



Alzheimer's & Dementia: Translational Research & Clinical Interventions 5 (2019) 834-850

**Review Article** 

# A systematic review of the use of virtual reality and its effects on cognition in individuals with neurocognitive disorders

Alexander Moreno<sup>a,b,\*</sup>, Kylie Janine Wall<sup>c,d,e</sup>, Karthick Thangavelu<sup>f</sup>, Lucas Craven<sup>g</sup>, Emma Ward<sup>c,d,e</sup>, Nadeeka N. Dissanayaka<sup>f,h,i,\*\*</sup>

<sup>a</sup>Department of Psychology, Université de Montréal, Quebec, Canada

<sup>b</sup>Centre for Interdisciplinary Research in Rehabilitation (CRIR) - Notre-Dame Hospital, CIUSSS Centre-Sud-de-l'Île-de-Montréal (CCSMTL), Montreal,

Quebec, Canada

<sup>c</sup>Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia <sup>d</sup>Faculty of Health, School of Psychology and Counselling, Queensland University of Technology, Queensland, Australia <sup>e</sup>OSpectral Systems Pty Ltd, Oueensland, Australia

<sup>f</sup>UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Queensland, Australia

<sup>g</sup>Department of Psychology, Western Colorado University, Gunnison, Colorado, USA <sup>h</sup>School of Psychology, The University of Queensland, Queensland, Australia

<sup>i</sup>Department of Neurology, Royal Brisbane & Woman's Hospital, Queensland, Australia

Abstract

**Introduction:** Virtual reality (VR) interventions are increasingly used in individuals with brain injuries. The objective of this study was to determine the effects of VR on overall cognitive functioning in individuals with neurocognitive disorders (NCDs).

**Methods:** Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic review of the published literature on immersive and nonimmersive VR technologies targeting cognition in minor and major NCDs was conducted: (PROSPERO registration number: CRD42019121953).

**Results:** A total of 22 studies were included in the review, for an aggregated sample of 564 individuals with NCDs. Most of the studies were conducted on patients who had stroke (27.3%), followed by mild cognitive impairment (22.7%) and Alzheimer's disease (13.6%). VR interventions used for cognitive rehabilitation suggested to improve cognition (e.g. memory, dual tasking, and visual attention), and secondarily to psychological functioning (e.g. reduction of anxiety, higher levels of wellbeing, and increased use of coping strategies).

**Conclusion:** VR interventions are useful to improve cognition and psychological symptoms in NCDs.

© 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer's Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

Keywords: Neurocognitive disorder; Dementia; Virtual reality; Cognitive impairment; Cognitive rehabilitation; Technology

#### 1. Introduction

Neurocognitive disorders (NCDs), defined in accordance with the Diagnostic and Statistical Manual, Edition 5: DSM-5 criteria, are an umbrella term for cognitive disorders formerly known as dementia [1,2]. Some examples include major NCDs due to Alzheimer's disease (AD), vascular disease, or Parkinson's disease. Mild neuro-cognitive impairment, also termed mild cognitive impairment, can be a prodromal state of major NCD. Both incidence and prevalence increase with age [3], with substantial costs representing a challenge for the economy [4]. For individuals with NCDs, changes in cognition,

Alzheimer's

Dementia

The authors have declared that no conflict of interest exists.

<sup>\*</sup>Corresponding author. Tel.: (514) 413-8777 x 23600.

<sup>\*\*</sup>Corresponding author. Tel.: +61 7 33466026; Fax: +61 7 33465599. E-mail address: jhon.alexander.moreno@umontreal.ca or jhon. moreno@mail.mcgill.ca (A.M.), n.dissanayaka@uq.edu.au (N.N.D.)

https://doi.org/10.1016/j.trci.2019.09.016

<sup>2352-8737/ © 2019</sup> The Authors. Published by Elsevier Inc. on behalf of the Alzheimer's Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

behavior, and emotions can lead to progressive and irreversible functional limitations, affecting everyday activities and autonomy [5].

Virtual reality (VR) is an emerging technology that digitally provides a three-dimensional environment, allowing persons to interact, provide sensory inputs, and track changes [6]. VR can be presented in fully immersive (high level of immersion) or nonimmersive environments (low level of immersion) [7,8]. Immersion provides a sense of presence in the virtual world with an immersive display device (e.g. head-mounted display) and an interactive device (e.g. joystick, glove). VR has been used in health care and education for both rehabilitation and training purposes [9–12]. VR technologies are an innovative rehabilitation approach to minimize the negative impact of NCDs on individuals, families, and society.

VR has been successfully used in the elderly and in individuals who had stroke and Parkinson's disease to enhance the ability to perform activities of daily living [13], in individuals at high risk for cognitive decline [14] to reduce anxiety in older adults consulting for the first time in a memory clinic [15], and in individuals with NCDs for memory rehabilitation [16]. Interestingly, VR has been used in the diagnosis, cognitive training, and caregiver education for major NCD due to AD [17,18], to improve executive function in individuals with NCDs due to traumatic brain injury [19], cognitive rehabilitation of mild cognitive impairment [20-22], and stroke [23,24]. The evidence is sparse, and a comprehensive picture of the effects of VR interventions on NCDs is needed. That is, an overall description of the use of VR in the cognitive rehabilitation of NCDs remains predominantly undetermined. We aim to systematically review VR studies focused on cognitive rehabilitation in NCDs. As a secondary objective, we aimed to identify changes in psychological functioning (e.g. improved wellbeing and reduction of emotional problems) after VR interventions in NCDs.

