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Why is cancer not more common?
A changing microenvironment may
help to explain why, and suggests
strategies for anti-cancer therapy
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One of the great unsolved puzzles in cancer biology is notwhy cancers occur, but
rather explaining why so few cancers occur compared with the theoretical
number that could occur, given the number of progenitor cells in the body and
the normal mutation rate. We hypothesized that a contributory explanation is
that the tumour microenvironment (TME) is not fixed due to factors such as
immune cell infiltration, and that this could impair the ability of neoplastic
cells to retain a high enough fitness to become a cancer. The TME has implicitly
been assumed to be static in most cancer evolution models, and we therefore
developed a mathematical model of spatial cancer evolution assuming that the
TME, and thus the optimum cancer phenotype, changes over time. Based on
simulations, we show how cancer cell populations adapt to diverse changing
TME conditions and fitness landscapes. Comparedwith static TMEs, which gen-
erate neutral dynamics, changing TMEs lead to complex adaptations with
characteristic spatio-temporal heterogeneity involving variable fitness effects of
driver mutations, subclonal mixing, subclonal competition and phylogeny
patterns. In many cases, cancer cell populations fail to grow or undergo
spontaneous regression, and even extinction. Our analyses predict that cancer
evolution in a changing TME is challenging, and can help to explain why
cancer is neither inevitable nor as common as expected. Should cancer driver
mutations with effects dependent of the TME exist, they are likely to be selected.
Anti-cancer prevention and treatment strategies based on changing the TME are
feasible and potentially effective.

1. Introduction
Although cancer is viewed as a common disease, our current knowledge of how
cancers grow suggests that cancer is actually far less frequent than we expect
[1]: the mutation rates and the number of normal cells suggest that many can-
cers could occur in each human. There are several potential reasons for the
‘cancer deficiency’, including anti-cancer immune responses [2] and inherent
mechanisms of tissue homoeostasis (or ‘buffering’) [3]. We hypothesized that
a further contributory factor restraining carcinogenesis is that the tumour
microenvironment (TME) is not fixed, and that this could impair the ability
of neoplastic cells to retain a high enough Darwinian fitness to become a cancer.

Carcinogenesis has long been viewed as an ecological and evolutionary process
[4–10], epitomized by Nowell’s illustrated phylogenetic model in which clonal and
stepwise accumulation of advantageous mutations under selection from the TME
cause a cancer to grow [5]. Although the seminal ideas proposed by Nowell and
others [5,11] have guided cancer research for decades, a general theory of adaptive
cancer evolution is lacking [6,8–10,12]. Some fundamental questions remain unan-
swered, including the role of a changing TME in determining the fitness effects of
new driver mutations and the evolutionary trajectories of cancers in three-
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2
dimensional (3D) tissue space. Does cancer evolution proceed by
drivermutationswith large effects, small effects or a combination
of both? How and why do the fitness effects of driver mutations
differ across cancer types? What spatio-temporal patterns of
cancer development can be observed under different tempos
and modes of adaptive evolution?

Factors intrinsic to the cancer cell, such as mutations and
stable epigenetic features, and the TME should jointly determine
the tumour’s evolutionary trajectory [1,5,13–18]. The TME can
include many non-neoplastic cells and acellular components,
including stromal constituents such as fibroblasts, immune
cells, the extracellular matrix (ECM) and the pre-metastatic
niche. These features may, in part, be caused by the cancer cell
itself. The TME is thought to have a dynamic influence on
tumour progression, and metastasis [1,15,19–23], spatially vary-
ing immune TME [2] and cycling hypoxic TMEs might play
important roles in driving cancer evolution [24,25]. Conceptually,
cancer development can be viewed as an adaptive evolution pro-
cess in a changing microenvironment, where the cancer cell
survives if its phenotype is close to the optimum resulting from
cell-intrinsic (cell-autonomous) factors and the TME.

In previous ecological and evolutionarymodelling of cancer,
different aspects of cancer development and treatment, such as
tumour initiation and progression, cell–cell interactions and
TME effects, have been studied using a plethora of ecological,
evolutionary and mathematical approaches (e.g. [26,27]). How-
ever, due to challenges in modelling the TME explicitly, the role
of a changingTME in determining the fitness effects ofmutations
in spatially evolving cancers has not generally been considered,
particularly in 3D [28,29]. When the TME has specifically been
considered as a source of selection [13,30,31], the underlying
genetic basis—such as the variable fitness effects of driver
mutations—has not been explicitly considered. Moreover, the
important question of how cancer cells adapt in a TME with a
changing phenotypic optimum, for example, due to a variable
immune response [18], has not generally been considered.

To address these issues within the same evolutionary and
ecological framework, with the dual aims of providing a general
model of adaptive cancer evolution and investigating the effects
of a changing TME on cancer growth, we set up a mathematical
model of carcinogenesis as an adaptive evolutionary process.
Here, we give an overview of the method. To model spatially
evolving cancers using fitness landscapes, we establish a pheno-
typic and genetic model (see Results and Methods for details).
Cancer adaptation is modelled by Fisher’s geometric model
with random mutation and a changing phenotypic optimum.
A transformed tissue stem cell is assumed to acquire a genetic
or a phenotypic change that initiates cancer growthwith a certain
fitness that changes in each cell of the growing cancer with
mutations and a changing TME. Properties of genotypic land-
scapes of selected driver mutations are characterized by using
the concepts of Sewall Wright’s genotypic fitness landscapes.
The results of the simulations help to explain why cancer
growth is an unpredictable, unstable and uncertain process,
with implications for anti-cancer strategies.
2. Results
2.1. Description of the model
Our model, which is based on Fisher’s classical phenotypic
geometric model [12,32], considers a tumour that comprises
multiple neoplastic cells, each of which has a phenotype
determined by random mutations and a Darwinian fitness
determined by how far the phenotype is from an optimum
determined in part by the TME. The adaptive process Fisher
described is analogous to adjusting the knobs of a microscope
(mutations) and each resulting trait contributes to fitness
independently (universal pleiotropy) [33]. In Fisher’s original
analogy, the object on the microscope’s stage is static, so the
population adapts to a static phenotypic optimum in that
environment. In our model, we assume that the TME has a
phenotypic optimum that follows various changing patterns.
In each cancer cell, the changing phenotypic optimum leads
to continual selection acting on the fitness effects of mutations
that influence the phenotypic traits of cancer cells.

