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Abstract

Steroid receptors (SRs) constitute an important class of signal-dependent transcription 
factors (TFs). They regulate a variety of key biological processes and are crucial drug 
targets in many disease states. In particular, estrogen (ER) and androgen receptors (AR) 
drive the development and progression of breast and prostate cancer, respectively. 
Thus, they represent the main specific drug targets in these diseases. Recent evidence 
has suggested that the crosstalk between signal-dependent TFs is an important step 
in the reprogramming of chromatin sites; a signal-activated TF can expand or restrict 
the chromatin binding of another TF. This crosstalk can rewire gene programs and thus 
alter biological processes and influence the progression of disease. Lately, it has been 
postulated that there may be an important crosstalk between the AR and the ER with 
other SRs. Especially, progesterone (PR) and glucocorticoid receptor (GR) can reprogram 
chromatin binding of ER and gene programs in breast cancer cells. Furthermore, GR can 
take the place of AR in antiandrogen-resistant prostate cancer cells. Here, we review 
the current knowledge of the crosstalk between SRs in breast and prostate cancers. 
We emphasize how the activity of ER and AR on chromatin can be modulated by other 
SRs on a genome-wide scale. We also highlight the knowledge gaps in the interplay of 
SRs and their complex interactions with other signaling pathways and suggest how to 
experimentally fill in these gaps.

Introduction

The nuclear receptor (NR) superfamily consists of 48 
transcription factors (TFs), most, if not all, are key 
regulators of essential biological functions, such as 
development, metabolism, and reproduction. Notably, 
many of the NRs are associated with multiple disease states 
and serious illnesses (Mangelsdorf et al. 1995, Achermann 
et al. 2017, Lazar 2017). The majority of the NRs have the 
same domain structure with a variable N-terminal domain 
(NTD), a DNA-binding domain (DBD), a hinge region, and 
a C-terminal ligand/hormone-binding domain (LBD). 
Transcriptional coregulators often interact selectively 
with the LBD, depending on the conformational change 

which has been induced by different ligands (Perissi & 
Rosenfeld 2005, Arnal et  al. 2017). The DBD is the best 
conserved domain of the NRs, which distinguishes these 
receptors from other TFs (Lambert et  al. 2018). NRs are 
associated with several human cancers. Depending on 
NRs’ cellular context and composition, they can function 
either as oncogenes or tumor suppressors (Holbeck et  al. 
2010, Dhiman et al. 2018). A subfamily of the NRs, steroid 
receptors (SRs) are particularly associated with breast cancer 
(BCa) and prostate cancer (PCa); these are cancers whose 
development and growth are initially steroid hormone-
dependent (Metcalfe et al. 2018, Dhiman et al. 2018).
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The family of SRs consists of estrogen receptor (ER), 
and 3-ketosteroid receptors (NR3Cs), glucocorticoid (GR, 
NR3C1), mineralocorticoid (MR, NR3C2), progesterone 
(PR, NR3C3), and androgen (AR, NR3C4) receptor (Carson-
Jurica et al. 1990). ERs are encoded by two different genes, 
ERα (NR3A1) and ERβ (NR3A2) (Arnal et al. 2017). Unless 
specifically indicated, we will use the abbreviation ER to 
represent ERα from now on. In the absence of a hormonal 
stimulus, the SRs usually, but not invariably, reside in the 
cytoplasm associated with a chaperone complex which 
maintains the SR in an inactive form but still capable of 
binding a hormonal ligand (Arnal et al. 2017, Timmermans 
et  al. 2019). Subsequently, after ligand binding, a 
conformational change occurs in the SR, resulting in the 
dissociation of the chaperone complex, its translocation 
to the nucleus, oligomerization, and binding to regulatory 
elements at enhancers on chromatin. The SRs have been 
widely assumed to form homodimers, but recent evidence 
suggests that the SRs can form higher oligomerization 
states, such as tetramers (Presman et al. 2016, Fuentes-Prior 
et al. 2019). On chromatin, SRs bind often, but not always, 
to hormone response elements (HREs) that usually consist 
of an imperfect palindrome sequence of two 6 bp half-
sites separated by three nucleotides. The response element 
for ER (ERE) is commonly 5’-AGGTCAnnnTGACCT-3’, 
while the corresponding response element for the 
3-ketosteroid receptors (GRE, MRE, PRE, ARE) is 
5’-GGTACAnnnTGTTCT-3’ (Coons et  al. 2017). The 
binding sites of SRs contain a variable number of response 
element sequences; these sites mostly occur distal to gene 
promoters (Everett & Lazar 2013). At these sites, SRs recruit 
a variety of other TFs and transcriptional coregulators, 
coactivators and corepressors, to chromatin, ultimately 
influencing the transcription and expression of their target 
genes (Perissi & Rosenfeld 2005, Lempiäinen et  al. 2017, 
Papachristou et al. 2018). Most of the coregulators recruited 
by the SRs harbor histone-modifying and chromatin-
remodeling activities and they are often shared between 
the SRs (Lempiäinen et  al. 2017). Since corepressors are 
expressed at a large excess over coactivators (Gillespie et al. 
2020), competition between coactivators, for example, 
through squelching, could occur when multiple SRs are 
activated. Finally, since in most cases, the SR-binding sites 
are located outside of the target gene promoters, the SRs are 
thought to enable the formation of chromatin loops with 
the promoters (Fullwood et al. 2009, D’Ippolito et al. 2018, 
Zhang et al. 2019).

In hormone-dependent cancers, such as BCa and PCa, 
ER’s growth-promoting transcriptional programs as well 
as those of AR are considered as the key drivers of cancer 

development and progression (Swinstead et  al. 2018, 
Feng & He 2019). Thus, in the therapy of these cancers, 
the ER and the AR are targeted by antagonist compounds 
(Metcalfe et al. 2018). In addition, coregulators recruited by 
the ER and AR have recently emerged as potential targets 
for cancer therapies (Groner & Brown 2017, Wimalasena 
et  al. 2020). The druggable coregulators include EP300 
and various proteins of the bromodomain and extra-
terminal (BET) family (Lasko et  al. 2017, Murakami et  al. 
2019, Gilan et al. 2020). The concomitant targeting of the 
ER or the AR with a coregulator could help to resolve drug 
resistance occurring with single drug treatments (Metcalfe 
et al. 2018, Boumahdi & de Sauvage 2020, Carceles-Cordon 
et  al. 2020). Interestingly, also other SRs have emerged 
as important 'coregulators' for the ER and AR in cancer 
cells (Kach et al. 2015). Since recent work has shown that 
TFs can modulate chromatin binding and the activity 
of other TFs through multiple mechanisms, including 
cooperative binding, tethering and assisted loading 
(Long et  al. 2016, Morgunova & Taipale 2017, Swinstead 
et  al. 2018), here we reviewed the crosstalk and interplay 
between SRs from the view of steroid-dependency in BCa 
and PCa. We will focus on how signaling via ER and AR in 
BCa and PCa, respectively, can be altered by other SRs on a  
genome-wide scale.

Breast cancer

BCa is the most common cancer in women and among the 
leading causes of cancer deaths in both the United States 
and Finland (Centers for Disease Control and Prevention 
2017, Finnish Cancer Registry 2018). Estrogens, principally 
estradiol (E2), and ER are considered as the main drivers of 
BCa development and progression (Swinstead et al. 2018). 
BCa is primarily classified by the expression of ER, PR and 
human EGF receptor 2 (HER2/ERBB2), and divided into 
three main subtypes ER+/PR+/HER2+, ER-/PR-/HER2+ and 
ER-/PR-/HER2- (Waks & Winer 2019). The latter subtype is 
commonly indicated as triple negative BCa (TNBC), that is, 
the cancer cells do not express any of the three proteins. 
ER+ BCa is usually treated with ER antagonists, such as 
tamoxifen or fulvestrant, that compete with E2 for binding 
to the LBD (Arnal et al. 2017, Waks & Winer 2019). In addition, 
aromatase inhibitors (AI) can be used to block the synthesis 
of E2. However, resistance to AI or ER antagonist treatment 
can occur. The mechanisms underlying the resistance vary, 
including ER mutations generating ligand-independent 
receptor forms (Hanker et  al. 2020). The TNBC is usually 
treated with chemotherapy; however, as highlighted in the 
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next sections, in addition to ER and PR, other SRs could be 
considered as potential and alternative targets of therapy. 
Interestingly, in ER+ BCa cells, the genome-wide binding 
of GR to chromatin is similar to that of ER, while AR binds 
in a similar manner as PR (Kittler et al. 2013). Furthermore, 
in male and female BCa patients, AR, PR, and GR have been 
shown to occupy ER-binding chromatin sites (Severson 
et al. 2018). Thus, it is important to understand how these 
SRs interact on chromatin and regulate transcription and 
consequently how they influence the development and 
progression of BCa. We will focus on the data derived from 
genome-wide experiments.

