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Abstract

Background: Retroviruses have been observed to bud intracellularly into multivesicular bodies (MVB), in addition to the
plasma membrane. Release from MVB is thought to occur by Ca2+-regulated fusion with the plasma membrane.

Principal Findings: To address the role of the MVB pathway in replication of the murine leukemia virus (MLV) we took
advantage of mouse models for the Hermansky-Pudlak syndrome (HPS) and Griscelli syndrome. In humans, these disorders are
characterized by hypopigmentation and immunological alterations that are caused by defects in the biogenesis and trafficking
of MVBs and other lysosome related organelles. Neonatal mice for these disease models lacking functional AP-3, Rab27A and
BLOC factors were infected with Moloney MLV and the spread of virus into bone marrow, spleen and thymus was monitored.
We found a moderate reduction in MLV infection levels in most mutant mice, which differed by less than two-fold compared to
wild-type mice. In vitro, MLV release form bone-marrow derived macrophages was slightly enhanced. Finally, we found no
evidence for a Ca2+-regulated release pathway in vitro. Furthermore, MLV replication was only moderately affected in mice
lacking Synaptotagmin VII, a Ca2+-sensor regulating lysosome fusion with the plasma membrane.

Conclusions: Given that MLV spreading in mice depends on multiple rounds of replication even moderate reduction of virus
release at the cellular level would accumulate and lead to a significant effect over time. Thus our in vivo and in vitro data
collectively argue against an essential role for a MVB- and secretory lysosome-mediated pathway in the egress of MLV.
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Introduction

Retroviruses such as the murine leukemia virus (MLV) and the

human immunodeficiency virus (HIV) have been reported to

accumulate in intracellular vesicles, called multivesicular bodies

(MVB). It has been proposed that budding into MVB followed by

release of the viral content could contribute to the overall amount

of viral dissemination [1–4], in addition to the ‘‘classical’’ egress

from the plasma membrane [5–8]. How retroviral particles reach

late endosomal vesicles has remained a matter of debate. In one

model, Gag would be sorted directly from the Golgi via a process

dependent on the AP-3 and the E3 ligase Posh [9–11]. Env may be

co-recruited to Gag via an interaction with TIP47, an effector of

the small GTPase Rab9 [12,13]. Downregulation of TIP47 as well

as Rab9 blocks HIV release [12,14]. In contrast, compelling

evidence has recently been reported that retroviral HIV Gag

accumulating in MVBs originates from the plasma membrane

[15–18]. Importantly, interference with endocytosis blocked the

accumulation of HIV Gag at MVBs, yet did not interfere with the

release of virus infectivity from cells [16,17]. Consistently, a recent

time-lapse microscopy study directly visualized the assembly and

budding of HIV at the plasma membrane [19]. Finally, a

compartment in macrophages with MVB-like features that

harbors infectious HIV was found to be continuous with the

plasma membrane [20,21].

While in some cell-types Gag reaches MVB-like compartments

either via the Golgi or by re-endocytosis from the plasma

membrane, a critical question remains as to whether viral particles

accumulating in intracellular compartments can later be released by

fusion with the plasma membrane. Release may represent a

regulated event, and much excitement for a potential MVB

pathway has originated from the idea that cell-cell contact could

trigger MVB mobilization and polarized release [2,3,22]. Particu-

larly for antigen presenting cells such as dendritic cells and

macrophages, it has been proposed that interactions with T-cells

can mobilize MVBs to transport HIV directly to cell-cell contact

sites [22–24]. One way to induce the secretion of MVBs and

lysosomes is through Ca2+ signaling. Treatment of HIV-infected

cells with Ca2+ ionophores has been shown to dramatically increase

virus release although the mechanism is not well understood [9,25].
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There is substantial in vitro evidence that retroviruses can

accumulate within the lumen of multivesicular bodies (MVB), but

the relevance of an MVB release pathway in vivo has not been tested.