To model the above adaptive process, our model uses fit-
ness landscapes (electronic supplementary material, figures S1
and S2), with a single changing phenotypic optimum deter-
mined by the TME, which can move directionally or otherwise
(e.g. randomlyor cyclically), as thephenotypic optimumchanges
(see Methods for model details and electronic supplementary
material, figure S1). The model can also consider cell-auton-
omous mutations, which we assume to act independently of
the TME. In a very simple landscape, the fitness of a cancer cell
with two traits can be described by a function in a 3D Cartesian
coordinate system,where the height along the fitness surface cor-
responds to fitness and the other two coordinates correspond to
phenotypic values of each trait. The initial optimal phenotypic
value defining the maximum fitness is at the origin of the Carte-
sian coordinate system, which points to the initial ‘peak’ of the
fitness landscape (electronic supplementary material, figure S2).

Mutation rate and the number of loci are specified before
each simulation. The former could, for example, be increased
owing to aberrations in key pathways maintaining DNA repli-
cation fidelity, or extrinsic mutagens (electronic supplementary
material, figure S1b). If an allele becomes fixed in the popu-
lation, we say this is an adaptive or positively selected driver
mutation, even if subsequent phenotypic optimum changes
render that driver mutation disadvantageous or neutral. This
does not exclude the possibility that mutations may apparently
be ‘selected’ due to hitchhiking, even including variants with
negative fitness coupled to a mutation with a stronger, positive
effect. Competition between tumour subclones (or ‘clonal inter-
ference’) can occur as a consequence of limits we optionally set
on tumour size.
2.2. Cancer adaptation under diverse cancer initiation
conditions and a changing phenotypic optimum

In our modelling framework, we make some general, plausible
assumptions for cancer initiation and how the phenotypic
optimum changes, such that the neoplastic growth can be
initiated by a single stem cell with any initial fitness. In
some cases, we assume that the cell population has undergone
a modest initial expansion analogous to a benign cancer pre-
cursor lesion [34]. We simulate cancer evolution under
various initial fitness conditions and phenotypic optima.

First, we simulate cancer evolution with a static phenoty-
pic optimum (v1 = 0; see Methods). A single cell with two
traits (n = 2) starts asexual reproduction from the centre of a
3D tumour tissue space with a phenotype at the optimum
with initial fitness w0 = 1. This assumption is used to simulate
a stem cell with an optimum fitness conferred by a driver
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mutation, which is ensured to form a cancer with initial cell-
autonomous phenotype and growth in its local TME. The
cancer starts to grow with cell birth rate w(z,t), and death
rate 1� w(z,t). The cancer undergoes classical constant stabi-
lizing selection, where purifying selection removes cells with
deleterious mutations. The mean population fitness remains
high and does not fluctuate in time or space (electronic sup-
plementary material, movie S1). When under constant
stabilizing selection, we find that there is no fixation of any
new driver mutations (electronic supplementary material,
figure S3 and movie S1), consistent with the ‘big bang’
model of tumorigenesis in colorectal cancer [29].

Once any type of changing TME—and hence changing
phenotypic optimum—is imposed, several interesting pat-
terns of evolution emerge. The fluctuating fitness of cancer
cells in time and space caused by a moving phenotypic opti-
mum and random mutations can result in complex patterns
of clonal and subclonal evolution (electronic supplementary
material, movies S2–S6). Different morphologies based on
varying clonal or subclonal population structures can
emerge (see examples in figure 1). The speed of phenotypic
optimum change is critical. If the phenotypic optimum
moves too fast, and the cancer cells do not acquire enough
beneficial mutations to increase the mean population fitness,
the population goes extinct (electronic supplementary
material, movies S2–S4). However, if the optimum moves at
a moderate speed, the cancer population may acquire
enough beneficial mutations to ‘catch up’ with the phenoty-
pic optimum (electronic supplementary material, movies
S5–S6). If the optimum moves slowly, the tumour can grow
almost exponentially to the maximum space and/or popu-
lation size allowed (n = 107), typically forming a ball
(electronic supplementary material, movies S5–S6), and
then continue to evolve with few new driver mutations.

We find two general clonal or subclonal growth patterns in
3D: (i) one or more balls of cells (figure 1a–i) or (ii) irregular
morphology (figure 1j–l ). Intriguingly, these patterns generally
resemble those observed clinically [20,28]. As a fast-changing
TME often leads to fast cell turnover, we are more likely to
observe ball-like structures (figure 1a–l; electronic supple-
mentary material, movies S3–S6). Moreover, fast-changing
TMEs can lead to many smaller subclones, which turn over
fast, with fluctuating numbers, spatial proximity and fitness
(figure 1a–c; electronic supplementary material, movie S3).
We also find that subclonal populations mix frequently
with variable fitness and spatio-temporal heterogeneity during
evolution (figure 1; electronic supplementary material, movies
S2–S6). In a relatively static or an extremely slow-changing
TME, spatio-temporal clonal turnover is slow and the cancers
often show an irregular morphology (e.g. figure 1g–l; electronic
supplementary material, movie S6). This is because selection is
quite weak and hence adaptive evolution is limited. Moreover,
to understand the fitness effects of selected driver mutations in
a changing TME, we measured the mean population fitness
and the mean fitness advantage of selected driver mutations,
which are mostly determined by the speed of phenotypic
optimum change (figure 2; electronic supplementary material,
movies S2–S6). As expected, the mean population fitness
decreases faster in a fast-changing TME, whereas a slow-
changing/static TME leads to slower fitness decay and thus
longer survival time of the tumour. Lower selection intensities
(a ‘flatter’ fitness landscape; electronic supplementary material,
figure S2) can also mitigate against a changing TME,
significantly increasing the mean fitness of the cancer cell popu-
lation (electronic supplementary material, figures S4–S6).