Genome-wide crosstalk between the ER and the PR 
in BCa

Historically, PR expression in BCa has been used as a proxy 
for the function of ER in the disease. PGR encoding PR is a 
well-known E2-regulated gene, and its expression is thought 
to reflect the transcriptional activity of ER (Creighton 
et al. 2009, Siersbæk et al. 2018). Thus, both receptors are 
expressed at a similar frequency of ~50–80% in all BCa cases 
although the PR is not expressed in all ER+BCa patients, 
the actual percentage is around 75% (McGuire et al. 1978, 
Swinstead et al. 2018). In addition to as acting as TFs, both 
ER and PR have been shown to function as local and global 
genome organizers in their unliganded state in BCa cells 
(Le Dily et al. 2019). This suggests that the expression status 
of the ER and PR could also influence BCa survival through 
the regulation of chromosome organization. Indeed, the 
organization often changes during the development and 
progression of cancer (See et al. 2019).

Recently, PR has been suggested to play a more 
prominent role in BCa rather than being a mere diagnostic 
marker (Carroll et al. 2017). In 2015, the Carroll laboratory 
reported that the activation of PR by progesterone could 
reprogram the chromatin occupancy of ER in a BCa cell 
line (Mohammed et al. 2015). This reprogramming resulted 

in thousands of new ER-binding sites not observed in BCa 
cells stimulated by E2 alone. Proteomic and motif analyses 
suggested that this had occurred through tethering of ER to 
chromatin-bound PR (Fig. 1A). Interestingly, the activation 
of PR decreased ER-driven proliferation and blocked tumor 
growth. This suggests that instead of being a mere marker 
of functional ER in BCa, the PR is a major determinant of 
ER-driven gene programs in BCa.

Similar, but not entirely complementary, results 
have been reported by the Greene laboratory (Singhal 
et  al. 2016). They revealed that the PR could reprogram 
chromatin-binding of ER and act not only as a genomic 
estrogen agonist, but also as a phenotypic estrogen 
antagonist in ER+ PR+ BCa. However, the tethering of 
ER to the PR was not suggested as the main mechanism 
of interaction between the SRs on chromatin (Fig. 1A). 
Sequential (re)ChIP-seq experiments demonstrated that 
only some, not all, SR-bound chromatin regions harbor 
both ER and PR concomitantly. Even though the ER and 
the PR could be found on the same chromatin fragment, 
this does not necessarily indicate a direct interaction (i.e. 
tethering) between the SRs. These results suggest that the 
ER-PR interplay on chromatin most likely occurs through 
several different modes of interaction (Swinstead et  al. 
2018). Forkhead box protein A1 (FOXA1) was speculated 
to act as a pioneer TF, influencing the crosstalk between 
ER and PR (Mohammed et al. 2015). However, only ~50% 
of the PR-induced ER chromatin-binding sites contain 
a FOXA1 motif, and a knockdown of FOXA1 had only a 
minor impact on the PR-induced expression of the ER 
target genes (Mohammed et al. 2015, Singhal et al. 2016). It 
remained to be investigated whether activation of PR could 
alter the chromatin binding of FOXA1. Since ER has been 
reported to influence the chromatin occupancy of FOXA1 
(Swinstead et  al. 2016, Paakinaho et  al. 2019a), it is likely 
that PR could act in a similar manner. As a variable number 
of ER-binding sites are lost after the activation of PR 
(Mohammed et al. 2015, Singhal et al. 2016), it is tempting 

Figure 1
Crosstalk between PR and ER modulates BCa cell 
proliferation. ER regulates pro-proliferation 
(Proprolif) pathways in BCa. (A) Upon activation of 
the PR, the ER tethers to the PR (upper) or binds 
near or next to the PR (lower), inhibiting BCa 
pro-proliferation and cell survival pathways.  
(B) PR-A inhibits binding of the ER to chromatin 
and E2-induced proliferation (prolif.) (upper). PR-B 
induces binding of the ER, enhancing E2-induced 
proliferation (lower). A full color version of this 
figure is available at https://doi.org/10.1530/
ERC-21-0038.
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to speculate that the PR could sequester FOXA1 from the 
ER-bound sites, thereby influencing the proliferation of 
BCa cells and tumor growth. 

Other layers of complexity in the ER-PR interplay 
derive from the different isoforms of PR. The function of 
two alternate promoters of PGR give rise to two different 
receptors, PR-A and PR-B. The PR-A lacks 164 N-terminal 
amino acids of the larger PR-B isoform (Cenciarini & 
Proietti 2019). In other respects, the PR isoforms share the 
same amino acid sequence. Despite the overall similarity, 
while PR-A and PR-B have shared functions, they also have 
certain unique properties. Interestingly, in the genome-
wide ER-PR crosstalk, the PR-A mainly inhibited, while the 
PR-B reprogrammed the chromatin-binding of ER (Singhal 
et al. 2018). This was reflected at the level of transcription. 
For example, estrogen-driven proliferation was attenuated 
by PR-A but augmented by PR-B (Fig. 1B). In theory, this 
kind of isoform-specific modulation of PR activity could 
lead to a favorable outcome of BCa. Indeed, the PR-A- and 
PR-B-induced gene signatures were associated with poorer 
and better patient survival, respectively (Singhal et  al. 
2018). Although, the above investigations strongly point 
to tumor suppressor capabilities of PR, more recent work 
has suggested that both PR-A and PR-B can exert tumo-
promoting effects in ER+BCa (Truong et  al. 2019). PR-B 
was revealed as a driver of BCa cell proliferation (Truong 
et al. 2019), which is complementary to the results reported 
by Singhal et  al. (2018). Moreover, the Lange laboratory 
demonstrated that PR-A was a driver of cancer stem cell 
(CSC) expansion in BCa cells and that phosphorylation 
of PR-A was required for the expression of CSC-associated 
genes (Truong et al. 2019). Thus, the poor patient survival 
linked with the PR-A gene signature (Singhal et  al. 2018), 
could derive from the expansion of BCa CSC. However, 
more investigations will be needed to fully appreciate 
the impact PR and its isoforms on BCa development and 
progression as well as the PR’s role as a potential drug target 
in BCa. Furthermore, it is largely unknown if and how ERβ 
and PR can influence each other’s transcriptional activity.

In addition to influencing the progression of BCa in 
cell and animal models, the status of PR correlates with 
patient survival (Table 1). The loss of PR expression in ER+ 

BCa decreases patient survival, whereas patients who have 
ER+ and PR+ BCa show increased survival compared to 
PR+ and ER- patients. Due to the evident importance of PR 
activity in BCa survival, clinical trials are being conducted 
to assess the influence of a PR agonist in the treatment of 
ER+ BCa (NCT03306472, NCT03024580).

Genome-wide crosstalk between the ER and the AR 
in BCa

Compared to our knowledge of the cross-regulatory role 
of PR with ER, the genome-wide interplay between AR and 
ER in BCa is a relatively recently recognized phenomenon. 
The AR is expressed in ~80% of BCa cases (McNamara et al. 
2014), with a high expression of AR in ER+ BCa patients 
correlating with a better survival (Table 2). However, this 
is not the case in ER− BCa patients (Peters et  al. 2009). 
AR interestingly regulates the same transcriptional 
programs in molecular apocrine BCa (AR+TNBC) cells as 
ER in luminal BCa cells (Robinson et  al. 2011, McNamara 
et al. 2014). Thus, AR has been recognized as a potentially 
valuable drug target in TNBC, as its inhibition could offer 
an alternative form of therapy (McNamara et  al. 2014, 
Gerratana et al. 2018). Moreover, the AR’s value as a drug 
target is strengthened by the concept that the molecular 
apocrine BCa and castration-resistant PCa (CRPC) cells 
share a core AR cistrome and target gene signature linked to 
cancer cell growth (Malinen et al. 2015). However, a recent 
study indicated that AR+ TNBC displayed heterogeneity 
in AR levels, which influenced AR-targeted therapy in 
combination with cell cycle inhibitors (Christenson et al. 
2021). These results suggest that in the presence of the ER, 
the AR could suppress BCa cell growth, whereas the AR 
could promote it in the absence of ER.

