FSHD clones (54-12 and 54-2) we detected three bands at 400 bp, 550 bp and at 900 bp. Based on
sequence determination, those bands respectively corresponded to DUX4 mRNA with either intron I
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and II spliced out, intron II only spliced out or the unspliced form. Those three RNA types were also
detected in control clones (54-6 and 54-Al) but at a very low level.

In addition, we performed an RT-PCR to specifically amplify the full DUX4 ORF as described [19]
(Supplementary Materials Figure S1B). We detected a 1700-bp product in FSHD clones 54-12 and 54-2
but at much lower abundance in the latter as published [67]. This product was cloned and based
on sequence determination, corresponded to DUX4 mRNA with only intron II spliced out. It was
not detected in the control clones. A 450-bp RT-PCR product was obtained with FSHD RNA that
corresponded to a small ORF present in the pLAM region (see below, * on Figure 1). This ORF begins
188 nt 3’ from the end of intron II, contains only the beginning of the first DUX4 homeobox and ends
up at a stop codon 28 nt further downstream in exon 3.

As shown by the agarose gel electrophoresis (Supplementary Materials Figure S1), the most
abundant DUX4 RNA form is the one where only intron Il is spliced out. Very few RNAs present both
intron I and II either spliced out or unspliced.

DUX4 mRNAs are also detected in testis, in healthy human germline [23], and embryonic and
mesenchymal stem cells (hESC and hMSC) [70]. Intriguingly upon osteoblastic differentiation MSC
express the DUX4 gene from alternative upstream promoters resulting in proteins extended on
the amino-terminus, one of which corresponds to the initial ORF described by Hewitt et al. [16].
Such extended mRNAs were detected in hESCs and hMSCs [70]. Most of these mRNAs presented 3’
ends typical of FSHD myoblasts (primary or immortalized) but some ended just 5" of intron II or within
intron I. Those shorter forms still encompassed the DUX4 ORF. Moreover, longer DUX4 mRNAs were
described in healthy testis and germline extending to four additional exons downstream of pLAM.
In germline the mRNAs contained either exons 1, 2 and 3, or exons 1, 2, 6 and 7. In testis the mRNA
encompassed exons 1,2, 4, 5, 6 and 7. If the sequences of exons 4 and 5 corresponded to chromosome
4, intriguingly the sequences of exon 6 and 7 were from chromosome 10. Obviously, for these longer
RNAs another PAS located in exon 7 is used [23].

3.2. Defining Targets for Antisense Oligonucleotides on DUX4 mRNAs

The DUX4 coding sequence is entirely located in the gene first exon. Thus, a disruption
of its reading frame by antisense-mediated exon skipping could not be considered. However,
several researchers decided to target elements in the mRNA 3’ UTR to either disrupt the permissive
polyadenylation or interfere with intron 1 or 2 splicing. Since DUX4 mRNA and protein levels are low
in FSHD muscle cells and difficult to detect, researchers often quantify the mRNAs of DUX4 target
genes (named “footprint genes”) as biomarkers of its activity /presence [20].

3.2.1. Interference with mRNA Cleavage and Polyadenylation

Because the only stable DUX4 mRNAs are the ones extended with a poly-A tail typically
transcribed from the 4qA permissive allele, several groups considered interfering with transcript
termination and 3’ end processing to cause mRNA degradation and decrease DUX4 protein expression.
The RNA polymerase II complex produces a primary transcript extending across the PAS and that is
processed by the Cleavage and polyadenylation multiprotein complex composed of cleavage factors,
cleavage stimulation factors, cleavage and polyadenylation specificity factors and nuclear poly-A
polymerases [72]. The primary transcript is normally cleaved 10-30 nt downstream from the PAS
which has the sequence AUUAAA derived from the 4qA permissive allele. It requires binding of the
Cleavage stimulation Factor (CstF) onto a U/GU-rich sequence (Downstream Sequence Element, DSE)
located 30-60 nt 3’ of the PAS (for review see [73]. The 3’ end processing occurs co-transcriptionally and
favors mRNA nuclear export, stability, and translation and thus constitutes a target for suppression of
gene expression.