Here, we take advantage of several mouse model of the Hermansky-

Pudlak syndrome (HPS) and Griscelli syndrome (GS), human

genetic disorders characterized by hypopigmentation and immu-

nological defects [26–28]. These defects are caused by a set of

autosomal recessive mutations that affect the proper biogenesis or

trafficking of MVBs and other lysosome-related organelles (LROs),

including melanosomes, platelet dense granules, and lytic granules.

The corresponding mice exhibit a light coat-color due to defects in

melanosome biogenesis causing defects in pigmentation. In

addition, prolonged bleeding times due to defects in the release of

platelet dense granules are also observed. In mice, HPS is caused by

a diverse set of 15 genetic mutations, 10 of which can be categorized

into three distinct complexes called Biogenesis of Lysosome-related

Organelle Complexes (BLOC-1, 2, or 3) [28,29]. Defects in these

complexes lead to aberrations in the synthesis of LROs. 4 of the

remaining 5 mutations are known to affect the trafficking of vesicles

to and from LROs [28]. Two of these mutations (pearl and mocha)

affect subunits of the AP-3 complex, disrupting the trans-Golgi

sorting of membrane proteins to endosomes and leading to an

increased presence of lysosomal proteins (CD63, Lamp-1) at the

plasma membrane [30,31]. Cytotoxic lymphocytes of AP-3 mutants

are also unable to destroy target cells, due to the inability of

secretory granules to migrate along microtubules and polarize

towards immunological synapses [32,33].

In addition to HPS mutants, mutations in the gene encoding

Rab27a cause an autosomal recessive disease in humans called

Griscelli syndrome (GS) that is also characterized by hypopig-

mentation and immunological defects [34,35]. Unlike HPS

mutants, Rab27a mutant mice (ashen) generate normal secretory

granules, but these compartments are unable to fuse with the

plasma membrane during exocytosis [27,36,37]. In dendritic cells,

Rab27a is also required for fusion of secretory lysosomes with

phagosomes [38].

Because mouse models of the Hermansky-Pudlak syndrome and

the Griscelli syndrome exhibit general defects in MVB and

lysosome biogenesis, we have tested the ability of MLV to spread

in these mice. MLV replication was found to be only moderately

affected in mutant mice arguing against an essential role of these

genes in virus replication. Furthermore, visual and biochemical

analyses reveal no effect of Ca2+ signaling on the kinetics of MLV

assembly and release. Collectively, these data argue against an

important role for MVB biogenesis and egress in the productive

replication and spread of MLV.

Results

MLV spreads in mouse models for the Hermansky-Pudlak
syndrome (HPS) and Griscelli syndrome (GS)

To test the contribution of a MVB pathway to the replication of

MLV in vivo, wildtype and mutant mice defective in melanosome

biogenesis were analyzed for their ability to support MLV

infection [26]. Mice lacking Rab27a (ashen) were compared to

the background strain C3H/HeJ. All other mice, lacking functional

AP-3 (pearl), BLOC-1 (pallid), BLOC-2 (ruby-eye), BLOC-3 (light-ear),

BLOC-2,3 (cocoa/light-ear), and the triple knockout BLOC-1,2,3

(pallid/cocoa/light-ear) were compared to their background C57BL6

strain. Mice were infected with 3610̂3 infectious MoMLV virions

intraperitoneally 3 days after birth to bypass a strong humoral

antibody response that can completely control MLV infection in

adult mice [39]. At different time points post-infection, the mice

were sacrificed, bone marrow, spleen, and thymus were removed,

and genomic DNA was isolated and analyzed by real-time PCR to

quantify the number of MLV genomes. This copy number was

normalized to the number of copies of host actin-A1 in each

sample and subsequently to the number of cells. Viral replication

was first detected 10–14 days post-infection (Figure 1). Bone-

marrow, spleen and thymus became infected simultaneously,

differing from reports published for a MLV variant that initially

targets the bone-marrow [40]. Infection levels were highly

reproducible beyond day 14, and day 18 was chosen for an end

point analysis of MLV replication levels.