#### 2. Methods

# 2.1. Search strategy and information sources

A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) systematic review was conducted using the keywords ("Dementia" OR "Cognitive impairment") and ("Virtual reality" OR "Virtualbased") with different combinations of those terms in the databases MEDLINE/PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, LI-LACS, SciELO, PEDro, CINAHL, and Scopus from inception to November 2018. A librarian and a clinical neuropsychologist helped the team to refine the search strategy and the search was cross-validated by a second librarian. A reference manager software was used – EndNote X9 [25]. The systematic review has been registered in PROS-PERO: (registration number: CRD42019121953).

# 2.2. Study selection

Eligibility of the studies followed inclusion criteria: (1) VR interventions conducted in adults with NCDs of different etiologies (e.g. AD, vascular disease, Parkinson's disease, and mild cognitive impairment); (2) Studies conducted in the community, hospital, or residential care; (3) Studies measuring cognition before and after VR interventions. Interventions included the use of any type of immersive and nonimmersive VR technology targeting cognition in individuals with NCDs; (4) Quantitative, qualitative, and mixed studies; (5) Feasibility studies (i.e., user acceptance and adverse effects); and (6) Studies available in the English language. We excluded studies based on the following characteristics: (1) Studies conducted in individuals with traumatic brain injury and delirium; (2) Studies focusing on family or professional caregivers of individuals with NCD or outcome measures that focused on family members and professional caregivers of individuals living with NCD; (3) Research protocols and reviews; (4) Expert letters, opinion pieces, notes, editorials, and book chapters; and (5) Conference papers and abstracts.

#### 2.3. Data extraction and synthesis

First, titles and abstracts were screened by two independent reviewers (i.e., a researcher in VR and a clinical neuropsychologist) based on the eligibility criteria. Studies meeting the inclusion criteria, or studies that were unclear, were retained for full-text review. Discrepancies were resolved by consensus and a third reviewer for determination. Second, two reviewers independently extracted the following information from each study: Publication data (i.e., author, year, and title), study design, objectives, setting, participants (e.g. sample size, mean age, sex, ethnicity, diagnosis, NCD severity, NCD duration, and the demographic information for control groups when available), VR intervention (i.e., name of the VR application, technical information, subjective and objective level of immersion based on published guidelines [7], the number of VR sessions and frequency, length of each VR session, and VR overall mean duration), outcome measures, results, user acceptance, adverse effects, generalization, and the general conclusion.

#### 2.4. Levels of VR immersion

The level of immersive capability of VR technologies was assessed using five criteria [7,8]: (1) Inclusiveness that refers to whether a VR technology eliminates signals indicating the existence of a physical world separate from the virtual world (e.g. joystick, weight of wearable devices, and external noise); (2) Extensiveness refers to the number of sensory modalities accommodated; (3) Surrounding involves the visual presentation of the VR technology, to which the physical world is shut out (e.g. head-mounted display, surround projection, and computer screen); (4) Vividness corresponds to the fidelity and resolution with which the VR technology simulates the desired environment (e.g. visual information and functionality); and (5) Matching to whether the viewpoint of the VR technology is modified to match the user's perspective through motion capture.

Each one of the five criteria influences, but may not be the sole determinant of, the user's perceptual experience [7,8]. In this systematic review, we objectively classified VR technologies as low, moderate, or highly immersive based on the extent to which they met [7] criteria. When a study differed in the level of immersion across multiple aspects, we averaged across criteria to determine a global immersion rating. For example, if a VR technology met low criteria on one aspect, moderate criteria on three aspects, and high criteria on one aspect, it was classified as moderate immersion. The numerical score was calculated by converting the scores of each aspect into a numerical value (low = 1, moderate = 2, and high = 3) to estimate an overall mean score for each VR technology.

#### 2.5. Risk of bias and quality assessment

Two reviewers independently appraised the included studies using the Downs and Black tool (1998). The tool contains 27 questions across five sections and provides both an overall score for study quality and a bias score. The five sections included (1) study quality -10 items, (2) external validity - 3 items, (3) study bias - 7 items, (4) confounding and selection bias -6 items, and (4) power of the study - 1 item. Items are scored from 0 ("no") to 1 ("yes"), excepting item 5 (scores ranging from 0-2; 0 = no; 1 = partially, and 2 = yes) and item 27 (scores ranging from 0-5; 0 = No power calculation is provided; 3 = The power calculation is provided but the importance or impact of the difference between groups used in the calculation is unclear; 5 = The difference between groups is clearly defined as a clinically important difference.) Downs and Black total score ranges were given in corresponding quality levels: (1) excellent ( $\geq 26$ ), (2) good (20–25), (3) fair (15–19), and (4) poor ( $\leq$ 14) [26]. Only randomized studies could achieve a quality level of excellent in accordance with the scoring methodology of the Downs and Black checklist.

#### 2.6. Strategy for data synthesis

A critical analysis of the literature was performed based on (1) a descriptive numerical summary based on the characteristics of the studies, samples, diagnoses, and types of VR technologies; (2) level of immersion; and (3) risk of bias and quality assessment of the studies. Based on the information available, the suitability of a meta-analysis was considered.