Second, we now consider that the population starts from a
phenotype away from the optimum, and thus has lower
initial fitness (w0 < 1). If the initial fitness is relatively low (e.g.
w0 = 0.1), the chance of population extinction is high (figure 3;
electronic supplementary material, movies S7–S11). We con-
clude that in this scenario, a cancer is much more likely to
grow if it is initiated by a cell-autonomous driver mutation con-
ferring relatively high fitness that has small or zero dependency
on the TME. This means that relatively low fitness cells can gain
higher fitness and, with a larger ‘initial’ population size, have a
higher chance of generating appropriate driver mutations to
survive selection due to either sudden or rapid phenotypic
optimum change. If the population survives the initial selection,
and assuming that the phenotypic effects of subsequent
mutations are TME-dependent, its evolutionary trajectory will
depend on the rate of phenotypic optimum change (figure 3;
electronic supplementary material, movies S8–S15). Again,
our simulations show three similar patterns as above. First, a
fast-changing TME leads to the selection of driver mutations
with large fitness advantage and quick population extinction,
which, however, can be delayed if the initial population size
is large (figure 3d,h,l). Second, a moderately changing TME
promotes cancer adaptation by fixing more driver mutations
(figure 3b,f,j; electronic supplementary material, movies S9
and S13). Third, if the population evolves under a slowly chan-
ging TME, we recover subsequent driver mutations that have
small fitness effects (figure 3a,e,i; electronic supplementary
material, movies S7 and S15). These mutations could be
termed ‘mini-drivers’, as we proposed previously [35]. These
results show that cancer is unlikely to reach an optimum by
using major drivers alone. Further exploration of five mechan-
isms potentially affecting cancer adaptation—chromosome
instability, mutation rate, number of cancer traits, selection cor-
relation and cell–TME interaction—is shown in electronic
supplementary material, figures S7–S10 and notes S1–S3.

Next, to understand how other types of changing phenoty-
pic optimum affect cancer adaptation, we analyse another three
types of changing TME (randomly fluctuating, directionally
changing with a randomly fluctuating component and
cyclic). These results show similar patterns to the directionally
changing optimum, indicating that our conclusions regarding
highly uncertain evolutionary trajectories caused by changing
TME are robust. There are, however, some novel patterns
observed when the TME changes in a non-directional fashion,
such as that a cycling phenotypic optimum is particularly
capable of promoting adaptive evolution by periodically
fixing more driver mutations (electronic supplementary
material, figures S11–S13, movies S16 and S17, and note S4).
Moreover, the variance in population fitness can become
lower when the frequency of the cycling TME optimum
becomes higher (electronic supplementary material, figure
S14). In general, a directionally changing optimum more
likely causes reduced mean population fitness and thus more
killing of cancer cells. The addition of random changes in the
phenotypic optimum can lead to further killing of cancer cells.

Finally, we explore how the various TME dynamics shown
above affect subclonal cell–cell competition and properties of
driver mutations, especially their genotypic landscapes (see
Methods). We show that changing TMEs can generate genoty-
pic landscapes of considerable ruggedness and sign epistasis,
meaning that predicting cancer adaptation from the
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Figure 1. Three-dimensional simulation snapshots of cancer adaptive evolution under various directionally changing TME selective optima. Illustrative 3D snapshots
of the evolving cancer cell population are taken sequentially, under different phenotypic optimum change rates, v1. (a–c) v1 = 0.05, (d–f ) v1 = 5 × 10−3, (g–i)
v1 = 5 × 10−4 and ( j–l ) v1 = 5 × 10−5. To illustrate subclonal heterogeneity of fitness through time and 3D space, cancer cells are coloured according to their
fitness cut-off values using quartiles, which results in four groups of cancer cells coloured with four different colours: red (the highest 25%), cyan (between the
highest 25% and 50%), grey (between the lowest 50% and 25%) and green (the lowest 25%), respectively. To show 3D mixing of subclones with different fitness,
we applied lower opacity to cyan, grey and green colours representing the lowest 75% cancer cell populations in fitness. Note that, because of immediate population
extinction, data are not shown for simulations with phenotypic optimum change rate at v1 = 0.5. The width of the fitness landscape (i.e. selection intensity) is set to
σ2 = 10 (equation (4.2); electronic supplementary material, figure S2).
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Figure 4. Cancer phylogenies under directionally changing TME selection dynamics. These results demonstrate that it is possible to use cancer phylogenies to
understand the underlying TME selection dynamics due to either cancer treatments or somatic evolution. Example phylogenies are shown for simulated cancers
under three different TME selective dynamics. (a–d ) Four illustrative phylogenies are shown for a directionally changing TME optimum with four different speeds:
v1 = 0 (static TME) (a), v1 = 5 × 10−5 (b), v1 = 5 × 10−4 (c) and v1 = 5 × 10−3 (d ). All cancers were longitudinally sampled for every 100 generations for a fixed
period of 10 000 generations except (d ), where the cancer went extinct at approximately 2300 generations. The maximum population size is set at n = 105. The
scale bar represents the number of cell divisions.
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complement of driver mutations may be misleading in this
scenario. Further explorations of subclonal cell–cell compe-
tition and evolutionary dynamics under a changing TME are
shown in electronic supplementary material, figures S15–S25,
movies S18–S21, and notes S5 and S6.

2.3. Both a changing phenotypic optimum and spatial
constraints on population size affect cancer
phylodynamics and adaptation

To understand the effects on cancer phylodynamics of variable
selection caused by a changing TME (see Methods), we recon-
struct cancer phylogenies in the simulations shown above
within a 3D TME space of the same size. Intriguingly, we
find that in all cases, the shapes and the temporal signals in
the phylogenies (e.g. the local branch length and overall
shape) are characteristic of the optimum change dynamics,
that is, TMEs with the phenotypic optimum changing at differ-
ent speeds (illustrated in figure 4). In all cases, phylogenies
from a slowly changing TME have long parallel branches indi-
cating subclones may coexist for long periods of time without
fixation (figure 4a,b), suggesting weak selection on subclones.
A moderately changing optimum (figure 4c) typically leads
to the continual selection of branches with beneficial mutations
and thus favours adaptive evolution. A fast-changing phenoty-
pic optimum causes strong selection and shorter branches
indicating fast extinction of the subclones (figure 4d). Similar



royalsocietypublishing.org/journal/rsob
Open

Biol.10:190297

8
results are obtained for other optimum change dynamics
(illustrated in electronic supplementary material, figure S26).

As the available cancer niche space may also affect
cancer adaptation and phylodynamics, for example, elimi-
nating less fit cancer cells, we repeat the simulations
shown above using the three (directional, cyclic and
random) optimum change dynamics with different spatial
constraints on cancer size and reconstructed all phylogenies
during the simulations. We further use two measures for
quantifying asymmetry of these phylogenies, the normal-
ized Sackin’s index and the number of cherries (see
Methods), respectively. We find that both spatial constraints
and a changing phenotypic optimum can affect cancer adap-
tation and phylodynamics to various degrees (electronic
supplementary material, figures S27 and S28, and note
S7). Particularly, when the changing TME causes strong
selective pressure smaller 3D space hinders adaptive evol-
ution while larger 3D space promotes it.