For all mutant mice tested, a moderate up to two-fold %

decrease in viral load was seen in all three organs compared to

wildtype (Figure 2). In some cases, this moderate reduction was

found to be statistically significant by non-parametric Mann-

Whitney double T-Test with a confidence level of 95% (indicated

by * in Figure 2).

MLV is efficiently released from primary macrophages
derived from HPS mice

In order to determine the effects of HPS factors in virus release

on a cellular level, bone-marrow derived macrophages were

isolated from wildtype and mutant mice and tested for their ability

to release virus (Figure 3A, B). Although the level of infection in

the macrophages from all mice varied slightly, none of the three

mutants displayed a decrease in viral output compared to

wildtype. In fact, after normalizing the amount of virus released

to the level of infection in the corresponding producer cells,

macrophages from the pearl (AP-3) and triple knockout BLOC-

1,2,3 mutants released two to four fold more virus (Figure 3C).

Figure 1. Detection of MLV infection in wildtype C57BL/6 mice. C57BL/6 mice were infected with MoMLV by intraperitoneal injection 3 days
after birth and sacrificed at indicated days after infection. Genomic DNA from each organ was independently isolated and real-time PCR was
performed to quantify the number of integrated proviral MLV genomes. MLV was first detected by day 11, and mice became viremic by day 14. Day
18 was selected as a suitable timepoint to sacrifice all mice for each in vivo experiment.
doi:10.1371/journal.pone.0002713.g001

Role of MVB in MLV Release
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Moreover, when the d subunit of AP-3 was downregulated using

siRNA in HEK 293 cells with efficiency as high as 95%, released

MLV infectivity and capsid were unchanged (Figure 4). These

results demonstrate that the mutation of HPS factors and the

absence of functional AP-3 does not hinder viral egress, but in

some cell-types actually enhances release.

Ca2+-regulated release of secretory lysosomes does not
significantly contribute to MLV release in vitro and in
vivo.

Secretion of MVBs and other secretory lysosomes is regulated

by Ca2+ in a process that is controlled by Synaptotagmin VII (Syt

VII) [41,42]. To test for a potential role for Syt VII in MLV

release, we asked if MLV Gag would co-localize to Syt VII-

positive vesicles. MLV assembly was visualized in HEK 293 cells

using fusion proteins to MLV Gag and Env as previously described

[3]. When Syt VII-YFP was co-expressed, a co-localization

particularly with peripheral lysosomal vesicles [43] was observed

(Figure 5A, B). Because Syt VII-YFP like the endogenous protein

localizes to CD63 containing vesicles [43,44], this co-localization

raised the question if MLV is released via Syt VII-dependent

secretion of lysosomes.

Secretion of lysosome related organelles is stimulated in

response to a rise in intracellular Ca2+ and can be induced by

Ca2+ ionophores and cAMP [41,45]. Two previous studies have

reported increased HIV particle release in response to ionomycin

treatments [9,25]. We predicted that Ca2+ driven MVB fusion

with the plasma membrane would lead to the increased exposure

of viral antigens at the cell surface as well as the increased secretion

of intralumenal virus like particles into the culture supernatant. To

this end we monitored MLV Gag-GFP distributions in single cells

using live time lapse wide-field fluorescence imaging. The addition

of 10 mM ionomycin demonstrated no effect on Gag-GFP delivery

to the cell surface from intracellular sources (data not shown). In

addition we applied total-internal reflection fluorescence micros-

copy (TIR-FM) to detect the possible fusion of endolysosomal

vesicles carrying viruses with the plasma membrane. TIR-FM

utilizes evanescent waves that are produced when light is totally

reflected at the glass-water interface. Because these waves decay

exponentially from the interface, they penetrate only to a depth of

approximately 100 nm into the sample medium. Thus TIR-FM

can be used to fluorescently excite the dorsal face of the cell to

ideally monitor events occurring specifically at or near the plasma

membrane. Using TIR-FM, we found no evidence of Gag-positive

MVB fusion with the cell surface in response to ionomycin

(Figure 5C).