#### 3. Results

Of 404 studies, a total of 22 were included in the systematic review, for an aggregated sample of 564 individuals with NCDs participating in these studies (Fig. 1). Given the variability in study outcomes, it was not feasible to conduct a meta-analysis. Most of the included studies were conducted in individuals with NCDs due to stroke (27.3%) [27–32], followed by mild cognitive impairment (22.7%) [33–37], and AD (13.6%) [38–40]. In addition, 13.6% of the 22 studies included samples with nonspecified NCD [38–40], and 22.7% included groups with suspected NCD (e.g. questionable dementia and presence of memory deficits), multiple sclerosis, or diagnosis not confirmed [41–45].

#### 3.1. Clinical information

Information of each study including the objective, clinical characteristics of the sample, main outcomes, and results is presented in Table 1. The Mini-Mental State Examination [49] was the most widely used tool to determine the severity of the NCDs with a wide range in the scores (10-30), followed by the Montreal Cognitive Assessment [50] with scores ranging from 18 to 30 points. Outcome measures include traditional neuropsychological tests (e.g. Rey Auditory Verbal Learning Test and Trail Making Test), as well as measures of suitability and acceptability. In general, the results of the interventions indicate an improvement at different levels of cognition (e.g. memory, dual tasking, and visual attention). Secondarily, a reduction in psychological aspects was confirmed after VR interventions targeting cognition (e.g. reduction of anxiety, higher levels of well-being, and increased use of coping strategies). Only one study showed no change in cognitive outcomes after the VR intervention most likely related to the relatively short training period and lack of training specificity for improving cognitive performance [37]. The rest showed positive outcomes or the feasibility to deliver the intervention. However, most of the studies did not report effect sizes (see Table 1).

#### 3.2. VR technology and reported levels of immersion

Table 2 shows different VR levels of immersion as reported in the studies, the characteristics of the VR programs, and user experience. In regard to the description of the levels of immersion, as provided in the studies, 50% of the technologies were described as semiimmersive, 18.2% as immersive, 18.2% as nonimmersive, and 13.6% did not describe the level of immersion. The average number of sessions delivered for the 22 studies was 13.8 (SD = 14, range = 1-60). The average duration of a single session across the 22 studies was 31.4 minutes (SD = 11.3, range = 5-50). A total of 40.9% of the studies did not report any data regarding user acceptance. On average, the remaining studies indicated a good level of acceptance associated with enjoyment with the technology, user satisfaction, interest, engagement, motivation, safety, helpfulness, and easiness of use. Interestingly, adverse effects were not reported in 59.1% of the studies. Among the adverse effects reported, the most frequent ones included simulator sickness [38], negative emotions when participants fail in specific activities facilitated by the technology [33], oculomotor disturbances, nausea, and disorientation [47], neck pain [31], and some dizziness [44]. Only one study clearly indicated an absence of trainingrelated adverse events [37]. The remaining studies indicated no adverse effects.

#### 3.3. Objective level of immersion

Table 3 shows the objective levels of immersion based on the aforementioned criteria [7,8]. Most of the studies (40.9%) met the criteria for a moderate level of immersion, followed by 27.3% of high level of immersion, and 13.6 of low immersive experience. Surprisingly, the information about the immersive criteria allowing rating of the degree of immersion of the VR technology was not available in 18.2% of the studies.

# 3.4. Risk of bias and quality assessment

A total quality score was calculated by rating the individual items in each of the five domains. The tool does not provide a cutoff score to classify the studies into either a low- or high-quality study, avoiding the artificial



Fig. 1. PRISMA flow diagram for virtual reality and neurocognitive disorders. Abbreviation: PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Clinical information, outcomes, and main conclusions of studies on VR and NCDs

| Author                  | Objective                                                                                                                                                                           | Sample                                                    | Diagnosis                                                       | NCD severity                                                                                                                                 | Outcome measures                                                                                                                      | Effect sizes                                                                                                   | Conclusion                                                                                                                                                                                                                                                |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blackman<br>et al. [46] | To evaluate the<br>validity and<br>reliability of a<br>computer-<br>generated virtual<br>environment.                                                                               | 38                                                        | Mild to moderate<br>dementia (AD<br>and vascular)               | MMSE = 15–29                                                                                                                                 | Navigability, legibility,<br>safety, comfort,<br>and well-being                                                                       | Reported only for<br>task performance<br>( $r = nonsignificant$<br>to<br>-0.53) between<br>real<br>and virtual | As impairment<br>increases, the<br>environment<br>becomes more<br>challenging for<br>participants.                                                                                                                                                        |
| Davis<br>et al. [38]    | To examine the effect<br>of salient<br>visual cues on the<br>wayfinding<br>performance of<br>older adults<br>with and without<br>AD.                                                | 88 (50 in the<br>control<br>condition,<br>38 with<br>NCD) | MCI and AD                                                      | MMSE and MoCA: 25.87<br>(3.01) and 18.97 (3.58)<br>for AD and MCI and 29.16<br>(0.99) and 25.64 (2.09) for<br>healthy controls, respectively | Speed of navigation<br>(time needed to find<br>the destination as a<br>measure of learning)<br>and the number of<br>goal acquisitions | * Cohen's d of 0.52 for<br>goal acquisitions in<br>the AD/MCI group                                            | Salient cues increase<br>navigation speed and<br>goal acquisition in<br>individuals with AD/<br>MCI.                                                                                                                                                      |
| De Luca<br>et al. [27]  | To determine the<br>effects of a VR<br>intervention on<br>cognitive<br>function<br>in patients who had<br>stroke, as<br>compared with<br>traditional<br>cognitive<br>rababilitation | 12                                                        | Ischemic or<br>hemorrhagic<br>stroke<br>in the chronic<br>stage | MMSE = 10–23                                                                                                                                 | MoCA, frontal assessment<br>battery, attentive<br>matrices, and trial<br>making test                                                  | Not reported and data<br>insufficient to<br>calculate it                                                       | BTs-Nirvana was<br>successful at<br>improving function in<br>cognitive domains for<br>patients who had<br>stroke, relative to a<br>control group.                                                                                                         |
| De Luca<br>et al. [28]  | To evaluate the effects<br>of<br>combined<br>conventional and<br>VR<br>rehabilitation<br>techniques on<br>cognitive<br>functioning<br>in an individual<br>who<br>had stroke         | 1                                                         | Hemorrhagic<br>stroke<br>in the postacute<br>phase              | Not specified                                                                                                                                | Cognition, attention,<br>anxiety, depression,<br>coping strategies, and<br>functional status                                          | Not reported this<br>as a case study.                                                                          | Relaxation and respiratory<br>techniques in a semi-<br>immersive VR<br>environment are<br>superior to<br>conventional relaxation<br>and respiratory<br>techniques in<br>improving attention,<br>coping strategies, and<br>in reducing anxiety<br>symptoms |
| Delbroek<br>et al. [33] | To investigate whether<br>VR training<br>improves cognitive,<br>balance, and<br>dual-task<br>performance<br>in older<br>adults with MCI.                                            | 20                                                        | MCI                                                             | MoCA < 26                                                                                                                                    | MoCA, the Dutch version<br>of the Intrinsic<br>Motivation Inventory<br>(IMI), and the<br>Observed<br>Emotion Rating Scale<br>(OERS)   | * Cohen's d of 0.16<br>for MoCA                                                                                | symptoms.<br>The VR technology was<br>successful at improving<br>balance and dual-<br>tasking in older adults<br>with MCI with no<br>changes in global<br>cognition.                                                                                      |