2.4. Cancer adaptation owing to anti-cancer therapies
Given our finding that a changing TME tends to promote
cancer extinction or suboptimal growth, we now extend our
model to simulate the effects of different anti-cancer thera-
peutic strategies, by assuming that these modify the
phenotypic optimum and/or the shape of the fitness land-
scape (see equation (4.17); electronic supplementary
material, figure S2). We examine the effects of treatments
such as genotoxic therapies (radiotherapy or chemotherapy)
[36] and immunotherapy [2] by assuming that they can
cause a sudden shift in the phenotypic optimum and hence
place cancer cells under strong selective pressure. For simpli-
city, we assume that the therapy causes the optimum to move
suddenly to various degrees along the axis of the first trait
while keeping the optimum constant at the rest (electronic
supplementary material, figure S29), our intention being to
determine qualitatively what happens with a treatment-
induced phenotypic optimum shift. We confirm that
although all treatments assumed to be effective are successful
in reducing mean population fitness and tumour mass to the
brink of extinction, only treatments that induce a large
sudden change of the phenotypic optimum can lead to a
cure (electronic supplementary material, figures S29 and
S30 and movies S22–S25). Moreover, the complementary phy-
logenies show that selection from the treatment-induced
optimum shifts often leads to expansion of subclones and
extinction of the majority of the tumour mass (electronic sup-
plementary material, figure S30e,j,o). Weak treatment leads to
a large number of initial subclones with de novo resistance
mutations, but eventually the tumour mass comes to be
dominated by a single subclone (electronic supplementary
material, figure S30e) carrying the mutation with the largest
selective advantage. Stronger, but non-lethal, treatment
leads to an early subclonal expansion carrying the mutation
with a very large selective advantage (s = 26.563; electronic
supplementary material, figure S30o).

In terms of subclonal diversity, we observe a reduction soon
after treatment and then an increase, but after subclonal fitness
recovers to the same or similar levels as those at pre-treatment,
the diversity reduces again until the end of the treatment (data
not shown). These behaviours are consistent with a mean
population fitness decrease due to treatment and selection
for resistant subclones (electronic supplementary material,
figure S30). Interestingly, our simulations show that most resist-
ance mutations are born early but not pre-existing. In rare cases,
the few pre-existing resistance mutations are deleterious,
suggesting they moved these mutant subclones’ phenotypes
away from the original optimum and the treatments helped
those subclones to survive by moving their phenotype closer
to the new treatment-induced optimum. Moreover, when the
treatments lead to a sufficiently high selection intensity (a ‘nar-
rower’ fitness peak; see electronic supplementary material,
figure S2), all treatments lead to immediate cure (population
extinction).

To understand potential therapeutic resistance, we exam-
ine three mechanisms that cancers could use to increase the
mean population fitness and avoid extinction (electronic sup-
plementary material, movies S26–S28 and figure S31). First,
we assume a polygenic model of resistance, which has quanti-
tative traits. Somatic copy number variation may increase the
number of genetic loci contributing to resistance, which helps
the population avoid extinction and selects for resistance
driver mutations (L = 50; electronic supplementary material,
figure S31a). Second, with an elevatedmutation rate—perhaps
caused by the therapy itself—mean population fitness can
quickly rebound and extinction is avoided, where positively
selected resistancemutations arise during the simulation (elec-
tronic supplementary material, figure S31b). Interestingly, all
positively selected resistance mutations have a de novo
origin after treatment initiation, because all other mutations
in the subclones are removed by therapeutic selection or
failed to hitchhike within the dominant subclone. Third, if
selection intensity decreases—for example, the therapy inten-
sity is reduced owing to toxicity—the cancer cell population
can also avoid extinction (σ2 = 40; electronic supplementary
material, figure S31c; the fitness landscape shape change is
illustrated in electronic supplementary material, figure S31).
Nevertheless, due to weaker selection, no positively selected
mutations are detected in these simulations. In all cases, the
mean cancer cell population fitness is reduced significantly if
the treatment is effective. The cancer is killed off if there are
no resistant subclones born early after treatment. The complex
growth patterns of the resistant subclones are striking, includ-
ing mixing and fast turnover (electronic supplementary
material, figure S31d and movies S22–S24).

Combining the findings from our general model of cancer
evolution with the models of the evolutionary responses to
anti-cancer therapy suggests ways to improve treatment strat-
egies. Treatments, such as the sequential and/or cyclical use
of different therapies, that lead to a faster-moving phenotypic
optimum (in any direction) may be more effective in killing
cancer cells and help to reduce toxicity through the use of
lower doses, as there is no requirement for initial maximum
dosing to induce a large change in the selective optimum
(electronic supplementary material, figures S30 and S32).
The strategy is theoretically as effective as the classical maxi-
mum dosing in reducing the mean cancer cell population
fitness (similar to electronic supplementary material, movies
S2–S4 and figure S32), although it takes longer to work.
Dosing strategies should, in principle, be optimized individu-
ally depending on the maximum allowed dose tolerance and
the type of cancer (see electronic supplementary material,
figure S11–S13 and movies S2–S4). In summary, although
there are challenges to overcome in design and implemen-
tation, anti-cancer strategies based on moving the selective
optimum appear to be highly desirable.
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3. Discussion
We have used mathematical models and simulations to show
that a changing TME of any type is highly likely to provide a
barrier to carcinogenesis, especially in the early stages of
growth. Faster-changing TMEs are more effective. Rapid sub-
clonal shifts and ‘spontaneous’ regression or tumour
extinction may occur. There are also likely to be unobservable
failed evolutionary trajectories of cancer growth and pro-
gression in human patients [1]. Our model may thus help
to explain why cancer is not more common. In theory, a
cancer could grow using only TME-independent driver
mutations, but the extent to which this is possible is unclear.
There is evidence that even major and/or cancer-initiating
driver mutations (e.g. APC, IDH1/2, KRAS, PIK3CA, etc.)
are differentially selected depending on cancer type [37],
strongly suggesting a role for the TME, broadly defined, in
selecting many of the common driver mutations.