In parallel, we harvested the culture supernatants after

ionomycin and cAMP treatment of HEK293 cells producing a

Lac-Z encoding MLV variant or primary macrophages producing

infectious wildtype MLV. In both experiments, we observed no

significant difference in virus or virus-like particle release between

treated and untreated cells (Figure 5D, E). Moreover, the

expression of the dominant-negative C2A domain of Syt VII

had no effect on MLV release from HEK 293 cells (Figure 5F).

Figure 2. MLV spreading in mouse models for Hermansky-Pudlak and Griscelli syndromes. Wildtype and mutant mice were infected with
Moloney MLV by intraperitoneal injection 3 days after birth. Bone marrow, spleen, and thymus were harvested 18 days post-infection and the
genomic DNA analyzed. The copy number for proviral MLV was normalized to cell numbers using internal standards for actin A1. Rab27a (ashen) is
compared to its wildtype background C3H/Hej, while the remaining AP-3 (pearl), BLOC-1 (pallid), BLOC-2 (ruby-eye), BLOC-3 (light-ear), double mutant
BLOC-2,3 (cocoa/light-ear) and triple mutant (pallid/cocoa/light-ear) are compared to C57BL/6J. The statistical analysis with standard deviations is
presented in the lower panel, in which infection levels observed in both wild-type background mice are set to 100%. Values labeled with an asterisks
(*) indicates statistically significant differences to wildtype using the non-parametric Mann-Whitney double T-Test with a confidence level of 95%.
doi:10.1371/journal.pone.0002713.g002
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Figure 3. MLV release from bone marrow derived macrophages is enhanced in HPS mutants. (A) Percentage release of MoMLV into the
supernatant by chronically infected macrophages relative to wildtype. Macrophages from respective mice were chronically infected for 7 days,
washed extensively with PBS; and supernatants were harvested after 48 hours and titered on DFJ8 cells. Genomic DNA from DFJ8 cells was extracted,
and proviral insertions were quantified by real-time PCR. (B) Percentage infection of macrophages by MoMLV. Genomic DNA from chronically
infected macrophages previously described were extracted and quantified by real-time PCR. (C) The amount of MoMLV released in the supernatant of
macrophages was normalized to the relative amount of infection of producer macrophages. Error bars represent standard deviations from n = 6
independent experiments. The levels of infection observed for C57BL/6J were set to 100%.
doi:10.1371/journal.pone.0002713.g003

Role of MVB in MLV Release
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Finally, to directly test a potential role for Syt VII in viral release,

we tested MLV spread in Syt VII knockout mice [46]. MLV

spread was moderately reduced in mice lacking Syt VII, a result

deemed significant by a non-parametric Whitney-Mann double T-

test (Figure 5G, H).

Discussion

In this study, we have conducted in vivo, ex vivo, and in vitro

experiments that collectively argue that a MVB-mediated pathway

of viral egress does not play an essential role in the dissemination

of MLV. In vivo, BLOC-1,2,3, AP-3, Rab27a, and Syt VII mutant

mice sacrificed at 18 days post-infection exhibited only a moderate

decrease in viral load in the bone marrow, spleen, and thymus

when compared to wildtype mice. At cellular level, MLV release

from infected macrophages lacking AP-3, Rab27a, or BLOC-1,2,3

was not inhibited, but rather enhanced when compared to

wildtype. These data suggest that the Golgi-endosomal sorting

pathway plays an inhibitory role in MLV release. Finally, we

demonstrated in vivo and in vitro that the fusion of secretory

lysosomes with the plasma membrane in response to elevated

calcium levels do not increase the level of MLV release.