Although a high expression level of AR has been 
associated with increased survival of ER+ BCa patients, the 
Richer group found that inhibition of AR by enzalutamide 
(ENZ) (a second generation antiandrogen) decreased 
BCa cell proliferation and tumor size (D’Amato et  al. 
2016). Interestingly, these investigators showed that ER 
and AR could bind to the same genomic sites and that 
ENZ-inhibited chromatin binding not only of the AR 
but also the ER (Fig. 2A). These results suggest that the 

Table 1 Influence of PGR (PR) expression on BCa patient survival.

Type Comparison Increased survival P-value HR Reference

ESR1+ PGR loss vs neutral/gain PGR neutral/gain 0.001 1.46 Mohammed et al. 2015
PGR- ESR1− vs ESR1+ No difference 0.27 NA Singhal et al. 2016
PGR+ ESR1− vs ESR1+ ESR1+ 3.50E−02 NA Singhal et al. 2016

ESR1, estrogen receptor α; HR, hazard ratio; NA, not applicable or indicated; PGR, progesterone receptor.
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AR supports the chromatin-binding of ER, influencing 
BCa cell proliferation and tumor growth. In clinical 
trials, a combination of bicalutamide (first generation 
antiandrogen) with AI did not, however, confer any clinical 
benefit (NCT02910050) in ER+ and AR+ BCa patients, but a 
clinical trial combining fulvestrant (ER degrader) and ENZ 
is underway (NCT02953860).

A later study suggested that a selective AR modulator 
(SARM)/agonist, rather than ENZ, would be capable of 
inhibiting ER+ BCa tumor growth (Ponnusamy et  al. 
2019). Intriguingly, while the SARM-bound AR reduced 
ER occupancy on chromatin at a subset of sites, it also 
redistributed ER to new genomic sites (Fig. 2B). Furthermore, 
some of these effects were not restricted to WT ER, since 
AR was also able to inhibit the growth of BCa tumors 

expressing an estrogen-independent ER-Y537S mutant. 
In confirmation, a more recent investigation indicated 
a redistribution of ER occupancy and the inhibition of 
ER-induced BCa proliferation upon AR activation with 
an agonist (Hickey et  al. 2021). Mechanistically, the 
redistribution of ER by AR was suggested to be tightly linked 
to a squelching of EP300 from ER- to AR-binding sites (Fig. 
2C). Thus, the ER and the EP300 are redistributed from loci 
associated with a poor patient survival to AR-regulated loci 
associated with a good patient survival outcome. These 
results suggest that in ER+ BCa, it is activation rather than 
inhibition of AR that should be pursued. The differences 
observed between ENZ (D’Amato et  al. 2016) and SARM/
agonist (Ponnusamy et  al. 2019, Hickey et  al. 2021) could 
be attributed to the different models used in the studies. 

Table 2 Influence of AR expression on BCa patient survival.

Type Comparison Increased survival P-value HR Reference

ESR1+ AR low vs high AR-high 0.002 0.22 Peters et al. 2009
ESR1− AR low vs high no difference 0.32 NA Peters et al. 2009
TCGA-BRCA AR low vs high AR-high 1.10E-16 0.52 Ponnusamy et al. 2019

AR, androgen receptor; ESR1, estrogen receptor α; HR, hazard ratio; NA, not applicable or indicated; PGR, progesterone receptor; TCGA-BRCA, The Cancer 
Genome Atlas Breast Invasive Carcinoma.

Figure 2
Different AR ligands modulate binding of ER to 
chromatin in BCa cells. (A) In ER+ BCa cells, a 
subset of ER binding sites (left) can be occupied 
by activated AR (middle), regulating cell 
proliferation (prolif.). ENZ inhibits the binding of 
AR and ER, repressing cell proliferation (right). (B) 
ER binding and its regulation of tumor growth 
pathways (left) can be inhibited by SARM-bound 
AR (middle). Binding of ligand-independent 
ER-Y537S mutant is also inhibited by AR. 
SARM-bound AR redistributes ER to other 
chromatin sites (right). (C) Agonist activated AR 
redistributes (squelches) EP300 from ER- to 
AR-binding sites. The ER is redistributed to a 
subset of these sites. (D) In apocrine BCa (ER-/
AR+) cells, the AR can regulate the same targets as 
the ER in ER+ BCa cells (upper). Inhibition of 
EP300 by a specific acetyltransferase inhibitor (i) 
can repress the AR-regulated transcription 
(lower). A full color version of this figure is 
available at https://doi.org/10.1530/ERC-21-0038.
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Furthermore, another study utilizing endocrine therapy-
resistant BCa models revealed that the resistance (to ER 
inhibition) could be reversed by knockdown of AR, but 
not by ENZ (Chia et  al. 2019). The apparent differences 
in the effect of ENZ could derive from the different 
concentrations of ENZ used in these studies. Since not all 
of the above experiments have been performed in the same 
cellular milieu, other TFs or coregulators (with different 
expression levels in the models) that influence the ER-AR 
crosstalk could also explain the observed differences. Since 
the squelching of EP300 by AR from ER-binding sites in 
ER+ BCa appears to be the prevalent crosstalk mechanism 
between the SRs (Hickey et al. 2021), the EP300 might act 
as an important regulator of AR’s action in BCa. Indeed, 
the activity of AR in TNBC is sensitive to the inhibition 
of EP300 (Garcia-Carpizo et  al. 2019) (Fig. 2D). There are 
also other coregulators, such as BET family proteins, that 
are known to exert distinct effects on ER-regulated gene 
expression programs (Murakami et al. 2019); their presence 
could influence the crosstalk between AR and ER in ER+ 
BCa cells.

Genome-wide crosstalk between the ER and the GR 
in BCa

Corticosteroids, such as dexamethasone, are widely used in 
the treatment of breast cancer to alleviate the side effects of 
chemotherapy and to treat symptoms related to advanced 

cancer. The genomic crosstalk in BCa cells between the 
ER and the GR has been the most extensively studied of 
the different SR pairs. Originally, the Hager laboratory 
demonstrated that chromatin binding of ERpBox, a DBD 
ER mutant that binds to GRE instead of ERE, to a subset of 
chromatin sites was enabled by the GR (Voss et  al. 2011). 
This mechanism was termed assisted loading (Fig. 3A) and 
in this process, an initiator TF (such as GR) could bind 
to a closed chromatin site; this induced a remodeling of 
chromatin, thereby assisting the binding of a second TF 
(such as ER). The second TF was incapable of binding to the 
closed site without the action of the first TF. This occurred 
in a symmetric and enhancer-specific manner such that 
the dependency of TF could be reversed, that is, the ER 
could assist the binding of GR at some sites. It is notable 
that even though the TFs can bind to the same site, they do 
not compete for the binding site due to their rapid binding 
kinetics on chromatin (Paakinaho et  al. 2017). Since the 
initiator TF induced remodeling of chromatin at assisted 
sites, chromatin remodeler complexes were postulated to 
play a key role in mediating assisted loading (Swinstead 
et  al. 2018). The assisted loading between ER and GR has 
been demonstrated at a genome-wide level in mouse 
mammary cells (Miranda et  al. 2013), highlighting the 
potential importance of the crosstalk between ER and GR 
in human BCa.

In human BCa patients, high levels of GR are associated 
with an increased survival in ER+ BCa individuals, while 

Figure 3
GR has multiple different mechanisms to 
modulate ER action in BCa cells. (A) Assisted 
loading model was initially shown with ER and GR. 
The initiating factor (ER in left, GR in right) binds 
to a closed chromatin region, and upon 
recruitment of chromatin remodeling factors, the 
secondary factor (GR on the left, ER on the right) 
can bind to the site. (B) In ER+ BCa cells, upon 
coactivation, GR and ER bind to the same sites, 
and induce pro-differentiation (Prodiffer.) and 
repress epithelial–mesenchymal transition (EMT). 
(C) SUMO-modified GR can tether to the ER and 
repress ER’s target genes. (D) GR can actively 
inhibit the chromatin-binding of ER and 
ligand-independent ER-Y537S mutant at 
regulatory sites of genes involved in E2-driven 
pro-proliferation. (E) In long-term E2 derived BCa 
cells, the GR can inhibit the action of NF-κB, 
thereby reducing the levels on TNF-α and 
E2-induced apoptosis. (F) In ER- BCa cells, GR can 
induce cell survival and repress cell death 
pathways (left). Inhibition of the GR with 
antagonist RU486 (RU) induces cell death and 
represses cell survival pathways (right). A full 
color version of this figure is available at https://
doi.org/10.1530/ERC-21-0038.