838

 Table 1

 Clinical information, outcomes, and main conclusions of studies on VR and NCDs (Continued)

| Author                | Objective                                                                                                         | size                                         | Diagnosis | NCD severity                                                                                                                                                                                          | Outcome measures                                                                                                                                                                                | Effect sizes                                                      | Conclusion                                                                                                                                                                                                                                                                                       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Faria,<br>et al. [29] | To observe the effect<br>of VR<br>rehabilitation on<br>the<br>functioning<br>of individuals who<br>had stroke.    | 18                                           | Stroke    | $MMSE \ge 15$                                                                                                                                                                                         | Addenbrooke Cognitive<br>Examination (primary<br>outcomes) and the Trail<br>Making Test A and B,<br>Picture Arrangement<br>from WAIS-III and<br>Stroke Impact Scale 3.0<br>(secondary outcomes) | r's ranging from<br>0.01 to 0.85                                  | Cognitive rehabilitation<br>through an ecologically<br>valid VR system has<br>more impact than<br>conventional methods.                                                                                                                                                                          |
| Flynn<br>et al. [47]  | To examine the<br>feasibility of VR<br>technology for<br>use by persons<br>with dementia.                         | 6                                            | Dementia  | Only one score<br>known for<br>one participant:<br>MMSE = 12                                                                                                                                          | Psychological well-being                                                                                                                                                                        | Not reported and data<br>insufficient to<br>calculate it.         | People with dementia<br>have little difficulty in<br>navigating VR<br>environments and face<br>no changes in<br>psychological and<br>physical well-being as<br>a result of exposure to<br>the VE.                                                                                                |
| Hwang &<br>Lee [34]   | To investigate the<br>effect of VR on<br>cognitive function<br>and balance in<br>elderly individuals<br>with MCI. | 24 (12 in<br>experimental,<br>12 in control) | MCI       | MMSE<br>experimental = $22.4 \pm 0.7$ .<br>MMSE<br>controls = $22.3 \pm 0.7$                                                                                                                          | Memory (Visual Span<br>Test)<br>and attention (WCT)                                                                                                                                             | * Cohen's d between<br>0.14 and 0.5 in the<br>experimental group  | The VR program is one of<br>the effective<br>intervention methods<br>for improving<br>cognitive functions<br>such as memory.                                                                                                                                                                     |
| Kim<br>et al. [30]    | To investigate the<br>effect<br>of VR on<br>cognitive recovery<br>in<br>individuals<br>who had stroke             | 28 (15 in<br>experimental,<br>13 in control) | Stroke    | MMSE<br>experimental = $17.5 \pm 3.9$ .<br>MMSE<br>controls = $16.4 \pm 6.3$                                                                                                                          | Computerized<br>neuropsychological<br>test (CNT,<br>MaxMedica) and the<br>Tower of London test                                                                                                  | * Cohen's d between<br>0.48 and 0.84 in the<br>experimental group | Visual attention and short-<br>term visuospatial<br>memory showed<br>significant<br>improvement in the VR<br>group compared with<br>the control group                                                                                                                                            |
| Kizony<br>et al. [41] | To document the<br>service delivery<br>implemented by<br>the VR system<br>for people with<br>ABI, over 2 years.   | 82 (74 with ABI,<br>8 with MS)               | ABI or MS | MMSE ABI<br>(n = 30) = 27.6 $\pm$ 1.9<br>(23-30); MoCA ABI<br>(n = 39) = 25.8 $\pm$ 3.1<br>(18-30);<br>MMSE MS (n = 2)<br>= 29.0 $\pm$ 1.4<br>(28-30); MoCA MS<br>(n = 6) = 28.5 $\pm$ 1.9<br>(25-30) | Trail Making Test A and B                                                                                                                                                                       | Not reported and<br>data insufficient<br>to calculate it.         | The significant<br>improvements in the<br>participants' scores on<br>the TMT (entailing<br>visuomotor scanning,<br>divided attention, and<br>cognitive flexibility)<br>point to its<br>effectiveness for a<br>population that does<br>not typically receive<br>intensive therapy.<br>(Continued) |