In recent years, a number of groups have demonstrated that

both HIV and MLV have the ability to accumulate and bud

intracellularly into the lumen of MVB in vitro. It had been

speculated that viruses accumulating within this compartment may

contribute to the overall viral dissemination through a MVB-

mediated pathway of virus release, similar to the release of

exosomes, small 50–200 nm vesicles that accumulate in MVBs

and are released into the culture supernatant [4,47]. However, our

studies on MLV spread in vivo using mouse models of the

Hermansky-Pudlak syndrome does not support an important role

for an MVB-mediated release pathway. These mutant mice were

originally identified based on changes in the coat-color indicating

defects in the biogenesis of melanosomes, a specialized MVB

found in keratinocytes that carries pigment [48]. At least in the

case of pearl (impaired in AP-3) and ashen mice (impaired in

Rab27a), a general defect in the biogenesis and release of secretory

lysosomes has been observed [32,33,36,37]. However, both mice

became infected with MLV infection levels similar to wild-type or

just moderately reduced. When one considers that it takes two

weeks before MLV infection spreads into all organs, implying

many consecutive rounds of infection, an essential role of these

factors in virus dissemination is unlikely. In vivo, even moderate

effects at the single cell level should accumulate over time into a

sizeable phenotype. In contrast, in vitro cultured primary

macrophages showed enhanced virus release. MLV spreading

was also not affected in mice lacking BLOC components. Recent

data suggest that BLOC mice may not exhibit general defects in

the biogenesis of secretory lysosomes, but rather play a specific role

in the biogenesis of melanosomes [49].

While our data argue against an important role of MVBs in MLV

release, they cannot exclude the possibility that this pathway

contributes to virus release in specific cell types. In our study,

newborn mice were infected that lack a fully developed immune

system and therefore lack fully differentiated antigen presenting

cells. Hence, we cannot exclude the possibility that MLV uses an

MVB pathway during the infection of adult mice, in which the

disease is quickly controlled by an antibody mediated response [39].

In contrast to MLV, HIV may potentially use a dissemination

pathway involving MVB and secretory lysosomes [9,25]. Func-

tional AP-3 was reported to be critical for the sorting and release of

HIV Gag from cells suggesting that trafficking of HIV Gag from

the Golgi towards late endosomes/MVBs is necessary for HIV

release [10]. However, recent reports provide evidence that the

accumulation of HIV in late endosomal membranes is due to

endocytosis of HIV virions budding at the plasma membrane and

did not lead to a release of infectious virions [16,17,19]

questioning a role of MVB in HIV release. In fact, these MVB-

like compartments filled with infectious HIV as observed in

macrophages are continuous with the plasma membrane [20,21].

Finally, ionomycin treatment has been shown to stimulate HIV

release [9,25]. However, in the case of MLV, we did not detect

any increases in virus release under such conditions. To further

study this in vivo, we utilized the Syt VII knock out mouse model.

Syt VII is a membrane protein found on lysosomal membranes

known to regulate lysosomal exocytosis and the fusion of secretory

granules with the plasma membrane through calcium signaling

[42,46,50]. Although we demonstrate that Syt VII colocalizes with

both MLV Gag and Env, we could not see a strong block to the

spread of MLV in Syt VII knockout mice or in cells expressing

dominant negative Syt VII C2A. Thus, our data collectively argue

against a functional role for MVB- and secretory lysosome-

mediated pathway in the egress of MLV in neonatal mouse model.

Figure 4. Silencing of AP-3d subunit does not effect MLV
release. (A) HEK293 cells were transfected with siRNA targeting
luciferase (negative control), AP-3d subunit or GFP (positive control).
24 h later these cells were transfected with plasmids encoding full-
length MLV expressing Env-GFP. 48 h later the infectivity as well as p30
MLV capsid released into the supernatant was determined. While
targeting AP-3 has no effect on MLV release, targeting the GFP within
the Env and full-length genome messages results in the inhibition of
virus release. (B) Western blot of HEK293 cells lysates treated with AP-3d
or luciferase siRNA using AP-3d and tubulin (loading control) specific
antibodies.
doi:10.1371/journal.pone.0002713.g004

Role of MVB in MLV Release
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Materials and Methods

Mice:
Pearl, pallid (pa), ruby-eye (ru), light-ear (le), cocoa/light-ear (co/

le), pallid/cocoa/light-ear (pa/co/le), ashen (ash) were kindly

provided by Richard Swank (Roswell Park Cancer Institute,

Buffalo, NY) [26,28]. Wildtype C57BL/6 and C3H/Hej mice were

from JAX (Jackson Laboratory, Maine). Synaptotagmin VII

(sytVII) mice [46] were kindly provided by Norma Andrews (Yale

University, New Haven, CT). Mice were handled according to the

institutional guidelines for animal husbandry and experiments.