https://doi.org/10.1530/ERC-21-0038
https://erc.bioscientifica.com © 2021 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ERC-21-0038
https://doi.org/10.1530/ERC-21-0038
https://doi.org/10.1530/ERC-21-0038
https://erc.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R237V Paakinaho and J J Palvimo Steroid receptor crosstalk in 
cancers

28:9Endocrine-Related 
Cancer

in ER- BCa patients, the high levels are associated with a 
worse survival (Pan et  al. 2011). This relationship is seen 
both in pre- and post-therapy-treated patients, and the 
better survival of ER+ BCa patients with high GR levels 
occurs irrespective of PR expression level (Table 3). In 
ER+ BCa cells, concomitant activation of ER and GR leads 
to alterations in transcriptional programs that promote 
differentiation and decrease epithelial–mesenchymal 
transition (West et  al. 2016), which is reflected as a large 
overlap between ER and GR on chromatin (Fig. 3B). This 
is reminiscent of the assisted loading reported by the 
Hager laboratory (Miranda et  al. 2013). There are also 
other similarities, as activator protein 1 (AP-1) was shown 
to be an important mediator of assisted loading in mouse 
mammary cells (Miranda et  al. 2013), and AP-2 motifs 
are enriched at many sites showing co-occupancy of ER 
and GR (West et al. 2016). Thus, it seems likely that other 
TFs and coregulators also participate in the crosstalk 
between the SRs. Whether the ER and the GR physically 
interact on chromatin, tethering to each other, remains 
an open question, although the tethering is implied by 
the lack of a response element for one of the receptors 
at the co-occupying sites (West et  al. 2016). In support of 
the tethering concept and the role of post-translational 
modification, small ubiquitin-related modifier (SUMO)-
modified GR has been reported to specifically tether to ER, 
resulting in the recruitment of corepressor complexes and 
repression of ER-driven transcription (Fig. 3C) (Yang et al. 
2017). However, this mechanism was shown to operate 
only on a few selected loci, whereas at the genome- and 
proteome-wide level, SUMO modification of GR fine-
tunes the chromatin occupancy and interactome of the 
receptor, impacting on gene expression in a target gene 
selective manner (Paakinaho et  al. 2014, 2021). A recent 
study revealed that in addition to pure agonists, selective 
GR modulators (SGRMs) possess the ability to antagonize 

transcription of canonical GR target genes and thus 
could inhibit estrogen-induced proliferation in ER+ BCa 
models (Tonsing-Carter et al. 2019). SGRMs decreased the 
occupancy of the ER at several enhancers, and that the 
displacement of ER from chromatin by the liganded GR 
was associated with decreased expression of key genes 
mediating E2-driven proliferation (Tonsing-Carter et  al. 
2019) (Fig. 3D). The SGRM-bound GR was also able to 
inhibit the actions of the estrogen-independent ER-Y537S 
mutant. These results support the concept of developing 
selective SR modulators for the treatment of endocrine 
therapy-resistant ER+ BCa.

As indicated earlier, high levels of GR in ER- BCa are 
associated with a poor patient survival (Table 3). Further 
analyses of patient data indicated that a similar association 
was evident with different subtypes of TNBC; basal-like 1, 
mesenchymal, and luminal AR (West et al. 2018). In TNBC 
cells, GR induces the genes related to cell survival and 
suppresses those related to cell death. Interestingly, this 
GR-mediated regulation can be reversed by using RU486 
(mifepristone), a steroidal antagonist that also influences 
chromatin binding of the GR (Fig. 3F); in fact, RU486 
is currently being tested in clinical trials for GR+ TNBC 
(NCT02788981). In addition to RU486, a non-steroidal 
SGRM, Compound A (CpdA), was similarly demonstrated 
to reduce GR-mediated regulation of pro-tumorigenic 
genes (Chen et al. 2015).

Complications of the ER-GR crosstalk with other 
signaling pathways in BCa

The above investigations highlight the apparent overall 
benefit of the GR-ER crosstalk in the suppression of BCa 
cell growth. However, new cautionary and complicating 
results are emerging, not from the direct crosstalk between 
the SRs, but from the effects of SRs on other signaling 

Table 3 Influence of NR3C1 (GR) expression on BCa patient survival.

Type Comparison Increased survival P-value HR Reference

ESR1+ untreated NR3C1 low vs high NR3C1-high 0.03 0.6 Pan et al. 2011
ESR1+ tamoxifen NR3C1 low vs high NR3C1-high 7.70E−08 0.25 Pan et al. 2011
ESR1− untreated NR3C1 low vs high NR3C1-low 0.001 2.23 Pan et al. 2011
ESR1− chemotherapy NR3C1 low vs high NR3C1-low 5.80E−07 6.83 Pan et al. 2011
ESR1+ NR3C1 low vs high NR3C1-high 7.80E−14 0.35 West et al. 2016
ESR1+ PGR-high NR3C1 low vs high NR3C1-high 2.30E−07 0.35 West et al. 2016
ESR1+ PGR-low NR3C1 low vs high NR3C1-high 4.10E−06 0.4 West et al. 2016
TNBC basal-like 1 NR3C1 low vs high NR3C1-low 0.013 1.87 West et al. 2018
TNBC basal-like 2 NR3C1 low vs high No difference 0.64 NA West et al. 2018
TNBC mesenchymal NR3C1 low vs high NR3C1-low 0.04 1.65 West et al. 2018
TNBC luminal AR NR3C1 low vs high NR3C1-low 0.015 1.68 West et al. 2018

AR, androgen receptor; ESR1, estrogen receptor α; HR, hazard ratio; NA, not applicable or indicated; NR3C1, glucocorticoid receptor; PGR, progesterone 
receptor; TNBC, triple negative breast cancer.
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pathways and TFs. For example, in conjunction with the 
ER, the proinflammatory TF nuclear factor-κB (NF-κB) 
regulates a subset of cell growth-related genes, resulting in 
a restriction and reduction of BCa cell proliferation (Franco 
et  al. 2015). The GR is a well-known suppressor of NF-κB 
activity in immune cells (Syed et al. 2020). More recently, 
the GR has been demonstrated to suppress the actions of 
NF-κB also in long-term estrogen-deprived BCa cells (Fan 
et al. 2019), leading to an inhibition of TNF-α production 
and a complete blockade of E2-induced apoptosis and 
the consequent survival of cancer cells (Fig. 3E). Thus, 
glucocorticoids should be used cautiously in patients 
who have been extensive treated with AI. This caution 
is supported by recent observations showing that the 
activation of GR enhances the ability of TNBC to metastasize 
(Obradović et al. 2019). GR and ER also undergo a crosstalk 
with a TF signal transducer and activator of transcription 
3 (STAT3) that becomes activated after phosphorylation in 
response to interferons, EGF, interleukin (IL-)5 and IL-6. For 
example, in basal-like TNBC cells, GR operates with STAT3 
in a genome-wide manner to drive BCa growth (Conway 
et  al. 2020). Since the activation of STAT3 reprograms 
binding of ER on enhancers and induces metastasis of 
ER+ BCa (Siersbæk et al. 2020), it could act as a central TF, 
defining the tumor-inducing or repressing role of the SR. 
The GR can also have an important ligand-independent 
activity in TNBC. The Lange laboratory has recently shown 
that transforming growth factor β1 (TGFβ1) could increase 
the phosphorylation of GR at S134 (Perez Kerkvliet et  al. 
2020), which induced the transcriptional activation of the 
GR in a ligand-independent manner, driving migration 
and anchorage-independent growth of TNBC cells. 
Interestingly, at least the latter effect can be inhibited by 
RU486.

Taken together, these results indicate that GR plays 
different roles in BCa cells depending on the presence of 
the ER as well as the activity of other signaling pathway-
regulated TFs. The ER-GR crosstalk operates through several 
different modes in different BCa cell types and disease 
stages. Finally, the ER-GR crosstalk and the importance of 
SR expression levels for cancer survival are not restricted 
to BCa, as similar, though not identical, mechanisms of 
crosstalk have been observed between the ER and the GR in 
endometrial cancer (Vahrenkamp et al. 2018).