Two research groups independently developed AOs to target DUX4 pre-mRNA elements involved
in its cleavage or polyadenylation in order to suppress the protein expression [71,74]. They selected
the phosphorodiamidate morpholino (PMO) chemistry for its lack of toxicity in clinical trials for
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DMD. Among the different PMOs, the most efficient targeted the PAS on DUX4 mRNA, and its 25-nt
sequence turned out to be identical for both groups, and was also found in our study of a larger AO
set (see below). DUX4 suppression was evaluated either by quantitation of several of its footprint gene
mRNAs that constitute FSHD biomarkers [71] or by a differential transcriptome study (RNA-seq) of
FSHD or healthy myoblasts treated or not with the PMO [74]. This RNA-seq study indicated that 96%
of the genes upregulated in FSHD myotubes were at least partly reduced by the PAS-PMO, while 89%
of the mRNAs that were significantly reduced had a least some upregulation in FSHD myotubes.
The inhibition was dose-dependent with 50% reduction of footprint gene expression in the 1-3 pmol/L
PMO concentration range [74]. The inhibition was also obtained in a model of FSHD muscle xenograft
in an immunosuppressed mouse with electroporation-mediated PMO administration [74].

A difficulty in such an approach is the recently discovered heterogeneity of polyadenylation
sites that suggests the DUX4 mRNA could use alternative PAS if the major one on 4qA becomes
unavailable [75,76]. Alternative polyadenylation generates 3’ UTRs of different lengths: these can
recruit different factors that can impact on mRNA localization, mRNA and protein abundance,
and protein intracellular location [77,78].

3.2.2. Interference with mRNA Splicing

Muscle Cells

AO-mediated splicing interference is used to induce exon skipping on a pre-mRNA allowing for
the expression of a missing protein as done for DMD and spinal muscular atrophy (SMA) therapy
(see reviews by [62,79]). Alternatively AOs targeting splice sites can destabilize an mRNA and create a
transient phenocopy of a loss of function mutation [62]. It is in that perspective that in collaboration
with Prof. Steve Wilton (Centre for Comparative Genomics, Murdoch University, Australia, and Centre
for Neuromuscular and Neurological Disorders , University of Western Australia) our group designed
AOs complementary to donor and acceptor splice sites of exons 2 and 3 both located in the 3"UTR of
the DUX4 pre-mRNA [27] (Figure 2). This region is the most different from the homologous DUX4c
sequence. The AOs were 25-30 nt oligomers synthesized as 2’-O-methyl modified riboses linked
by phosphorothioates.

The splice-switching efficacy of these AOs on DUX4 mRNA and their specificity towards
homologous DUX4c mRNA were evaluated by co-transfection of C2C12 mouse myoblasts with
expression vectors containing a CMV promoter linked to either DUX4 exons 1, 2 and 3 (pClneo-DUX4)
or the DUX4c gene (pClneo-DUX4c). The DUX4 and DUX4c proteins were immuno-detected (western
blot) in extracts of cells harvested 24 h post transfection: an AO concentration range was evaluated
for suppression of DUX4 but not DUX4c protein. AOs pLAM2A(—7 + 18) and pLAM3A(—12 + 13)
presented the highest efficacy at concentrations of 50 and 10 nM respectively. The biological impact of
these AOs was demonstrated by decreases in MURF and Atrogin-1 (linked to muscle atrophy) and
TP53, all proteins induced by DUX4 expression and part of its deregulation cascade.
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Figure 2. D474 repeat array on chromosome 4 and antisense oligonucleotide positions. Top: Each D474
repeated unit contains a promoter and an open reading frame (ORF) for DUX4 in the first exon (E1) and
a short non-coding exon 2 (E2). On a 4qA permissive allele, the last D474 unit is extended by a pLAM
region providing intron I, an untranslated exon 3 (E3) and a polyadenylation signal (PAS) allowing for
DUX4 mRNA stabilization and subsequent translation in DUX4 protein. Healthy individuals present
11-100 D4Z4 units while patients with FSHD1 only have 1-10 units. Bottom: Positions of the antisense
oligonucleotides (AOs) described in this review. They are all designed for splicing interference except
for PAS that affects mRNA polyadenylation.

These AOs were further evaluated on endogenous DUX4 expression in primary FSHD myoblasts.
The cells were switched to differentiation medium 4 h after transfection with the AOs to induce
endogenous DUX4 and DUX4c expression, and the resulting myotubes were lysed three days later
for protein and RNA extractions. DUX4 protein levels that are pretty low in primary myotubes
(expression in 1/200 myonuclei) [80] could not be detected anymore with either AO. Based on RT-PCR
the DUX4 mRNAs were decreased about 50% with pLAM3A(—12 + 13) that interferes with intron
II splicing but only 30% with pLAM2A(—7 + 18) which targets the alternatively spliced intron I.
The reduction in TP53 amounts was stronger with intron II than intron I splicing interference suggesting
residual DUX4 protein amounts undetected by our western blot analysis were still expressed from the
alternatively spliced mRNA. In the study by Chen et al. [74] a splice switching AO was also tested but
found to be less efficient at DUX4 suppression than the PAS-targeted AO. The targeted splice site was
in intron I that is only alternatively spliced explaining that not all nRNA molecules were affected like
we had observed [27].