In Vivo Mouse Experiments:
Wildtype and mutant mice were infected with 20 ml Moloney

MLV (MoMLV) stock [51] by intraperitoneal injection 3 days

after birth. When titered on susceptible DFJ8 cells [52], 20 ml

corresponded to 36103 integrated MLV genomes. A 10 fold lower

amount of virus resulted in the infection of about half of the mice

Figure 5. MLV release is not mediated by secretory lysosomes in a Ca2+ dependent manner. (A) A confocal z-slice through the center of a
HEK293 cell showing MLV Gag-CFP particles (green) accumulated within the interior of a swollen Syt VII-YFP positive vesicle (red) under conditions of
infectious virus production. White arrows indicate areas of co-localization. (B) An experiment as in (A) showing MLV Env-YFP (green) localized to
peripheral vesicles (white arrows) positive for Syt VII-CFP (red). Image is a 3-D reconstruction of a confocal z-stack. (C) Individual frames from a time-
lapse movie by TIR-FM of a 293 cell generating Gag-CFP-labeled MLV and treated with 10 mM ionomycin. Images indicate pre-treatment (left panel),
10 min (middle panel) and 20 min (right panel) after ionomycin treatment. Size bar corresponds to 10 mm. (D) Viral titers of supernatants harvested
from 293 cells generating LacZ-encoding MLV after incubation for 60 min in normal growth media, media containing 10 mM ionomycin, and media
containing 1 mM di-butyryl-adenosine cAMP. (E) Chronically infected mouse macrophages from C57BL/6, seven days post-isolation, were washed
extensively and incubated for 30 min in media, media containing 10 mM ionomycin, or media containing 1 mM di-butyryl-adenosine cAMP.
Supernatants were harvested and titered on DFJ8 cells prior to quantitative real-time PCR to detect proviral insertions. (F) Transfection was
performed as for (C) in the additional presence of 25 ng of parental plasmid (vector alone) or plasmids encoding YFP-tagged full-length, dominant
negative C2A domain of Syt VII or control Syt I, respectively. (G) Wildtype C57BL6/J (B6) and Syt VII mutant mice infected by intraperitoneal injection
with Moloney MLV 3 days after birth. Real-time PCR was performed on genomic DNA extracted from indicated organs to detect MLV insertions as
previously described. * denotes statistically significant differences from wildtype by non-parametric Mann-Whitney double T-Test with a confidence
level of 95%. (H) Percentages of (G) for each organ.
doi:10.1371/journal.pone.0002713.g005

Role of MVB in MLV Release
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demonstrating that this amount of virus was required to

reproducibly infect all mice in a study group. Mice were sacrificed

18 days post-infection, and bone marrow, spleen, and thymus were

removed and homogenized. Genomic DNA was isolated by

Qiagen DNAeasy from each organ separately, and proviral

integrations quantified by real-time PCR (SYBR-GREEN; Bio-

Rad, Hercules, CA) using primers for MLV LTR [53] and parallel

standards for cytochrome b and ActinA1. The copies of MLV

proviral genomes were normalized to the number of ActinA1

copies per cell. Towards this end, the number of cells was

determined prior to DNA preparation and RT-PCR. To test the

significance of our results, we performed a non-parametric

Whitney-Mann double T-test using Graph Prism version 4.00.