Prostate cancer

PCa is the most common cancer in men and among the 
leading causes of cancer deaths in United States and 

Finland (Centers for Disease Control and Prevention 
2017, Finnish Cancer Registry 2018). The primary cancer 
is almost always dependent on the AR signaling (Wang 
et  al. 2018a). Nonetheless, PCa patients with localized 
tumor are usually initially treated with radiotherapy and/
or surgery or mere active surveillance, depending on the 
evaluation of the risk level of the disease. For advanced 
disease, androgen deprivation therapy (ADT) has for a long 
time been the gold standard treatment (Wang et al. 2018a, 
Swami et  al. 2020). Although, a recent clinical trial has 
indicated that chemotherapy with ADT is more efficient 
primary treatment than ADT alone, when there is a high 
metastatic burden (Sweeney et al. 2015). After the relapse 
of the primary ADT, second-line androgen deprivation or 
chemotherapy is typically administrated. ADT is based on 
either surgical or chemical castration or antiandrogens to 
prevent the production or action of androgens and thereby 
the growth of PCa cells. In antiandrogen therapy, AR action 
is blocked with an antagonist, such as bicalutamide, ENZ, 
apalutamide or darolutamide; these are compounds that 
compete with androgens for binding to the AR (Wang et al. 
2018a, Feng & He 2019, Swami et al. 2020). After the initial 
ADT, CRPC can occur such that AR signaling is restored 
through variable mechanisms. This state can be treated 
with additional ADT. The synthesis of androgens can be 
blocked with abiraterone, a drug that inhibits the CYP17A1 
enzyme, which catalyzes a critical step in the synthesis of 
androgen. Coadministration of a glucocorticoid is required 
to compensate for the abiraterone-induced reduction in 
serum cortisol and to block the compensatory increase in 
adrenocorticotropic hormone (ACTH). However, further 
resistance, such as the development of neuroendocrine 
PCa, which is unresponsive to further ADT, can take 
place (Ku et  al. 2019, Carceles-Cordon et  al. 2020). In 
addition, other SRs, such as GR, can contribute to the 
therapy resistance (Narayanan et  al. 2016), emphasizing 
the importance of investigating how SRs interact on 
chromatin and together influence the development and 
progression of PCa. Surprisingly, there is a real scarcity of 
information on how ER and PR can influence AR signaling 
on a genome-wide scale in PCa. In the case of ER, the 
focus of the investigations has been on the differential 
role of ERα and ERβ in PCa. While early analyses suggested 
that ERα, but not ERβ, was expressed at various stages of 
PCa (Bonkhoff et al. 1999), more recently, both ER forms 
have been implicated in PCa development and tumor 
progression (Bonkhoff & Berges 2009). Furthermore, 
many PCa datasets display an increased level of ERα in 
more advanced cancers in comparison to less advanced 
cancers or benign prostate tissue (Chakravarty et al. 2014).  
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On the other hand, variable levels of PR transcripts have 
been measured in hormone-refractory tumors (Latil 
et  al. 2001). PR-B, but not PR-A, has been reported to be 
an independent predictor of PCa recurrence (Grindstad 
et  al. 2018). Since genome-wide level information of the 
crosstalk between ER and PR with AR in PCa is lacking, 
we will focus on the interplay between AR and GR, which  
has been examined in PCa cells in an unbiased genome-
wide fashion.

Genome-wide crosstalk between the AR and the GR 
in PCa

The potential role of glucocorticoids, but not that of GR, 
PCa was discovered in the early 2000s, when an AR mutant 
from a patient was shown to be activated by glucocorticoids 
(Zhao et al. 2000, Chang et al. 2001). Similar promiscuous 
LBD mutations, L702H and T878A (L701H and T877A in 
early release of human genome builds), were found in PCa 
patients and commonly used PCa cell lines (Veldscholte 
et al. 1990, Robinson et al. 2015). In addition to natural and 
synthetic glucocorticoids (Chang et al. 2001), an AR with 
the T878A mutation was found to be activated by E2 and 
progesterone (Zhao et  al. 2000), and PCa cells expressing 
one of the mutant ARs could obtain a growth advantage 
after cortisol exposure (Krishnan et al. 2002).

After the discovery of glucocorticoid-activated AR 
mutations, the GR itself was found to possess tumor 
suppressor activity in PCa cells (Yemelyanov et  al. 
2007). Glucocorticoids inhibited the growth of PCa 
cells expressing both GR and WT AR. Interestingly, the 
expression levels of GR were either decreased or absent in 
70–85% of PCa patients compared to those with a benign 
form of the disease. In a follow-up study, CpdA was found 
to inhibit the growth of both AR- and GR-expressing 
PCa cells (Yemelyanov et  al. 2008). In both studies, the 
restriction of cell growth was attributed to GR-mediated 
inhibition of MAPK signaling and decreased expression of 
AP-1 and NF-κB. It has been suggested that GR can repress 
the activity of these TFs, both indirectly by inhibiting 
the MAPK signaling and directly through CpdA-induced 
transrepression. Interestingly, GRβ, an alternative 
splicing isoform of GR that does not bind glucocorticoids 
(Timmermans et al. 2019) possessed the ability to modify 
the growth of PCa cells, as its depletion decreased PCa cell 
proliferation (Ligr et  al. 2012), suggesting that the GRβ 
could modulate the tumor suppressor capability of the full-
length GR in PCa.

The initial crosstalk between AR and GR in PCa was 
observed in their similar response to chromatin binding 

after FOXA1 depletion from PCa cells (Sahu et  al. 2011). 
Depletion of FOXA1 resulted in a reprogramming of the 
AR and GR chromatin occupancy; some binding sites 
were unchanged or lost and more sites were gained. These 
gained and lost chromatin-binding sites were also reflected 
in the capability of the SRs to regulate transcription, 
indicating that the AR and the GR behave similarly with 
the FOXA1 on chromatin in PCa cells. Indeed, there is a 
large overlap between the SR-binding sites in PCa cells, and 
FOXA1 has been postulated to specify unique binding sites 
of AR and GR, depending on the PCa cell line (Sahu et al. 
2013). Conversely, activation of AR can redistribute FOXA1 
on chromatin (Paakinaho et al. 2019a). The importance of 
FOXA1 for PCa biology is also supported by the findings 
that the expression level and mutations of FOXA1 
substantially influence PCa progression (Sahu et  al. 2011, 
Adams et al. 2019, Parolia et al. 2019).

A major breakthrough in clarifying the crosstalk 
between the AR and the GR came from the Sawyers group 
(Arora et  al. 2013). These investigators discovered that 
resistance to antiandrogens in PCa could occur through 
the replacement of AR by the GR. They postulated that 
the AR represses the GR gene (NR3C1) (Fig. 4A), which is 
alleviated upon long-term ENZ treatment, resulting in an 
enhanced expression of GR and a substitution of the AR by 
the GR in transcriptional regulation (Fig. 4B). Interestingly 
this replacement occurs at only around half, not all, of the 
AR-bound chromatin sites. Furthermore, the FOXA1 motif 
is enriched at the GR-replaced AR-binding sites, suggesting 
that it plays a role in the GR-mediated resistance to ENZ in 
PCa cells. In support of this concept, inhibition of GR was 
found to rescue ENZ sensitivity to prevent tumor growth 
(Arora et  al. 2013), and furthermore, a depletion of GR 
significantly decreased the initiation and progression of 
resistant PCa tumors (Isikbay et  al. 2014). One particular 
GR target gene, serum and glucocorticoid-regulated kinase 
1 (SGK1) has been shown to have a prominent role in ENZ 
resistance (Isikbay et al. 2014); inhibition of SGK1 decreased 
PCa cell viability, while its overexpression increased tumor 
initiation. Thus, GR and its target gene products play an 
important role in antiandrogen resistance.

Subsequently, the importance of GR has been 
confirmed in PCa patient material. While the levels of GR 
initially rise in PCa during ADT, the levels can decrease 
to pre-castration levels due to restored AR signaling in 
castration-resistant PCa (Xie et al. 2015). In primary PCa, 
the expression of GR is reduced, but it is restored in PCa 
metastases, with ENZ-treated patients showing a higher GR 
expression than therapy naïve patients (Shah et  al. 2017, 
Puhr et  al. 2018). These results are thus complementary 
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to data from preclinical models, showing significantly 
increased levels of GR upon long-term abiraterone or ENZ 
treatment (Arora et al. 2013, Puhr et al. 2018). As an outcome 
of GR expression, patients with a high expression of GR 
have a poor outcome to ENZ treatment, and high levels of 
GR are associated with a poor survival (Arora et  al. 2013, 
Puhr et al. 2018). Regardless of the expression levels, the GR 
is postulated to be a crucial player in both antiandrogen 
resistant and therapy naïve PCa (Puhr et  al. 2018). In 
addition to the GR, the Sharifi laboratory has indicated 
that glucocorticoid metabolism plays an additional key 
role in the maintenance of ENZ resistance (Li et al. 2017). 
The formation of the bioactive glucocorticoid, cortisol, is 
regulated by the 11β-hydroxysteroid dehydrogenase 1 (11β-
HSD1) and 2 (11β-HSD2) (Timmermans et  al. 2019). The 
11β-HSD2 enzyme converts cortisol into the biologically 
inactive cortisone that can be converted back to cortisol by 
the 11β-HSD1 (Fig. 4C). Interestingly, PCa cell models and 
patients treated with ENZ display decreased levels of 11β-
HSD2 through autocrine motility factor receptor (AMFR) 
ubiquitin E3 ligase-mediated degradation (Li et  al. 2017). 
The decrease in 11β-HSD2 elevates the level of cortisol (Fig. 
4D), which together with the increased amount of GR, 
leads to a systemic activation of glucocorticoid signaling 
and antiandrogen resistance. Furthermore, this is not 
restricted to tumor tissue, as patients treated with ENZ 
show a systemic rise in cortisol levels (Alyamani et al. 2020).