We then compared the impact on FSHD myotubes of a set of AOs directed against different
regions of the DUX4 pre-mRNA. The transfection was done on FSHD myoblast cultures that were
switched to differentiation medium 4 h later. The morphology of the resulting myotubes was analyzed
8 days later following immunofluorescence staining of Troponin T (Figure 3). Endogenous DUX4
expression induces an atrophic phenotype (myotube width < 20 um [27] as observed here in culture
dishes treated with the negative control nc-AO (Figure 3A left panel). The FSHD atrophic myotubes
became larger when DUX4 was suppressed (Figure 3B).



Genes 2017, 8, 93 10 of 21

Au White light TroponinT + DAPI TroponinT + DAPI

Healthy
myotubes
ncAO
PLAMBA(-12+13)

ncAO

FSHD myotubes
PLAM3A(-17+13)

FSHD
myotubes

PLAM2A(-7+12)
polyA(-12+6)

= /.
i o 7
\ =¥ W B
{ B S O
+ o N iy — = A

60

50

40

30

* ok k

20 I}

Atrophic myotubes (%)
5

S
[ &
=l

g

[—]

£
e
[
(-~}
U
N -
~

=]

1 5

~

2,61

e H =
g & A = O 4 _ 4~ 4~ 4~ 4GB~
¢ % dedcdgdieifzz X 2 de @ ag g8 ifza
< e =P 23+ 2+ H4+ 223 A% < e 2T £+ £+ 2+ 8 47
= = 4l 49 489 45 27 4 = = din €9 €49 <45 A <o
gl I =W A = AL 22 47 472 &
Healthy = =" il = sl s = Healthy = = = =
FSHD primary myotubes FSHD primary myotubes

DDDG

B -
=

Positive DUX4 nuclei (%)

Figure 3. Treatment of FSHD myoblasts with antisense oligonucleotides against DUX4 prevents the
formation of myotubes with the atrophic phenotype. (A) Primary healthy or FSHD myoblasts were
transfected with either the negative control AO (nc-AO) or the indicated AOs targeting DUX4 mRNAs
(AO positions shown in Figure 2), and differentiation was induced 4 h later. After 8 days, cells were
observed under white light before processing to detect troponin T through immunofluorescence (green).
The nuclei were stained with DAPL (B) The efficacy of the AOs used in (A) and two additional ones was
evaluated based on the proportion of atrophic myotubes (caused by DUX4 expression, and observed in
the ncAO-treated cells) in the culture. Myotubes were counted from at least 10 random fields: those
with a width <20 um were considered “atrophic”. The percentage of atrophic to total myotubes is
expressed as the mean =+ SD; (C) DUX4 was detected by immunofluorescence (MAb 9A12; not shown).
The number of DUX4-positive nuclei was counted in 10 fields in healthy control or FSHD myoblast
cultures following treatment with the indicated AOs. The percentage of DUX4-positive nuclei among
total nuclei (DAPI staining) was calculated and is reported in the graph. The significance of the
differences between experiments with each individual AO compared to the ncAO, was evaluated using
Student’s t-test. *** p-value < 0.001.

The ability of each AO to prevent DUX4 expression was evaluated by counting the percentage of
DUX4-positive nuclei following immunofluorescence staining with a specific monoclonal antibody
(9A12) (Figure 3C and Supplementary Materials Figures S2). All the tested AOs could decrease the
percentage of DUX4-positive nuclei 3- to 4.5-fold as compared to the nc-AO, and reduce 6- to 8-fold
the number of atrophic myotubes in the culture.