| Author                 | Objective                                                                                                                                                                               | Sample<br>size                                               | Diagnosis                | NCD severity                                                               | Outcome measures                                                                                                                   | Effect sizes                                                                    | Conclusion                                                                                                                                                                                                              |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lee et<br>al. [31]     | To explore patient-<br>perceived<br>difficulty and<br>enjoyment during<br>VR-based<br>rehabilitation<br>and the<br>factors affecting<br>those<br>experiences.                           | 8                                                            | Stroke                   | MMSE = 10–29                                                               | Levels of difficulty,<br>enjoyment,<br>and training<br>intensity were<br>assessed quantitatively<br>with a visual analog<br>scale. | Only provided for<br>physical outcomes<br>(Cohen's d between<br>0.50 and 0.96). | There was an enjoyment<br>of the VR program<br>when task difficulty<br>and patient abilities<br>were matched.                                                                                                           |
| Man et<br>al. [42]     | To develop and<br>implement<br>VR-based<br>memory training<br>for older<br>adults with<br>dementia, and to<br>examine the<br>efficacy of the<br>intervention on<br>cognitive functions. | 44 (20 in VR<br>group, 24 in<br>the therapist-<br>led group) | Questionable<br>dementia | VR group mean<br>MMSE = 21.05,<br>therapist-led<br>group mean<br>MMSE = 23 | Multifactorial Memory<br>Questionnaire and Fuld<br>Object-Memory<br>Evaluation                                                     | * Cohen's d between<br>0.03 and 2.2 in the<br>experimental group                | Nonimmersive VR<br>participants showed<br>greater improvements<br>in objective memory<br>performance as<br>compared with a non-<br>VR group, suggesting<br>that VR may be a useful<br>tool in memory<br>rehabilitation. |
| Manera<br>et al. [48]  | To assess the<br>acceptability,<br>interest,<br>and usability of VR<br>in<br>individuals with<br>MCI.                                                                                   | 57 (28 with<br>MCI and 29<br>with dementia)                  | MCI or dementia          | MMSE<br>MCI = $25.4 \pm 2.6$ .<br>MMSE<br>Dementia: $20.2 \pm 3.1$         | Level of satisfaction,<br>interest,<br>discomfort, anxiety, the<br>feeling of security, and<br>fatigue                             | Not reported and data<br>insufficient to<br>calculate it.                       | Both participants with<br>MCI and dementia<br>were highly satisfied<br>and interested in the<br>attentional task, and<br>reported high feelings<br>of security and low<br>discomfort, anxiety and<br>fatigue.           |
| Mirza &<br>Yaqoob [35] | To observe the effects<br>of VR cognitive<br>training on<br>cognition, blood<br>pressure,<br>and glucose levels<br>in an individual<br>with MCI.                                        | 1                                                            | МСІ                      | MMSE = 23; MoCA = 24                                                       | General cognition, verbal<br>fluency, and TMT<br>scores                                                                            | Not reported this<br>as a case study.                                           | VR successfully improved<br>cognitive functioning<br>in one individual with<br>MCI.                                                                                                                                     |

| Author                           | Objective                                                                                                                                                       | Sample<br>size                                                                            | Diagnosis                                       | NCD severity                                                                                                                                                                                                               | Outcome measures                                                                                                                                                          | Effect sizes                                                                                                     | Conclusion                                                                                                                                          |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Moyle<br>et al. [39]             | To measure and<br>describe the<br>effectiveness<br>of a VR program on<br>engagement,<br>apathy, and mood<br>states of people<br>with dementia                   | 29 (10 individuals<br>with dementia,<br>10 family<br>members, and<br>10 staff<br>members) | Dementia<br>(Alzheimer = 7,<br>Undisclosed = 3) | Psychogeriatric<br>Assessment<br>Scale = 13.21                                                                                                                                                                             | Observed Emotion Rating<br>Scale, Person–<br>Environment<br>Apathy Rating, and<br>type of<br>engagement                                                                   | * Cohen's d between<br>0.08 and 1.5 in the<br>group of<br>individuals<br>with dementia                           | Participants experienced<br>more pleasure and a<br>greater level of<br>alertness.                                                                   |
| Mrakic-<br>Sposta<br>et al. [36] | To evaluate the impact<br>of an innovative-<br>combined physical<br>activity and<br>cognitive training<br>based on VR in<br>individuals with<br>MCI.            | 10                                                                                        | MCI                                             | MMSE: 23.0 ± 3.4                                                                                                                                                                                                           | Cognition (extensive<br>neuropsychological<br>battery:<br>Attentional Matrices<br>Test;<br>RAVLT; ROCFT;<br>TMT-A;<br>Frontal Assessment<br>Battery)<br>and acceptability | * Cohen's d between<br>0.46 and 2.21 in<br>the experimental<br>group                                             | The combined VR<br>training protocol was<br>able to effect MMSE<br>tasks and to increase<br>the global cognition<br>levels of MCI.                  |
| Optale<br>et al. [43]            | To test the efficacy of a<br>program of VR<br>memory training in<br>a group of rest-<br>home<br>residents with<br>objective memory<br>deficits.                 | 36 (15 experimental,<br>16 control)                                                       | Presence of<br>memory deficits                  | Memory deficits as<br>documented by<br>a corrected total<br>score at the<br>Verbal Story Recall<br>Test below<br>the cutoff value (15.76).<br>MMSE<br>experimental = $22.9 \pm 5$ .<br>MMSE<br>controls = $20.99 \pm 4.75$ | General cognitive<br>abilities,<br>verbal memory,<br>executive<br>functions, and<br>visuospatial<br>processing, and<br>depression                                         | Cohen's d between $-0.33$ and 0.75 for the training session and between $-0.32$ and 0.4 for the booster session. | The particular nature of<br>the VR training may<br>allow memory function<br>training even with<br>those affected by<br>severe memory<br>impairment. |
| Park &<br>Yim [44]               | To investigate whether<br>a VR program<br>could improve<br>cognitive<br>functioning<br>and muscle strength<br>and balance in<br>community-<br>dwelling elderly. | 72 (36 experimental,<br>36 control)                                                       | Undiagnosed                                     | MMSE experimental<br>= $22.63 \pm 4.91$ .<br>MMSE controls<br>= $22.88 \pm 4.18$                                                                                                                                           | MoCA                                                                                                                                                                      | *Cohen's d of 0.43 in<br>the experimental<br>group                                                               | Physical activity via VR<br>program decreased<br>risked cognitive<br>impairment.<br>(Continued)                                                     |