As indicated above, the AR signaling is an important 
regulator of GR expression in the prostate. Indeed, most 

PCa patients and PCa cell lines display high levels of either 
AR or GR. This suggests that there is an inverse correlation 
in the expression between the two SRs (Xie et al. 2015). This 
inverse correlation can be explained by a direct repression 
of the GR gene (NR3C1) by the AR, via an intronic 
prostate-specific enhancer in the NR3C1 (Arora et al. 2013). 
Subsequent studies have revealed that the enhancer is 
repressed through an AR-induced and EZH2-mediated 
mechanism that is lost in ENZ-resistant PCa cells (Shah 
et al. 2017). The repression can be restored by a BET family 
inhibitor JQ1. In addition, GATA-binding factor 2 (GATA2), 
mediator complex (Yuan et  al. 2019) and corepressor 
transducin-like enhancer protein 3 (TLE3) (Palit et al. 2019) 
have been shown to influence the AR-mediated repression 
of NR3C1. The functionality of the enhancer was proven by 
its CRISPR-Cas9-mediated mutation (Shah et al. 2017, Yuan 
et al. 2019).

The 'intronic enhancer' (Arora et  al. 2013) that lacks 
AREs and only weakly binds AR is surprisingly located in 
the promoter region of NR3C1, very close to the initiation 
codon ATG (Fig. 5A) (Timmermans et al. 2019). In contrast, 
another study suggested that the enhancer-mediating the 
repressive effect of AR on the expression of NR3C1 would 
be located far more upstream from the gene promoter 
(Xie et al. 2015). This upstream enhancer contains an ARE 
sequence and shows prominent binding of AR (Fig. 5A). 
Thus, the decrease of GR levels after CRISPR-Cas9-facilitated 
deletion of the putative 'intronic enhancer' (Shah et  al. 
2017, Yuan et al. 2019) may be due to the disruption of the 

Figure 4
GR can replace ENZ-inhibited AR in PCa. (A) In 
therapy naïve PCa cells, the AR actively represses 
the transcription of the GR gene (NR3C1). (B) In 
ENZ treated PCa cells, the activity of the AR is 
inhibited, leading to a de-repression of NR3C1. GR 
can substitute for the ENZ-inhibited AR at some 
but not at all of the AR’s binding sites. (C) Active 
glucocorticoid, cortisol, is converted by 11β-HSD2 
to its inactive metabolite cortisone, and cortisone 
is converted back to cortisol by 11β-HSD1. (D) In 
ENZ-treated PCa cells, the protein levels of 
11β-HSD2 are decreased, leading to elevated 
levels of cortisol and reduced levels of cortisone. 
A full color version of this figure is available at 
https://doi.org/10.1530/ERC-21-0038.

https://doi.org/10.1530/ERC-21-0038
https://erc.bioscientifica.com © 2021 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ERC-21-0038
https://doi.org/10.1530/ERC-21-0038
https://erc.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R241V Paakinaho and J J Palvimo Steroid receptor crosstalk in 
cancers

28:9Endocrine-Related 
Cancer

promoter function rather than that of its interaction with 
the AR with it. However, it remains to be investigated how 
disruption of the upstream enhancer would influence the 
expression of NR3C1. Since both putative enhancers reside 
within the same topological associating domain (Fig. 5B) 
(ENCODE Project Consortium 2012, Wang et  al. 2018b), 
the upstream enhancer could, in fact, loop to the promoter.

In addition to GR, AR splice variants are well-known 
drivers of antiandrogen resistance in PCa (Blatt et al. 2021). 
The splice variants, such as AR-V7, lack the LBD and are 
therefore constitutively active and do not respond to ENZ 
treatment. Interestingly, ENZ- and abiraterone-resistant 
PCa patients show a negative correlation between AR-V7 
and GR expression (Shah et  al. 2017). Thus, AR-V7 and 
the replacement of the AR by the GR might represent 
a mutually exclusive mechanism of antiandrogen 
resistance. However, both AR-V7 and GR display high 

expression levels in some individual patients (Shah et  al. 
2017). This suggests that antiandrogen resistance could be 
derived simultaneously or sequentially from both AR-V7 
and GR. Nevertheless, larger patient cohorts will need to 
be analyzed to estimate the relative contribution of AR-V7 
vs that of GR to the antiandrogen resistance. Compared 
to PCa, the occurrence and the role of ER splice variants 
are relatively unknown in therapy naïve or endocrine-
resistant BCa (Blatt et al. 2021). However, ER gene fusions 
with other proteins, such as YAP1, have been observed 
to occur in BCa. These types of SR fusions have not been 
demonstrated for the AR in PCa. However, the ER gene 
fusions do not seem to be involved in the crosstalk between 
SRs in BCa.

Overall, the above data indicate that glucocorticoids 
should be used with caution, especially in patients 
undergoing ENZ therapy. Synthetic glucocorticoids, such 

Figure 5
Localization of the AR-regulated genomic region 
that mediates the repression of NR3C1. (A) 
Genome browser tracks of AR ChIP-seq from 
22Rv1 (GSE94013), C4-2B (GSE40050), LNCaP 
(GSE40050), LREX (GSE51497), and VCaP 
(GSE56086) cells (red color). Genome browser 
tracks of H3K27ac ChIP-seq from 22Rv1 
(ENCSR391NPE), C4-2B (ENCSR279KIX), LNCaP 
(GSE118514), LREX (GSE103449), and VCaP 
(ENCSR597ULV) cells (black color). Data are 
mapped to human hg38 genome. Location of ARE 
motifs (based on HOMER are.motif sequence) 
shown as blue bars below the tracks. The location 
of NR3C1 promoter region is depicted as well as 
the initiation codon ATG (red arrow). Enhancer A: 
AR-regulated enhancer region as suggested in 
Shah et al. (2017) and Yuan et al. (2019). Enhancer 
B: AR-regulated enhancer region as suggested in 
Xie et al. (2015). (B) NR3C1 and both suggested 
AR-regulated enhancers reside within the same 
TAD (topologically associating domain). The 
AR-regulated enhancer region proposed by Shah 
et al. (2017) and Yuan et al. (2019) (enhancer A) 
and suggested by Xie et al. (2015) (enhancer B) 
(red arrows) are within the same TAD based on 
Hi-C data from LNCaP cells (ENCSR346DCU). Data 
were obtained using 3D Genome Browser (Wang 
et al. 2018b). The interaction matrix shown above 
with a scale from 0 to 5. Genes on the positive 
strand are shown in black, and genes on the 
negative strand are shown in light blue. TADs are 
distinguished with different colors. A full color 
version of this figure is available at https://doi.
org/10.1530/ERC-21-0038.
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as prednisolone, are widely used to alleviate therapy-
related side effects, to reduce inflammation and to 
counteract the decrease in cortisol levels due to abiraterone 
treatment (Narayanan et  al. 2016). Thus, alternative 
ways of modulating GR activity in PCa have been under 
investigation. Interestingly, an SGRM has been reported 
to decrease the GR-mediated PCa cell proliferation and 
CRPC tumor growth and viability without inhibiting 
the activity of the AR (Kach et  al. 2017). Therefore, two 
different SGRMs in combination with ENZ are currently 
being evaluated in clinical trials to treat metastatic PCa 
(NCT03437941, NCT03674814). Even though RU486 can 
bind to AR and PR in addition to GR (Kach et  al. 2017), 
a combination therapy with RU486 and ENZ is under 
evaluation in clinical trials in hormone-resistant PCa 
(NCT02012296). Based on the results from the preclinical 
models, targeting of the DNA binding half-site sequence 
of ARE/GRE by a pyrrole-imidazole polyamide instead of 
the GR may emerge as an alternative approach to block 
the actions of both the AR and GR (Kurmis et  al. 2017). 
Taken together, these results support the importance of 
augmented GR signaling as a key player in antiandrogen 
resistance of PCa, warranting further research on 
developing novel approaches to target the signaling in 
PCa tissue without compromising the beneficial effects of 
glucocorticoids at a system-wide level.