Human Mesenchymal Stromal Cells and Embryonic Stem Cells

In a study on osteoblastic differentiation of human mesenchymal stromal cells (MSCs),
isolated from bone marrow in collaboration with Dr. L. Lagneaux (Bordet Institute, ULB, Brussels,
Belgium) our group identified several putative DUX4 protein forms (58- and 70-kDa besides bona fide
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52-kDa DUX4) in western blots probed with the specific monoclonal antibody (9A12) we had
developed [19]. A switch occurred between days 7-8 of differentiation from the expression of the 52- to
the 58-kDa form that became very abundant while the 70-kDa form remained constant. We transfected
MSCs with an AO interfering with splicing of intron I (pLAM1D) to evaluate whether DUX4 mRNA
destabilization affected the expression of those proteins, and could thus confirm the nature of 52- and
58-kDa DUX4. The characterization of DUX4 mRNAs defined an upstream start site in human
embryonic stem cells with the FSHD1 defect, extending the ORF with 60 codons, thus corresponding
to the one initially defined by Hewitt et al. [16] and encoding 58-kDa DUX4. Gain and loss of function
experiments demonstrated opposite roles for the DUX4 forms in osteoblastic differentiation of MSCs
as evaluated from measures of alkaline phosphatase activity and calcium deposition: it was favored by
52-kDa DUX4 but delayed by 58-kDa DUX4 expression. Optimal differentiation required a precise
balance between both DUX4 forms [70]. Since both mRNAs were destabilized by the AOs developed
against FSHD, caution should be exerted in their use to avoid suppressing a normal DUX4 function in
MSCs. A muscle-specific delivery should be considered.

3.3. DUX4 Inhibition Prevents the Formation of Atrophic, but Not Disorganized FSHD Myotubes

FSHD primary myotubes present either a narrow elongated shape with well aligned nuclei
(atrophic phenotype) or giant disorganized structures with large clusters of nuclei (disorganized
phenotype). Each culture presents a mix of either myotube phenotype in different proportions [65,66].
We selected two FSHD primary myoblast lines that were previously shown to mostly differentiate into
myotubes with either the atrophic (aFSHD) or disorganized (dFSHD) phenotype.

We transfected these myoblasts with short inhibitory RNAs, either DUX4 siRNA or a negative
control siRNA (nt) and switched the culture to differentiation medium. Eight days later, the myotube
morphology was highlighted through immunofluorescence staining of troponin T, a cytoplasmic
marker of muscle differentiation. As expected, aFSHD myoblasts differentiated into atrophic myotubes
in the presence of negative control siRNA. In contrast, the myotubes that formed after treatment with
DUX4 siRNA (Figure 4, left panels) were enlarged. Similar suppression of the atrophic myotube
phenotype was previously observed using this siRNA in healthy myoblasts transfected with a
DUX4 expression vector [27]. However, in the presence of either negative control or DUX4 siRNA,
dFSHD myoblasts differentiated into disorganized myotubes with large clusters of myonuclei (Figure 4,
right panels), suggesting that this abnormal phenotype did not result from DUX4 expression.

To evaluate the impact of the AO treatments on DUX4 mRNA levels in dFSHD cells, we extracted
total RNAs from aFSHD and dFSHD primary myotubes and performed an RT-PCR using primers
to specifically amplify the DUX4 ORF [19]. After electrophoresis (Figure 5A top panel) 1.7-kb (ORF,
yellow arrow) and 2.1-kb (ORF with non-spliced introns) products were detected for the positive
control (C2C12 cells transfected with pGEM42). These bands were present in samples derived from
dFSHD myoblasts treated with the negative control AO, but much fainter or missing when these cells
were treated with AOs against DUX4, and also missing in control myoblasts. On RNAs of aFSHD
myoblasts, we performed an RT-qPCR with specific DUX4 primers (see Section Material and Methods)
and observed the DUX4 mRNA abundance was 9 times lower in cells treated with the AO (Figure 5A
bottom panel). This residual DUX4 mRNA abundance was similar to healthy control cells.

To validate that DUX4 inhibition prevented its target gene activation, we performed a
RT-gPCR on TRIM43 mRNA as described [67] on the previously synthesized cDNA. As expected,
TRIM43 mRNA abundance was decreased in cells transfected with the DUX4 AO or siRNA compared
to non-transfected cells or cells treated with a negative control AO. This inhibition was similar between
aFSHD and dFSHD cell cultures (Figure 5B).