| Author                      | Objective                                                                                                                                        | Sample<br>size                        | Diagnosis                  | NCD severity                                                                                                                                                                                        | Outcome measures                                                                                                                  | Effect sizes                                                                                                                  | Conclusion                                                                                                                                                                                                                       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schwenk<br>et al. [37]      | To evaluate the<br>feasibility and<br>experience in using<br>VR training in<br>individuals with<br>amnestic MCI.                                 | 22 (12 experimental,<br>10 control)   | Amnestic MCI               | MoCA score<br>averaged $23.3 \pm 2.6$ ,<br>experimental = $23.3 \pm 3.1$ ,<br>control = $22.4 \pm 3.0$                                                                                              | MoCA and the Trail<br>Making<br>A and B tests                                                                                     | Only provided for<br>physical outcomes<br>(Balance<br>indicators – Partial<br>eta squared<br>ranging from 0.213<br>to 0.257). | Lack of effect on<br>cognitive performance<br>most likely related to<br>the relatively short<br>training period and lack<br>of training specificity<br>for improving<br>cognitive performance.                                   |
| Threapleton<br>et al. [32]  | To explore the<br>feasibility of using<br>a VR intervention<br>to support<br>discharge after a<br>stroke.                                        | 16 (intervention = 8,<br>control = 8) | Stroke                     | NIHSS scale:<br>minor stroke (1–4) 5<br>(31.25%); moderate<br>stroke (5–15)<br>9 (56.25%); moderate to<br>severe stroke<br>(16–20) 1 (6.25%); severe<br>stroke<br>(21–42) 0 (0%); missing 1 (6.25%) | Health-related<br>quality of life<br>and a measure of<br>satisfaction<br>was obtained using the<br>Patient Satisfaction<br>Index. | * Cohen's d between<br>0.02 and 1.22 in the<br>experimental group                                                             | It was feasible to recruit,<br>randomize, and retain<br>participants for follow-<br>up assessments and to<br>deliver the intervention<br>to support discharge<br>after stroke.                                                   |
| Vallejo<br>et al. [45]      | To determine which<br>VR interface is<br>more acceptable to<br>an elderly<br>population for<br>rehabilitation<br>purposes.                       | 20                                    | Undiagnosed<br>(Dementia?) | Not reported                                                                                                                                                                                        | System Usability Scale                                                                                                            | Not reported and data<br>insufficient to<br>calculate it.                                                                     | To create a serious game<br>based rehabilitation<br>program, it is essential<br>to take into account the<br>usability of the<br>involved devices, the<br>person's abilities and<br>also the motivations to<br>play of the target |
| White &<br>Moussavi<br>[40] | To observe whether a<br>VR navigation<br>task can be used for<br>neurocognitive<br>treatment in an<br>individual with<br>Alzheimer's<br>disease. | 1                                     | MCI vs. possible<br>AD     | MoCA = 24                                                                                                                                                                                           | MMSE and MoCA                                                                                                                     | Not reported this as a case study.                                                                                            | The VR treatment has<br>shown some benefits<br>for one person at an<br>early stage of AD.                                                                                                                                        |

Abbreviations: VR, virtual reality; AD, Alzheimer's disease; MMSE, Mini-Mental State Examination; MCI, mild cognitive impairment; MoCA, Montreal Cognitive Assessment; WAIS, The Wechsler Adult Intelligence Scale; WCT, Word Color Test; ABI, acquired brain injury; MS, multiple sclerosis; CDR, Clinical Dementia Rating Scale; TMT, Trail Making Test; RAVLT, Rey Auditory Verbal Leaning Test; ROCFT, Rey-Osterrieth Complex Figure Test; NIHSS, National Institute of Health Stroke Scale.