Macrophage Experiments:
Primary mouse macrophages were generated by isolating the

bone marrow from femurs of wild-type and mutant mice. The

resulting cells were then plated onto non-tissue-culture treated 6-

well plates at a density of 106 cells per well in macrophage culture

medium containing RPMI 1640 medium supplemented with 20%

L-cell supernatant and 10% FBS. After two days, the macrophages

were infected with MoMLV in the presence of 5 mg/ml polybrene at

a MOI of 1. At day 7 post-infection, macrophages were washed

extensively five times with phosphate buffered saline. Macrophages

were then incubated in 1 ml macrophage culture media and

supernatants collected after 48 hours. Genomic DNA was then

isolated from the producer macrophages, and the resulting

supernatants were used to infect DFJ8 cells. After 2 days, genomic

DNA from the infected DFJ8 cells was isolated. The number of

copies of integrated MLV and cellular actinA1 from genomic DNAs

of both producer macrophages and corresponding target DFJ8 cells

were then quantified by real-time PCR as described above.

Budding Assays:
16106 HEK 293 cells per 35 mm dish were transfected using

FuGene 6 as previously described [3] with 400 ng each of MLV

Gag-Pol, Env, and LTR-LacZ with or without 50 ng of plasmids

encoding full-length Syt VII, dominant-negative Syt VII C2A

domain, control Syt I C2A domain [42]. At 24 hours post-

transfection, cells were washed, trypsinized, and diluted two-fold in

fresh media before replating. Culture supernatants containing

virus were collected 24 hours later (48 hours post-transfection),

filtered and titered by serial dilution on DFJ8 cells. Alternatively,

HEK 293 cells, transfected as above, were washed five times and

incubated in the appropriate growth media containing ionomycin

or di-butyryl adenosine cAMP (Sigma, St. Louis, MO) for 1 hour.

To reduce the effects of entry on virus titration, culture

supernatants were either diluted 1:10 in normal growth media

or viruses were sedimented through a 15% sucrose cushion by

centrifugation at .20,0006g for 2 h prior to resuspension in 1 ml

media. In the AP-3 silencing experiment, 56105 HEK293 cells in

48 well plates were transfected with 80 nM siRNA (Samchully

Pharm. Ltd., Seoul, Korea) specific to AP-3d subunit, GFP

(positive control) or luciferase (negative control) using Lipofecta-

mine 2000 (Invitrogen, CA). 24 hours post transfection cells were

split 1:4 into 4 wells of a 48 well plate and transfected again as

above with 100 ng plasmid encoding full-length MLV genome

carrying a GFP insertion into the envelope protein. After an

additional 48 h, the culture supernatants were harvested and

applied onto DFJ8 for MLV titration. DFJ8 cells were harvested

48 h after infection and analyzed by FACS to determine the

number of GFP-positive cells. Fold inhibition in release was

calculated using a ratio of the percent GFP positive cells from

experimental samples transfected with AP-3d-specific or GFP-

specific siRNA and those transfected with luciferase control

siRNA. Downregulation of AP-3d was tested by western blot

using antibodies to d subunit of AP-3 (120 kDa; BD transduction

laboratories). The sense strand siRNA sequence used for targeting

AP-3 was 59 UCUGCAAGCUGACGUAUUUdTdT-39, GFP

was 59-CGGCCACAAGUUCAGCGUGUCdTdT-39 and lucif-

erase was 59-CUUACGCUGAGUACUUCGAAAdTdT-39.

Live imaging and fluorescence microscopy:
Fluorescence microscopy was carried out as previously de-

scribed [3,54] using the 1006objective of a LSM510 confocal

microscope equipped with a Zeiss Axiovert 100 M base (Zeiss

Microimaging, Jena, Germany). Live cell imaging using total

internal reflection fluorescence microscopy was as previously

described [55] using the 606(1.45 NA) oil-immersion objective of

a modified Olympus IX-70 microscope. Drugs were added during

imaging by 1:10 dilution into the DMEM media to achieve the

appropriate final concentration. Synaptotagmin VII-YFP was

described previously [44].
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