In a different study, we found that DUX4c overexpression in proliferating myoblasts prevented
their differentiation [37]. However, when DUX4c was induced after myoblasts had been switched
to a differentiation medium they could fuse and formed myotubes of the dFSHD phenotype Our
on-going studies indicate that inappropriate DUX4c activation as observed in FSHD muscles is a major
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contributor to the cytoskeleton anomalies observed in disorganized myotubes [81]. In aggregate these
experiments indicate that DUX4c should be considered as an additional therapeutic target for FSHD
besides DUX4.

aFSHD primary myotubes dFSHD primary myotubes

nt- SiRNA

DUX4- siRNA

100 um

dESHD | dFSHD +DUX4-siRNA

Figure 4. DUX4 inhibition prevents the formation of atrophic, but not disorganized FSHD myotubes.
aFSHD and dFSHD primary myoblasts were transfected with either DUX4 siRNA or a non-targeted (nt)
siRNA as indicated and switched to differentiation medium. Eight days later, the myotube morphology
was highlighted through immunofluorescence staining of troponin T (green) and nuclei with DAPI
(blue). Bottom panels: Magnified boxed regions. Stars indicate the accumulation of troponin T near
clusters of nuclei. Scale bars: 50 pm.
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Figure 5. Evaluation of DUX4-AO efficiency on endogenous DUX4 and target mRNA expression
in FSHD primary myotubes. 10° primary myoblasts (control, aFSHD and dFSHD) were seeded in
35 mm culture dishes. The next day, cells were transfected with either the negative control AO
(nc-AO, 600 nM) or AOs pLAM2A(—7 + 18) and pLAM3A(—12 + 13) either alone (lanes 2A or 3A)
or in a cocktail (lane 2A/3A) and pLAM1D(+7 — 18) (lane 1D) at previously determined optimal
concentrations. Differentiation was induced 4 h after transfection and the cells were harvested 72 h
later. (A) Top: Total RNAs of dFSHD myotubes were extracted and submitted to RT-PCR with primers
we had previously shown to be specific of the DUX4 full length ORF [19]. The RT-PCR products were
separated by electrophoresis on an agarose gel and stained with ethidium bromide. The controls were
total RN As of C2C12 cells transfected with the pGEM plasmid either without insert (negative control)
or with a genomic fragment containing 2 D474 units [18] (tGEM42). The experiment was done in
the presence (RT+) or absence (RT-) of retrotranscriptase to demonstrate the products did not result
from amplification of contaminating genomic DNA. Bottom: Total RNAs of aFSHD myotubes were
extracted and submitted to reverse transcription (RT) and amplification by qPCR with DUX4-specific
primers. The relative abundance was calculated using Ribosomal Protein Lateral Stalk Subunit PO
(RPLPO) as a reference for cDNA input and following M. Pfaffl’s guidelines [68,69]. The data are
presented as fold change in DUX4 mRNA abundance with or without AO treatment; (B) Fold change in
TRIM43 mRNA abundance after treatment with an AO or siRNA against DUX4 mRNA. The RT-qPCR
was performed as described [67].
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3.4. Evaluation of AOs in Preclinical Models

The systematic evaluation in vivo of AOs targeting the DUX4 mRNA has been hampered by the
lack of a transgenic mouse model expressing DUX4 and presenting a myopathy (reviewed by [82].
The difficulty in generating these mice results from a combination of DUX4 toxicity, frequent leaks in
its expression even from an inducible promoter, and its normal role in early embryogenesis.

To avoid these issues a transgenic mouse was developed with inducible PITX1 expression [83].
The Paired-like homeodomain transcription factor 1 (PITX1) gene is the first DUX4 transcriptional
target that was identified [19]. A PMO was selected to interfere with protein synthesis and was
complementary to a 25-nt sequence surrounding the translation start site of the PITX1 mRNA.
Cell penetration was favored by PMO conjugation to an octa-guanidinium dendrimer (vivo-PMO).
PITX1 induction in skeletal muscles caused atrophy and weakness. The systemic delivery of the
vivo-PMO (but not the PMO) at 10 mg/kg weekly for 6 weeks reduced PITX1 protein by 70%,
reduced atrophic myofibers and improved muscle strength with no obvious sign of toxicity. This study
provided a proof of principle that a vivo-PMO could decrease a pathogenic protein in vivo [83].

A model of FSHD muscle xenograft in an immunosuppressed mouse with electroporation-
mediated PMO administration was successfully used to interfere with DUX4 mRNA polyadenylation,
but the system is very delicate to develop, and necessitates a supply of FSHD muscle biopsies that is
obviously difficult to establish [74].

Another model is a local myopathy developed following injection of a recombinant AAV virus
expressing DUX4 in a mouse hind limb: it was successfully used to co-inject an AAV expressing
a siRNA and demonstrate DUX4 mRNA silencing [57]. For its use in the AO evaluation the AAV
had to be modified in order to include the DUX4 3’ UTR target, but the co-insertion of a DNA
sequence encoding a V5 epitope tag at the end of the DUX4 ORF generated artefactual splicing [84].
After muscle injection the repaired AAV vector did express DUX4-V5 protein that caused a local
myopathy. We performed a pilot experiment in this model to test our lead AO interfering with intron
IT splicing in DUX4 mRNA and that we had validated in primary FSHD myoblasts [27].