Our framework does not explicitly model the TME. Rather,
the TME is assumed to have a 3D space and a phenotypic opti-
mum for cancer cells to adapt to, which can follow different
changing dynamics and 3D space sizes as we have shown in
this study. TMEs are highly complex in reality and challenging
to model explicitly [15,26]. Therefore, this level of abstraction
in our model at this stage is necessary to make advances, as
this allows us to look for general patterns of cancer adaptation.
Although simplistic, these phenotypic optimum change
dynamics are implicated in previous studies (e.g. a directionally
moving phenotypic optimummay be due to ageing [38], a vari-
able TME may be due to dynamic immune cell infiltration [18]
and a cycling TME may be due to hypoxia [24]). Overall, how-
ever, studies to determine the interaction between genotype
and TME in producing a cancer phenotype are at early stages,
and while data showing that, say, early and late cancers have
very different TMEs are plentiful, data showing how the TME
of an individual tumour changes are currently very limited.

There are some potential limitations to our work that
could be addressed in future studies. For example, we did
not model spatial heterogeneity in the same changing TME,
as might occur with, for example, heterogeneous immune
cell infiltrations [17]. To address this, we can readily extend
our model to a situation in which a cancer cell’s TME is influ-
enced by neighbouring cells with spatial heterogeneity using
spatial networks, where tumour evolution could be further
modelled in detail by graph theories associated with the net-
work [39–41]. Although we showed a cycling phenotypic
optimum in the TME, for example, due to hypoxia, may be
particularly capable of promoting adaptive evolution by
periodically fixing more driver mutations, the time-scales of
the plausible TME fluctuations of the optimum and relative
life cycle of cancer cells are not clear. Our assumption was
that the time-scale (the period) of the cycling optimum is
larger than the life cycle of cancer cells. Previous studies
have long showed that the generation time of cell cycles
varies considerably among mammalian cells [42]. There is
also evidence the cycling hypoxia is rather complex with at
least two dominant time-scales, which vary between hours
and days [24]. It will also be interesting to investigate how
the cycling phenotypic optimum in the TME could be
linked to other cell physiologies affecting cancer evolutionary
dynamics, such as the circadian clock [43,44]. It will be
necessary to test the effects of changing TMEs in model sys-
tems, and we argue that carefully designed animal models of
carcinogenesis are required for this, rather than in vitro TME
manipulation.

Our model supports the use of therapeutic strategies that
target the TME, causing the optimum to change and poten-
tially driving the cancer cell population to extinction [1,16].
A similar approach, termed ‘adaptive therapy’ or ‘metro-
nomic chemotherapy’, has been proposed previously
[45,46], where treatments have been adjusted with or without
evolutionary modelling and there is clear evidence of
improved patient outcome by cyclic dosing [47]. It is challen-
ging to identify a phenotypic optimum that the cancer cells
can actually respond to, but there have been clinical trials
based on this philosophy [48,49]. In the future, our fitness
landscape-based spatial modelling could be extended to
measure the variable fitness effects of new driver mutations
in cancer cells’ adaptation to changing TMEs and treatments.
This could be achieved by using longitudinally sampled
whole-genome sequencing data with TME information.
There has been some success in measuring patient-specific
subclonal selection coefficients by assuming a static TME [50].

In conclusion, our model using phenotypic and genotypic
fitness landscapes with a changing phenotypic optimum pro-
vides a single unified evolutionary and ecological framework
to understand adaptive cancer evolution and treatment. Our
approach is heuristic and we show that the extension of Fisher’s
geometric model is sufficient to produce many of the observed
complex cancer evolutionary and pathology patterns. Although
the phenotypic fitness landscapes are smooth, the underlying
rugged genotypic landscapes of selected driver mutations due
to a changing TME suggest that it is challenging to predict
cancer evolution using genotypic data alone. Our focus in this
study on the effect of a changing TME shows that cancers
may not grow because they cannot adapt quickly enough to
moving fitness optima, even if the TME changes are cyclical
rather than unidirectional. In the future, our modelling frame-
work could be used to measure heterogeneity in evolving
cancers within and between patients. Although most anti-
cancer therapies are based on direct killing of cancer cells, the
use of therapy designed to cause a changing TME could lead
to death through natural selection.
4. Methods
4.1. Fitness landscape model
In molecular evolution, organisms can evolve by positive Dar-
winian selection or genetic drift, or a combination of both,
depending on how natural selection acts on the phenotypic
traits and their plasticity [51]. The fitness advantage to organ-
isms conferred by these phenotypic traits due to mutation and
environmental selection can lead to adaptation [32,52,53]. In
this study, we will use the metaphor of fitness landscape to
understanding cancer adaptation, first introduced by Wright
[52], which is defined by a set of genotypes, their mutational
distance and fitness. As our focus is to build a phenotypic
and genetic model of cancer adaptation, we first extend Fish-
er’s geometric model of phenotypic fitness landscape to
address the question of how cancer cell populations adapt to
a changing TME [12,33,54–56] in 3D tissue space, which we
assume to have a phenotypic optimum the cancer cells can
adapt to (note cancer cells and cancer stem cells are used inter-
changeably). Particularly, we extend the original Fisher’s
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phenotypic landscape model into a general form by incorpor-
ating a moving phenotypic optimum with various changing
dynamics (e.g. directionally, randomly or cyclically) [56–59].
Our rationale is that normal tissue homeostasis is essential
for the functioning and survival of multicellular organisms,
which has evolved robust buffering mechanisms to ensure
that microenvironmental changes can be accommodated. Can-
cers may retain a few of these features, but it is implausible
that they are as robust as normal tissues, given the cell types
they contain and the lack of normal structures (e.g. the intesti-
nal crypt is not recapitulated in a cancer, even if some cancers
have structures reminiscent of crypts). There are thus excellent
reasons to expect that a changing environment renders cancer
cells more vulnerable than normal tissue. It is also important
to note that our model assumes that the normal cells are buf-
fered against (or simply not exposed to) the changing TME.
There is no notion that normal cells will overgrow to out-com-
plete the cancer—that has almost no biological basis for solid
tumours. Finally, it was suggested that the ruggedness of land-
scapes can determine the repeatability and predictability of
adaptation [60]. We will generate and characterize the under-
lying Sewall Wright’s genotypic landscapes of selected driver
mutations from our modelling framework to explore whether
such genotypic landscapes are smooth or rugged.