Differential role of the GR in the steroid 
receptor crosstalk in breast and 
prostate cancers

The AR and the ER play analogous roles in PCa and 
BCa, respectively. Both SRs are frequently mutated or 
alternatively spliced in response to endocrine therapy 
(suppression of hormone availability or receptor activity), 
resulting in a resistant disease (Metcalfe et  al. 2018). 
Moreover, the activity of both receptors can be similarly 
reprogrammed during the progression of these cancers. 
For example, the chromatin-binding of the AR and ER can 
be pioneered by FOXA1 (Hurtado et  al. 2011, Sahu et  al. 
2011), mutations of FOXA1 impact on the activity of both 
the AR and the ER (Adams et  al. 2019, Parolia et  al. 2019, 
Arruabarrena-Aristorena et  al. 2020), and both SRs also 
affect the chromatin binding of FOXA1 (Paakinaho et  al. 
2019a). However, the characteristics of the GR-ER crosstalk 
in BCa and those of the GR-AR crosstalk in PCa differ from 
each other. In BCa cell models, it is well established that 
the activation of GR can expand the binding of ER to 

chromatin and vice versa (Miranda et al. 2013, West et al. 
2016), mainly through an assisted loading mechanism 
(Swinstead et  al. 2018). This has not been explicitly 
demonstrated for the GR and the AR in PCa. The AR 
and the GR share binding sites in PCa cells, and at some 
chromatin sites, GR binding is enhanced upon activation 
of both SRs, which is reminiscent of assisted loading (Sahu 
et  al. 2013). However, AR binding seemed unchanged 
upon GR activation. Thus, while the crosstalk between 
the GR and the ER in BCa is symmetric, that between the 
GR and the AR in PCa appears to be asymmetric. Even 
though coactivation of ER and GR in BCa leads mainly 
to a synergistic transcription and expression of ER target 
genes (West et al. 2016), the expression of some ER target 
genes was restricted upon activation of GR. In contrast, 
PCa cell models showed no clear synergy between the GR 
and the AR in target gene regulation (Sahu et al. 2013). At 
some selected target genes, it seemed that the expression 
of AR-regulated genes was restricted by GR, while that of 
GR-regulated genes was conversely enhanced by AR. Some 
of the differences between the GR-ER and GR-AR crosstalk 
may, however, derive from cell models: MCF-7 cells that 
endogenously express both ER and GR were used as the 
model for BCa experiments (West et al. 2016), but most PCa 
experiments were performed in LNCaP-1F5 cells expressing 
endogenous AR and rat GR from an engineered, integrated 
gene (Sahu et  al. 2013). Thus, it is currently unclear how 
the crosstalk between GR and AR in PCa occurs in a more 
natural setting of PCa cells. Since the expression of AR and 
that of GR are usually inversely correlated, there are only 
a few native PCa cells, such as VCaP and CWR22RV1 cells, 
that endogenously express both GR and AR (Puhr et  al. 
2018). For example, VCaP cells were used to show that GR 
and AR chromatin-binding sites overlap (Sahu et al. 2013), 
but it remains to be determined how the SRs influence each 
other’s chromatin binding.

Furthermore, in the case of the crosstalk linked to gene 
repression, the AR and the ER operate differentially with 
the GR. In BCa, the activation of both GR and ER can lead 
to a redistribution of ER from some sites to new sites that 
cannot be occupied by ER without GR activation (Tonsing-
Carter et al. 2019). Nonetheless, it is not known how or even 
if ER represses GR activity in BCa. However, the repression 
of GR-regulated genes by ER has been observed (Miranda 
et al. 2013, West et al. 2016, Yang et al. 2017). Thus, it does 
seem that at least GR can actively repress the activity of 
ER. As indicated earlier, AR does not repress the activity 
of GR, but the expression of NR3C1 was blocked in PCa 
models (Shah et al. 2017). Moreover, the expression of GR 
is enhanced upon inhibition of AR by ENZ, leading to the 
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replacement of the AR in transcriptional regulation (Arora 
et  al. 2013). A similar mechanism of therapy resistance 
where the GR substitutes for the ER in transcriptional 
regulation has not been observed in endocrine-resistant 
BCa. As indicated earlier, no mechanism has been 
elucidated for GR-mediated suppression of AR target 
genes (Sahu et  al. 2013). The suppression could be due 
to GR-mediated repression of TFs, such as AP-1 and ETS 
factors (Yemelyanov et al. 2007), especially since the latter 
factors are known as collaborating TFs of the AR in PCa (Yu 
et al. 2010, Zhang et al. 2019). Thus, the GR could indirectly 
restrict the action of AR.

Finally, and interestingly, the activity of GR is rather 
similar in TNBC models and ENZ-resistant PCa models. 
where the GR drives the progression of the disease (Arora 
et al. 2013, West et al. 2018). Since the GR acts similarly in 
BCa and PCa in the absence of ER or AR, respectively, this 
is convincing evidence that the differential crosstalk of GR 
with the AR and the ER stems from the inherent activity of 
the ER and AR within the cells. Thus, while the activity of 
GR is similar in BCa and PCa cells, the crosstalk of GR with 
ER and AR differs as a result of their differential chromatin 
binding and recruitment of interaction partners (TFs and 
coregulators). Indeed, even though FOXA1 plays a similar 
role with the SRs, AR has a more pronounced effect on 
the chromatin binding of FOXA1 in PCa cells than ER in 
BCa cells (Paakinaho et al. 2019a). Moreover, depletion of 
FOXA1 generally decreases the binding of ER to chromatin 
in BCa cells (Hurtado et  al. 2011), but in PCa cells, the 
occupancy of the majority of AR-binding sites remains 
unchanged and new binding sites are generated (Sahu et al. 
2011). This highlights the importance of investigating how 
other TFs and coregulators impact on the crosstalk between 
different SRs.

As indicated earlier, glucocorticoids are widely used 
in the treatment of PCa and BCa patients, for example, 
to alleviate the unwanted effects of chemotherapy and 
to reduce inflammation. Even though GR has tumor-
promoting effects in TNBC and in ENZ-resistant PCa, the 
overall clinical benefit of glucocorticoids outweighs their 
disadvantages. Thus, a more viable option to treat TNBC 
or GR-induced ENZ-resistant PCa would be to inhibit the 
action of the GR through other signaling pathways, while 
retaining the beneficial systemic effect of glucocorticoids. 
In ENZ-resistant PCa, these kinds of pathways could be 
BET (Shah et  al. 2017) or PI3K/AKT (Adelaiye-Ogala et  al. 
2020), whereas in TNBC, STAT3 (Conway et al. 2020) or p38 
MAPK (Perez Kerkvliet et al. 2020) could be targeted. Future 
investigations will determine if sufficient attenuation of 

GR signaling can be obtained through these pathways or if 
other yet to be discovered pathways will be more effective.