Two mice were injected in the Tibialis anterior (TA) with rAAV-D47Z4/pLAM virus
(described in [84]) and pLAMB3A vivo-PMO (Figure 2) directed against the DUX4 mRNA. For negative
controls we similarly injected two mice with rAAV-D474/pLAM and a vivo-PMO targeting human
beta-globin mRINA. The mice were sacrificed 10 days later, their TAs collected, and total RNAs were
extracted with Trizol. DUX4 mRNAs were amplified by reverse transcription (RT) followed by a nested
PCR (primer sequences in [84]). An electrophoresis of the RT-PCR products on agarose gel yielded
a band at the expected 450-bp length for the TAs injected with control vivo-PMO (Figure 6). For the
TAs injected with pLAMB3A vivo-PMO the 450-bp band was present but at a lower intensity. In a
semi-quantitative analysis this band could be detected after 35 PCR cycles for the TA treated with the
control vivo-PMO but only after 40 cycles for the TA treated with pLAM3A vivo-PMO, suggesting a
30 (2°) fold difference in abundance. In contrast, when a similar experiment was performed with
PMOs, no decrease in DUX4 mRNA could be observed. Those preliminary data suggest that pPLAM3A
vivo-PMO prevents DUX4 toxic protein expression by causing DUX4 mRNA degradation in vivo.

These data suggested that our successful inhibition of DUX4 expression with AOs in cell culture
could translate to whole animal muscles and should be further evaluated in mouse models.
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Figure 6. Evaluation of DUX4 mRNA expression in mouse tibialis anterior muscles co-injected with
rAAV-D474 /pLAM virus and either pPLAM3A or control vivo-PMO. The TAs of the mice were injected
with 1E11 DRP of D4Z4/pLAM AAV virus and 10 pg of vivo-PMO per leg. The mice were sacrificed
10 days post-injection, and total RN As were extracted with Trizol. Reverse transcription was performed
on 800 ng of DNase-treated total RNA with the 3’ adaptor of the RLM-RACE kit (Ambion) and 2 pL of
the resulting cDNA were amplified by nested PCR for 50 cycles in total. The RT-PCR products were
analysed by electrophoresis on a 1.5% agarose gel and stained with ethidium bromide.

4. Conclusions

The encouraging clinical trials of PMOs in the treatment of young patients affected with DMD
and their lack of toxicity ([64,85-87]) are raising hopes for the use of PMOS in FSHD. Several groups
have independently developed AOs that target the DUX4 mRNA and either destabilize it or prevent
its translation to the toxic protein [27,71,74]. While no transgenic mouse model expressing DUX4 and
showing signs of a myopathy were available in 2016, several research groups are developing new transgenic
mouse models that appear much closer to the pathological presentation of FSHD and could potentially be
used to evaluate AOs of different chemistries in vivo for efficacy, specificity and lack of toxicity.

The defects in DMD muscle membranes are considered to facilitate AO uptake, but it might be
more difficult to target FSHD muscles for which no major membrane alteration has been described.
Moreover, since DUX4 expression occurs in bursts in a low proportion of FSHD myonuclei [20,80],
PMOs may need to be administered in large and repeated doses to achieve and maintain therapeutic
efficacy, and this might result in deleterious secondary effects. Various chemical moieties have been
added to PMOs in order to facilitate their membrane crossing and cell uptake (for examples, [88,89])
and some of these structures could be optimized for FSHD muscles. As well in the transgenic mouse
with inducible PITX1 expression [83] and in a local myopathy induced by AAV-DUX4 injection [84]
AOs with the vivo-morpholino chemistry could reduce the target mRNA levels while PMOs were not
efficient. Further progress in DUX4-targeted therapeutic approaches for FSHD will also have to deal
with DUX4 normal functions in non-muscle tissues such as testis and MSC. Moreover our data suggest
that DUX4c might constitute another therapeutic target in FSHD [81].

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/3/93/s1,
Figure S1: Detection of the DUX4 mRNAs in immortalized myoblast clones (FSHD1 and control) derived
from a mosaic individual, Figure S2: Antisense oligonucleotides against DUX4 mRNA decreased the
number of DUX4-positive nuclei in primary FSHD myoblasts and prevented the development of the atrophic
myotube phenotype.
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