In Fisher’s geometric framework, a cancer stem cell adapt-
ing in a TME can be viewed as a point in an n-dimensional
Euclidean phenotype space with n quantitative phenotypic

traits defined by a column vector z ¼ (z1, . . . ,zn)
T. The traits

involved can be any, but could for convenience be those high-
lighted by Hanahan & Weinberg [19]: sustaining proliferative
signalling, evading growth suppressors, resisting cell death,
enabling replicative immortality, angiogenesis, activating
invasion and metastasis, reprogramming of energy metab-
olism and evading immune destruction [19]. As we assume
that the TME is the primary source of selection
[1,6,14,58,61–63], there is a corresponding optimum pheno-
type zopt, which is defined by a column vector of n values

zopt ¼ (zopt1 , . . . ,zoptn )T. The Euclidean distance, d, is defined

as d ¼ kz� zoptk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1 ðzk � zoptk Þ2
q

. The phenotypic fit-

ness function for a cancer stem cell in a microenvironment

is defined as w(d) ¼ exp (�ad2) ¼ exp (�akz� zoptk2) [56].
Here, a is the selection intensity for all traits (a > 0) [56]. There-
fore, the fitness of an individual cancer stem cell depends on
its phenotype’s Euclidean distance to the optimum. The
change of phenotypic traits of a cancer stem cell due to
random mutations can be defined as an n-dimensional

random number r ¼ (r1, . . . ,rn)
T. The size of a mutation (the

effect of a mutation on phenotypic traits) is therefore defined

as krk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 þ � � � þ r2n

q
. So, the combined phenotypic

trait of a cancer stem cell z0 with mutation r, relative to its
wild-type z is defined as z0 ¼ zþ r. We assume the phenoty-
pic effect of a mutation with size r follows a multivariate
normal distribution with mean 0 and n × n variance–
covariance matrix M [55,64]. The selection coefficient of a
mutation that changes the fitness of the cancer stem cell is
therefore defined as

s ;
w(z0)
w(z)

� 1 ¼ w(zþ r)
w(z)

� 1; ð4:1Þ

when s > 0, the mutation is beneficial, as it moves the cancer
stem cell closer to the optimum. When the cancer stem cell is
at optimum, we say it has its maximum fitness w(z) ¼ 1,
whereas when the cancer stem cell moves away from the opti-
mum, its fitness decreases (0 � w(z) , 1). Such mutations are
deleterious and lead to negative selection coefficients with
s < 0. When mutations do not change fitness, they are defined
as neutral mutations with s = 0.

We can now define a general form of the fitness function
as shown before [33,54,55,65];

w(z, t) ¼ exp [�(z� zopt(t))TS�1(z� zopt(t))], ð4:2Þ

where S is a real n × n positive definite and symmetrical
matrix, and T denotes transposition. The matrix S describes
the shape of the fitness landscape, namely, the selection inten-
sity. Matrix S−1 is the inverse of S. As introduced above, the
overlapping of pathways responsible for cancer stem cell
traits indicates pleiotropic effect of mutations contributing
to cancer adaptive evolution [19]. If the selection intensity
is the same along all n traits then we have an isotropic fitness
landscape (universal pleiotropy). We set S ¼ s2I (σ2 > 0, I is
an identity matrix). Selection may also vary along different
traits (selection is correlated), which means mutational effects
contribute to fitness differently for different traits. If we set
selection intensity to vary along n traits, then S has non-
zero off-diagonal entries. We illustrate different shapes of
the fitness landscape (independent and correlated selection)
in electronic supplementary material, figure S2. We can use
�s2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det (S)n
p

to measure the average width of the fitness
landscape, where �s2 is defined as the geometric mean of
the eigenvalues of S. The selection coefficient of a mutation
in equation (4.1) can now be defined as

sðz,z0,tÞ ; w(z0,t)
w(z,t)

� 1: ð4:3Þ

We now describe how the simulation works to produce
the 3D tumour cell structures using the fitness function
w(z,t) (equation (4.2); electronic supplementary material,
figures S1 and S2). The simulation is fully individual-based,
following simple growth mechanics described previously
[28,66]. Briefly, the offspring of newly divided cells stochasti-
cally look for available positions in a 3D lattice space. The
population evolves in a discrete and non-overlapping
manner. The empty 3D tumour space represents the TME
that may change, following the dynamics described below,
and the position in the 3D space does not affect the TME or
selection (except in the model extension of cell–TME inter-
action; see electronic supplementary material, note S3).
A computer simulation of cancer evolution proceeds in the
following fashion. At each generation, the initial fitness
(w0 ¼ wðz0Þ) of each cancer cell is conferred by a starting phe-
notype, z0, which is unchanged from the previous generation
unless a new mutation (advantageous or deleterious) occurs
by chance, or phenotypic plasticity arises, for example,
from disturbances such as inflammation [15]. The phenotypic
effect (size) of a mutation is sampled from a multivariate
normal distribution. A mutation with large fitness effect
can move the cancer cell a long phenotypic distance relative
to its phenotypic optimum in the fitness landscape. The chan-
ging phenotypic optimum of the TME can also change each
cancer cell’s fitness. When the cell phenotype and/or pheno-
typic optimum changes, the Euclidean distance, d, of the
phenotype from the optimum will change to d0, with an
associated fitness value w(d0). All these changes in fitness
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naturally lead to different levels of selection and adaptation—
a cancer cell acquires higher fitness when mutations move its
phenotype closer to the optimum. Depending on the fitness
effects of mutations in that cell and position of the phenotypic
optimum at generation, t, we assume that every cancer cell
has to survive viability selection according to its birth rate
(the probability to give daughter cells during viability selec-
tion—equivalent to its fitness at generation t), w(z,t), and
death rate (the probability of cell death during viability selec-
tion), 1� w(z,t). The surviving cancer cells then reproduce
asexually. New daughter cells randomly occupy available
tissue space in 3D according to pre-specified limits on
tumour size that may vary with time. The tumour may go
extinct, persist with varying size, or grow continuously
until it reaches its maximum allowed space or size (nominally
representing clinical presentation), after which it continues to
be under viability selection without expanding.
0:190297
4.2. Cancer adaptation in a tumour microenvironment
with a changing phenotypic optimum

In all, we consider six scenarios for how the TME’s phenoty-
pic optimum might change. Different initial population or
individual cell properties (e.g. population size and fitness)
during computer simulations are specified in the Results sec-
tion. We assume that the TME optimum follows the
multivariate-optimum model and only the first trait of n
traits changes [55,57,67]. It is important to note that the
assumption that the fitness landscape has a single, well-
defined optimum is a reasonable simplification and assumed
qualitatively as suggested before (e.g. due to ageing, random
tumour-infiltrating immune cells or hypoxia), which could be
more complex in reality.
4.2.1. Directionally changing phenotypic optimum