Future perspectives

SRs are important transcriptional regulators in many 
different cancers (Dhiman et al. 2018), and the revelation 
of the crosstalk between the SRs opens a new avenue 
of targeting these diseases (De Bosscher et  al. 2020). 
Overall, we propose that the physiological effects of 
steroid hormones in tissues are dictated not by cognate 
hormone-SR pairs but instead by the crosstalk between 
SRs and their interaction with different transcriptional 
complexes. All transcriptional programs in steroid target 
tissues and steroid-dependent diseases are likely to be 
governed by the crosstalk between the SRs. This crosstalk 
is naturally dependent on the concentrations and types 
of ligands present at any given time. The development 
of novel, more targeted therapies with fewer side effects 
will have to be based on a better understanding of the 
molecular mechanisms of this crosstalk. The crosstalk 
between different pairs of SRs is thus an important aspect 
that should be considered in the treatment of steroid 
hormone-regulated cancers. In particular, the crosstalk 
of the GR with the ER in BCa and that with the AR in 
PCa will be particularly critical for the development of 
therapies in the future (Kach et  al. 2015). Since these SRs 
can reprogram each other’s chromatin binding (Miranda 
et  al. 2013) as well as binding of other cancer-relevant 
TFs, such as FOXA1 (Swinstead et  al. 2016, Paakinaho 
et  al. 2019a), the regulation of the chromatin landscape 
of hormone-dependent cancers warrants a thorough 
scrutiny in future investigations. Many of the chromatin 
remodeling complexes have become mutated, deleted, 
or dysregulated in cancers (Valencia & Kadoch 2019), 
including BCa (Nagarajan et  al. 2020) and PCa (Sandoval 
et  al. 2018), potentially influencing the chromatin 
binding of SRs and the capability of SRs to reprogram the 
chromatin occupancy of other TFs. Indeed, the loss of the 
SWI/SNF subunit ARID1A influences ER activity in BCa 
by altering the BET family activity at the receptor-bound 
enhancers (Nagarajan et al. 2020). Furthermore, the loss of 
CHD1 contributes to the antiandrogen resistance in PCa, 
including GR-driven processes (Zhang et  al. 2020). Thus, 
improved knowledge of the remodelers and the impact of 
their dysregulation on SR crosstalk should yield important 
information on how to improve targeting of the SRs in BCa 
and PCa.
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One aspect that has been rather neglected in the SR 
crosstalk is the effect of steroid hormone abundance and 
the contribution of precursor hormones to the crosstalk. 
Many, if not all, investigations into SR crosstalk have been 
performed with saturating hormone concentrations. It is 
not known how physiological levels of steroid hormones 
and overall steroid hormone exposure influence the SR 
crosstalk. Studies addressing these questions are crucially 
important, since also the metabolism of steroid hormones 
is altered in BCa and PCa (Capper et  al. 2016). Treatment 
of PCa tumors with ADT or abiraterone leads to reduced 
levels of androgens (Knuuttila et  al. 2019), although 
in CRPC, the malignancy can maintain its growth by 
intratumoral production of androgens (Montgomery 
et  al. 2008, Narayanan et  al. 2016). The inhibition of 
steroid hormone metabolism can also lead to elevated 
levels of adrenal androgen precursors, which in turn may 
activate promiscuously mutated AR (Chang et  al. 2001). 
Furthermore, many components of the steroidogenesis 
pathway are dysregulated in PCa, leading to a sustained 
production of androgens despite ADT (Narayanan et  al. 
2016). As well as the tumor, the PCa stroma can increase 
its androgen metabolism through TGFβ1 produced in the 
tumor’s microenvironment (Piao et al. 2013). Interestingly, 
while the expression of GR is reduced in PCa as compared 
to benign tissue, the PCa stroma appears to maintain its 
GR expression levels (Mohler et  al. 1996). Thus, the GR 
could have wider effects on PCa through the stroma. The 
changes in steroid hormone metabolism in BCa are less 
well-known. The occurrence of different steroids in breast 
cancer has been reviewed (Africander & Storbeck 2018), 
but little is known about the changes occurring in steroid 
hormone metabolism after treatment with ER antagonists 
or AI. The abundance of steroid hormones is likely to affect 
SR crosstalk (Reddy et al. 2012). Furthermore, many steroid 
hormones are secreted in cycles, for example, an ultradian 
rhythm for cortisol and the menstrual cycle for estrogen 
and progesterone. Thus, the hormone concentrations may 
have a varying effect, depending on the moment of time 
and therapies used for cancer treatments.

In addition to chromatin, the interactomes of SRs 
could help to find novel mechanisms and subsequent 
drug targets influencing the crosstalk. Several chromatin 
proteomics methods have been developed, including ChIP-
SICAP (Rafiee et  al. 2016) and qPLEX-RIME (Papachristou 
et  al. 2018). These methods have not yet been utilized in 
studies addressing the SR crosstalk, although the GR and 
the AR have been shown to possess a highly overlapping 
set of interacting chromatin proteins (Lempiäinen et  al. 
2017). Furthermore, an agonist-induced post-translational 

modification has been shown to regulate the interaction 
of GR with coregulators on chromatin (Paakinaho et  al. 
2021). Finally, oligomerization of the receptor should also 
be considered as a potential step in the regulation of the 
SR crosstalk. Many SRs form higher structures than dimer 
oligomers upon DNA binding (Presman et  al. 2016). In 
the case of GR, it has been demonstrated the receptor’s 
transcriptional activity is increased if the receptor is in a 
higher oligomerization state prior to chromatin binding 
(Paakinaho et  al. 2019b). It was also postulated that SRs 
could form atypical oligomers with each other (Jiménez-
Panizo et  al. 2019, De Bosscher et  al. 2020), which would 
indeed influence the SR crosstalk. Since oligomerization of 
TFs has been thought to activate EP300 (Ortega et al. 2018) 
and inhibition of EP300 can restrain the crosstalk and 
assisted loading between non-SR TFs (Goldstein et al. 2017), 
receptor oligomerization to an atypical or higher state, via 
EP300 could potentially influence the crosstalk of SRs. The 
role of coregulators, such as EP300, could be investigated 
with the proteomic approaches described above.

The genome-wide crosstalk between non-SR TFs is 
thought to operate like the crosstalk between SRs. For 
example, the crosstalk between STAT3 and NF-κB during 
the acute phase response in hepatocytes (Goldstein et  al. 
2017) resembles that between ER and GR in BCa cells 
(Miranda et al. 2013), that is, the crosstalk occurs at some 
but not all TF-binding sites. The activity of SR in BCa 
and PCa can be modulated via other signal-activated TFs, 
such as STAT3 and NF-κB. The activation of STAT3 in BCa 
cells expands the chromatin-binding of ER, driving the 
metastasis of the disease (Siersbæk et  al. 2020). Similarly, 
the crosstalk between GR and STAT3 can impact on 
cell growth of basal-like TNBC (Conway et  al. 2020). In 
the case of NF-κB, the chromatin-binding of ER in BCa 
(Franco et  al. 2015) and that of AR in PCa cells (Malinen 
et al. 2017) are expanded by TNF-α. In both cancers, NF-κB 
most likely influences the outcome of the disease. Since in 
addition to coregulators, ChIP-SICAP (Rafiee et  al. 2016) 
and qPLEX-RIME (Papachristou et al. 2018) can capture the 
TFs interacting with the SRs, currently unknown partners 
mediating the crosstalk could be discovered in the future 
by exploiting proteomic techniques. 

As indicated earlier, for some of the SRs, there is little 
to no genome-wide information on how they influence 
cancer progression and development or how they influence 
each other’s chromatin binding. Whether estrogen 
and progesterone signaling can influence PCa cells and 
how the ER and PRs interact with the AR are also rather 
underexplored areas. The MR has been the least extensively 
studied SR in BCa and PCa. However, some investigators 
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have explored the MR’s potential role in both cancers. Both 
glucocorticoids and mineralocorticoids, together with PR, 
can decrease BCa cell proliferation (Leo et  al. 2004), and 
a high cytoplasmic expression of MR has been associated 
with a poor survival of ER+/PR+/HER2- BCa patients 
(Jääskeläinen et  al. 2019). In PCa, abiraterone treatment 
can result in excess of aldosterone and its precursors, which 
increases the risk for hypertension and cardiovascular 
diseases (Pia et al. 2013, Narayanan et al. 2016). This can be 
bypassed by administering MR antagonists or suppressing 
ACTH production with glucocorticoids. Interestingly, 
the MR has been claimed to have a potential role in ENZ 
resistance in PCa (Shiota et al. 2018).

In conclusion, there are many aspects of SR crosstalk that 
still need to be resolved. For example, only the influence of 
the relatively unknown SRs, but also how oligomerization, 
the chromatin landscape, and other TFs and coregulators 
influence the crosstalk between the receptors are relatively 
unexplored areas. In many cases, a combined therapy 
to target multiple pathways and factors could well 
be beneficial in overcoming therapeutic resistance in 
these hormonal cancers (Boumahdi & de Sauvage 2020, 
Carceles-Cordon et  al. 2020). It should be emphasized 
that the mechanical aspects of SR crosstalk indicated 
above need to be supported by data from clinical samples. 
Indeed, there are several ongoing clinical trials testing the 
importance of the SR crosstalk in patients (NCT03306472, 
NCT03024580, NCT02953860, NCT02788981, 
NCT03437941, NCT03674814, NCT02012296), and TF 
interactomes have been analyzed from patient samples 
(Siersbæk et al. 2020). Moreover, single cell transcriptomics 
(scRNA-seq), chromatin accessibility (scATAC-seq) and 
spatial transcriptomic analyses will soon be able to reveal 
the level of cellular heterogeneity in the crosstalk, initially 
in preclinical models and subsequently in clinical cancer 
samples.
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