\*The effect size was not reported, but it was calculated based on data available.

| Table 2                                                                         |
|---------------------------------------------------------------------------------|
| VR levels of immersion, characteristics of the VR programs, and user experience |

| Title                               | Name of VR application                   | Subjective level of immersion  | Number of VR sessions and frequency                                                         | Length of each VR session                                                                          | User acceptance                                                                                                                                                                      | Adverse effects                                                                                                                                              |
|-------------------------------------|------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blackman et al. [46]                | Not specified                            | Semi-immersive                 | Two sessions: (A) real-<br>world and<br>simulated VE walk and<br>(B) adapted VE walk        | Not specified                                                                                      | Partial because of<br>technical<br>difficulties (e.g.<br>detailed resolution<br>and reproduction of<br>real-world<br>peripheral vision and<br>challenges to<br>use the joystick).    | Not reported                                                                                                                                                 |
| Davis et al. [38]                   | Virtual Senior Living                    | Semi-immersive                 | Each participant<br>experienced 10 trials in<br>each condition: 20<br>trials over two days. | 30 minutes with a<br>15-minute break                                                               | Not specified                                                                                                                                                                        | <ul> <li>16 participants</li> <li>(control group n = 10, 19%;</li> <li>AD/MCI group n = 6, 12%)</li> <li>withdrew because of simulation sickness.</li> </ul> |
| De Luca et al. [27]                 | BTs Nirvana                              | Semi-immersive                 | Three sessions weekly for two months                                                        | 40 minutes                                                                                         | Not specified                                                                                                                                                                        | Not reported                                                                                                                                                 |
| De Luca et al. [28]                 | BTs Nirvana                              | Semi-immersive                 | 24 sessions, three times a week for 8 weeks                                                 | 45 minutes                                                                                         | Not specified                                                                                                                                                                        | Not reported                                                                                                                                                 |
| Delbroek et al. [33]                | BioRescue                                | Semi-immersive                 | 2 sessions a week for<br>6 weeks                                                            | Increasing length:<br>18 minutes<br>in week one to 30<br>minutes in week 5                         | Participants found the VR<br>training<br>to be pleasant and<br>useful for<br>concentration,<br>memory, and balance.                                                                  | Overall, sadness, anger, and<br>anxiety appeared only as a<br>small reaction to the failure<br>of an exercise.                                               |
| Faria, et al. [29]                  | Reh@City                                 | Not specified                  | 12 sessions throughout 4<br>to 6 weeks                                                      | 20 minutes per session                                                                             | Good usability and<br>satisfaction with the<br>system with no<br>reported problems<br>using the interface.                                                                           | Not reported                                                                                                                                                 |
| Flynn et al. [47]                   | VE BG with<br>Systems<br>Flybox joystick | Semi-immersive                 | Two sessions                                                                                | 50 minutes total,<br>including<br>20 minutes per<br>VR experience (2), and<br>a 10–15 minute break | Participants perceived<br>some objects as<br>being realistic and<br>moved naturally,<br>felt in control of the<br>simulation, and<br>demonstrated the ease<br>in using the joystick. | Oculomotor disturbances<br>> nausea > disorientation                                                                                                         |
| Hwang & Lee [34]<br>Kim et al. [30] | BioRescue<br>IREX                        | Not specified<br>Not specified | 20 sessions over 4 weeks<br>3 times a week for 4 weeks                                      | 30 minutes<br>30 minutes                                                                           | Not specified<br>Participants found the<br>system to be highly<br>useable for<br>rehabilitation and<br>reported a high<br>level of enjoyment.                                        | Not reported<br>Not reported                                                                                                                                 |

A. Moreno et al. / Alzheimer's & Dementia: Translational Research & Clinical Interventions 5 (2019) 834-850

(Continued)

VR levels of immersion, characteristics of the VR programs, and user experience (Continued)

| Kizony et al. [41]CogniMotionSemi-immersiveTwice a week for 2 months30 miLee et al. [31]VR programSemi-immersive5–8 sessions, 3 days per<br>week20–30<br>weekMan et al. [42]VR programNonimmersive10 sessions, over 2–3<br>times a week30 mi<br>times a weekManera et al. [48]VR programNonimmersiveSingle session5 min | ninutes<br>30 minutes                          | Participants reported high<br>levels of system<br>usability and<br>enjoyment.                                                                                                                                                                                              | Not reported                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lee et al. [31] VR program Semi-immersive 5–8 sessions, 3 days per 20–30<br>week<br>Man et al. [42] VR program Nonimmersive 10 sessions, over 2–3 30 mi<br>times a week<br>Manera et al. [48] VR program Nonimmersive Single session 5 min                                                                              | 30 minutes                                     | Como nontioir                                                                                                                                                                                                                                                              |                                                                                                                                                                                                          |
| Man et al. [42]VR programNonimmersive10 sessions, over 2–330 mi<br>times a weekManera et al. [48]VR programNonimmersiveSingle session5 min                                                                                                                                                                              |                                                | some participants with<br>normal cognitive<br>ability<br>could not understand<br>the rules, whereas<br>participants with MCI<br>could enjoy the<br>game with only<br>minimal assistance.                                                                                   | One participant said that she<br>became reluctant to do the<br>training because of pain in the<br>back of her neck and flank while<br>performing the training.                                           |
| Manera et al. [48] VR program Nonimmersive Single session 5 min                                                                                                                                                                                                                                                         | ninutes                                        | Not specified                                                                                                                                                                                                                                                              | Not report                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                         | inutes                                         | Participants reported a<br>preference for the<br>VR condition as<br>compared with the<br>paper<br>condition. Low levels<br>of anxiety, fatigue,<br>and discomfort, and<br>high levels of<br>satisfaction, interest,<br>and feelings of<br>security with the VR<br>program. | Difficulties in using the mouse<br>to select the targets, and possibly<br>due to eye strain from<br>wearing the 3D glasses, and<br>to the global VR setup, which<br>was new to most of the participants. |
| Mirza & Yaqoob [35] A combined aerobic-VR Not specified 3 days a week for 30 mi<br>cognitive training 12 weeks<br>program                                                                                                                                                                                               | ninutes                                        | Not specified                                                                                                                                                                                                                                                              | Not reported                                                                                                                                                                                             |
| Moyle et al. [39] VR Forest Immersive Single session 15 mi<br>Me<br>(SI                                                                                                                                                                                                                                                 | ninutes maximum,<br>Mean = 10.22<br>SD = 1.07) | The majority of<br>participants reported a<br>positive perception.<br>The staff reported<br>very few technical<br>difficulties with<br>setting up the<br>technology.                                                                                                       | 50% of participants expressed<br>significantly greater levels of<br>anxiety/fear during the<br>experience.                                                                                               |
| Mrakic-Sposta et al. [36] VR program Semi-immersive 3 sessions per week for 40–45<br>6 weeks                                                                                                                                                                                                                            | 45 minutes                                     | Participants enjoyed the<br>VR program, with<br>high levels of<br>engagement and                                                                                                                                                                                           | Some reports of a slight sense of sickness.                                                                                                                                                              |