We assume a directionally moving optimum with vt,

zopt(t) ¼ vt ð4:4Þ
and

w(z,v,t) ¼ exp [�(z� vt)TS�1(z� vt)], ð4:5Þ
where the vector v ¼ (v1, . . . ,vn)

0 is the phenotypic optimum
change speed. The optimum zopt(t) is time (generation)
dependent and only the first trait optimum changes.
4.2.2. Randomly changing phenotypic optimum

Here, we assume the TME optimum of the first trait, zopt1 ,
changes randomly at each generation, t, following a normal
distribution with mean 0 and standard deviation, δ

zopt(t) ¼ (zopt1 , . . . ,zoptn ), ð4:6Þ
zopt1 � N(0,d2) ð4:7Þ
and w(z,t) ¼ exp [�(z� zopt(t))TS�1(z� zopt(t))]: ð4:8Þ
4.2.3. Directionally changing phenotypic optimum, with a
random component

We assume a directionally moving optimum with vt (see
equation (4.4)) and a random component e,

zopt(t) ¼ vtþ e, ð4:9Þ
11 � N(0,d2) ð4:10Þ
and w(z,v,e,t) ¼ exp [�(z� zopt(t))TS�1(z� zopt(t))], ð4:11Þ
where v ¼ (v1, . . . ,vn)

0 is the vector of the phenotypic
optimum change and it is time dependent. The random
vector e ¼ (11, . . . ,1n)

0 has ε1 following a random normal
distribution with mean 0 and standard deviation δ.
4.2.4. Cyclically changing phenotypic optimum

In this scenario, we assume the TME optimum changes cycli-
cally or periodically at each generation, t, following a general
periodic function [57,64,68]

zopt(t) ¼ (zopt1 ðtÞ, . . . ,zoptn ðtÞ), ð4:12Þ

zopt1 ðtÞ ¼ A
2

1þ sin
2pt
P

� p

2

� �� �
ð4:13Þ

and w(z,t) ¼ exp [�(z� zopt(t))TS�1(z� zopt(t))], ð4:14Þ
where A is the amplitude of TME optimum oscillation and P
is the period (the number of generations) of the TME cycle.
Equation (4.13) allows the TME optimum to change period-
ically from 0 to A and then to 0 in P generations. In all
simulations of this scenario, P is fixed at 360 generations.
4.2.5. Stable (i.e. constant) phenotypic optimum

We assume the TME optimum is constant with
zopt0 ¼ (z01, . . . ,z

0
n)

0

zopt(t) ¼ zopt0 ð4:15Þ
and

w(z) ¼ exp [�(z� zopt0 )
T
S�1(z� zopt0 )]: ð4:16Þ
4.2.6. Sudden change in the phenotypic optimum

We assume the TME selective optimum suddenly changes
from zopt0 to zopt1

w(z,t) ¼ exp [�(z� zopt0 )
T
S�1(z� zopt0 )], 0 � t , t

exp [�(z� zopt1 )
T
S�1(z� zopt1 )], t � t

(
: ð4:17Þ

In this scenario, the cancer cells evolve under constant stabi-
lizing selection of the TME with optimum vector for τ
generations. After that, the TME optimum changes suddenly
with a new optimum vector zopt1 ¼ (z11, . . . ,z

1
n)

0 and then the
cancer cells evolve under another constant stabilizing selec-
tion. For simplicity only, the optimum of the first trait
changes from z01 ¼ zopt0 to z11 ¼ zopt1 and the rest trait values
are kept 0. We set our initial TME optimum at the origin,
so we have vectors zopt0 ¼ (zopt0 , . . . ,0)0 and zopt1 ¼ (zopt1 , . . . ,0)0

with zopt0 ¼ 0.
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4.3. Simulation of cancer evolution in the three-
dimensional space

We simulate the cancer cell population in 3D space in one
of the six environments described above (electronic sup-
plementary material, figure S1a). Our intention is to identify
key cancer evolutionary patterns and investigate how these
are influenced by model parameters, such as the number
of phenotypic traits n (the complexity of cancer cells),
changing microenvironment (properties of the TME),
variable selection among traits, population size, mutation
rate, initial phenotype of cancer cells (distance to optimum),
initial population size and chromosome instability affect
cancer adaptation (tumorigenesis) in an ecological and
evolutionary framework.

Simulations are performed under particular phenotypic
optimum change patterns due to either natural cause or anti-
cancer therapies as described in equations (4.4)–(4.17). Here,
we assume cancer cells require at least one adaptive trait for
survival (e.g. anti-apoptotic or metabolism-related traits) as
also inspired by microbial adaptive evolution [69] and mam-
mals with very low cancer incidences [70,71]. For simplicity,
we set the number of traits, n = 2 (the dimensionality of the fit-
ness landscape), in each simulation unless otherwise stated.
The initial population has K neoplastic cells, and grows from
the centre of the specified 3D coordinates in the 3D square lat-
tice (it has 26-cell cubic neighbours, also called a 3D Moore
neighbourhood) until it reaches the defined maximum popu-
lation size or 3D tumour space, which is set at 1 × 107 and
3003 due to computational resource limitations, respectively.
The initial K cells have an adjustable phenotype z0. This deter-
mines the initial fitness in the fitness landscape, which has the
optimum at the origin and an adjustable shape defined by S in
equation (4.2) (illustrated in electronic supplementary material,
figure S2). The initial phenotype can also be calculated by
equation (4.2) when the predefined fitness value is known.
For generality, we consider that the adjustable phenotype of
initial K cells is determined by either classical driver mutations
or phenotypic plasticity.

The cancer cells have c sets of chromosomes (ploidy)
and reproduce asexually with chromosome instability
(CIN). To model CIN, for simplicity, we define a rate, rc,
following a Bernoulli process to vary the copy of paternal
or maternal chromosome passed down to daughter cells
(electronic supplementary material, figure S1b). Each
individual cancer cell is represented by L diploid loci (for
computational efficiency without loss of generality c = 2,
L = 5, unless stated otherwise) with additive effect on the
n-dimensional phenotype z.

A multifurcating tree tracks the genealogies of the alleles
generated at these loci. When only one branch of an allele
tree survives, an adaptive step is recorded as per standard ter-
minology [55]. The per locus mutation rate, u = 4 × 10−5, is
used for per genome replication [72]. Due to the high mutation
rate and large population size, multiple mutations may be
generated in each generation. So, there is clonal interference
in our simulations. For this reason, we only use individual-
based simulations in our study. Analytical results concerning
equations (4.4)–(4.17) have previously been addressed
[55,56,63,73,74]. In each simulation, the population genetics
parameters are recorded in computer files. Some simple stat-
istics are displayed in real time on the computer screen
including time in years with 24 h doubling time (can be
adjusted if required), adaptive steps (driver mutations),
generation time and population size. The reason to set the
doubling time as 24 h is to allow simulation of more
generations to gain more insights into the underlying evol-
utionary dynamics (e.g. 1 day doubling time allows roughly
37 000 generations for 100 years; however, 5 days doubling
time only allows about 7400 generations). The summary stat-
istics for population fitness and adaptive steps are sampled
every 100 generations unless otherwise stated. The real-time
spatial evolutionary process of cancer development is visual-
ized in 3D. Three-dimensional snapshots and 2D movies
including fitness values of all cancer cells are made directly
from simulations.

4.4. Phylogeny reconstruction and shape measure
In our simulations, the cancer grows from single cells and each
survived cell divides into two daughter cells following the
branching process, so we only consider binary trees. The phylo-
geny or the genealogy of the evolving cancer in each simulation
can be reconstructed in real time by simply removing dead cells
at each sampling point. Here, we use a term called ‘phylody-
namics’ previously coined to study the shape of viral
phylogenies due to the effect of evolutionary and/or ecological
processes [75], which can arise due to immune selection and
weak selective or non-selective forces such as space and popu-
lation dynamics. Similarly, the shape of the resulting cancer
phylogenies in our simulations contains useful information of
the underlying evolutionary processes. In the context of our
study, we specifically use this term, cancer phylodynamics, to
describe a similar phylodynamic framework where cancer phy-
logenies could be affected by both TME selection dynamics,
space and cancer cell population dynamics. We use two com-
monly used measures of phylogeny asymmetry [76], namely
the normalized Sackin’s index and the number of cherries, to
quantify to what extent each TME selection dynamic and 3D
space (spatial constraint) affect phylogeny shapes. These
measures can be very useful to infer the underlying cancer
dynamics in clinical settings. Specifically, the normalized
Sackin’s index measures the total topological distance between
the tips and the root of the tree and it is then averaged by the
total number of tips, which can increase as the tree asymmetry
increases. A cherry is formed between two tips sharing a direct
common ancestral node on the tree. An asymmetric tree may
have more cherries than a balanced tree in our case as changing
TMEs may lead to more cherries at each sampling point. The
two measures are complementary in measuring tree asymme-
try as the former measures the overall asymmetry, while the
latter reveals recent asymmetry at each sampling point [77].
We used R packages apTreeshape (https://cran.r-project.org/
web/packages/apTreeshape/index.html) and treeImbalance
(https://github.com/bdearlove/treeImbalance) to perform
these measures.

4.5. Calculate epistasis coefficient among selected driver
mutations

To further characterize the selected driver mutations and their
genotypic fitness landscapes, we derive the epistasis equation
between pairs of driver mutations with a moving optimum.
In Fisher’s fitness landscape model, based on our version of

https://cran.r-project.org/web/packages/apTreeshape/index.html
https://cran.r-project.org/web/packages/apTreeshape/index.html
https://cran.r-project.org/web/packages/apTreeshape/index.html
https://github.com/bdearlove/treeImbalance
https://github.com/bdearlove/treeImbalance
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fitness function (equation (4.2)), the epistasis coefficient of a pair
of mutations, i and j, can be defined as [78]

eij ¼ log
w(zij,tij)w(z0,0)
w(zi,ti)w(zj,tj)

� �
, ð4:18Þ

wherew(zij,t) is the fitnessof thedouble-mutant cell,whilew(zi,t)
andw(zj,t) are the fitness of the individualmutant cell. The initial
ancestral cell has fitnessw0 ¼ w(z0,0) with phenotype z0 and the
optimum is at the origin. As shown above, if we define the phe-
notypic effect of the two mutations as ri and rj, respectively.
Then, we have the phenotype, zi ¼ z0 þ ri, for the mutant cell
carrying the mutation i and phenotype, zj ¼ z0 þ rj, for the
mutant cell carrying the mutation j. The phenotype of the
double mutant is zij ¼ z0 þ ri þ rj. Similarly, the TME optima
are zopti ðtÞ and zoptj ðtÞ for mutant cells carrying mutations i and
j, respectively. The optimum for the double mutant can be
defined as zoptij ðtijÞ ¼ zopti ðtiÞ þ zoptj ðtjÞ. The above epistasis
coefficient in a changing TME can be further given as

eij ¼ �2ðri � zopti ðtiÞÞTS�1ðrj � zoptj ðtjÞÞ: ð4:19Þ

Note that, here the epistasis is also affected by the changing
TME optimum and the epistasis coefficients between pairs of
mutations can be directly calculated from the simulations.

4.6. Properties of a genotypic landscape of selected
driver mutations

The ruggedness of cancer genotypic landscapes may determine
the predictability and repeatability of cancer adaptation and
therefore of paramount importance for managing cancer [60].
When describing a genotypic landscape, four to five genotypes
are typically used. This leads to 24 or 25 all possible combinations
of these genotypes to form a genotypic landscape. The epistasis
coefficient between two mutations can be calculated when we
know the fitness effects of the mutants as shown above. For sim-
plicity, we use four selected driver mutations to summarize the
genotypic landscapes generated by the extended Fisher’s fitness
landscape model with a changing phenotypic optimum. We
further summarize these genotypic landscapes using two com-
monly used summary statistics [60], namely, the fraction of sign
epistasis and roughness to slope ratio [79,80]. The former defines
a situationwhere the fitness effects ofdrivermutationsdependon
their background drivermutations. The later quantifies howwell
a landscape can be described by a linear model where driver
mutations can additively determine their fitness. There are two
types of sign epistasis: simple and reciprocal (complex) sign epis-
tasis. In simple sign epistasis, only one of the driver mutations is
deleteriouswith the other drivermutation,while in complex sign
epistasis, both driver mutations are deleterious with the other
driver mutation as its background driver mutation, which
could only happen in a cycling TME in our study.
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