A. Moreno et al. / Alzheimer's & Dementia: Translational Research & Clinical Interventions 5 (2019) 834-850

VR levels of immersion, characteristics of the VR programs, and user experience (Continued)

| Title                   | Name of VR<br>application                  | Subjective level of immersion | Number of VR sessions and frequency                                                                                       | Length of each VR session                                                   | User acceptance                                                                                                                                                                               | Adverse effects                              |
|-------------------------|--------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Optale et al. [43]      | VR memory training<br>(VRMT)               | Immersive                     | 3 sessions per week for<br>3 months in the<br>initial phase, 2 sessions<br>a week for 3<br>months in the booster<br>phase | 30 minutes                                                                  | Not specified                                                                                                                                                                                 | Not reported                                 |
| Park & Yim [44]         | VR kayak program                           | Semi-immersive                | 2 times a week for 6 weeks                                                                                                | 20 minutes per session                                                      | Not specified                                                                                                                                                                                 | Some dizziness                               |
| Schwenk et al. [37]     | A sensor-based balance<br>training program | Semi-immersive                | 2 sessions a week for<br>4 weeks                                                                                          | 45 minutes                                                                  | Fun, safety, and<br>helpfulness were<br>reported.                                                                                                                                             | No training-related adverse events occurred. |
| Threapleton et al. [32] | Virtual home                               | Nonimmersive                  | Single session                                                                                                            | 24 minutes in the<br>feasibility study, 27<br>minutes in the pilot<br>study | Feedback from the<br>therapists indicated<br>that the intervention<br>was acceptable to them<br>and identified further<br>potential<br>improvements for the<br>content of the<br>application. | Not reported                                 |
| Vallejo et al. [45]     | 3D Memory Island                           | Immersive                     | Single session                                                                                                            | Not specified                                                               | All the participants used<br>this device easily and<br>did not need any<br>previous experience,<br>but some had more<br>difficulties with the<br>touchpad.                                    | Not reported                                 |
| White & Moussavi [40]   | VR navigation task                         | Immersive                     | 3 sessions a week for<br>7 weeks                                                                                          | 45 minutes per session                                                      | Not specified                                                                                                                                                                                 | Not reported                                 |

Abbreviations: VR, virtual reality; VE, virtual environment; MCI, mild cognitive impairment.

Table 3Immersion levels of VR technologies

| Author                    | Inclusiveness    | Extensiveness    | Surrounding      | Vividness        | Matching         | Total score      | Numerical score |
|---------------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|
| Blackman et al. [46]      | Low              | Moderate         | Moderate         | Moderate         | Low              | Moderate         | 1.6             |
| Davis et al. [38]         | Low              | Low              | Low              | Low              | Low              | Low              | 1               |
| De Luca et al. [27]       | Moderate         | High             | Moderate         | High             | High             | High             | 2.6             |
| De Luca et al. [28]       | Moderate         | High             | Moderate         | High             | High             | High             | 2.6             |
| Delbroek et al. [33]      | Low              | Moderate         | Low              | Info unavailable | Moderate         | Info unavailable | -               |
| Faria, et al. [29]        | Low              | Low              | Low              | Low              | Low              | Low              | 1               |
| Flynn et al. [47]         | Low              | Moderate         | High             | High             | Low              | Moderate         | 2               |
| Hwang & Lee [34]          | Info unavailable |                 |
| Kim et al. [30]           | Low              | Moderate         | Low              | Moderate         | Moderate         | Moderate         | 1.6             |
| Kizony et al. [41]        | Low              | Moderate         | Low              | Moderate         | Moderate         | Moderate         | 1.6             |
| Lee et al. [31]           | Low              | Moderate         | Low              | Moderate         | High             | Moderate         | 1.8             |
| Man et al. [42]           | Low              | Low              | Low              | Low              | Low              | Low              | 1               |
| Manera et al. [48]        | Moderate         | Moderate         | Moderate         | Moderate         | Low              | Moderate         | 1.8             |
| Mirza & Yaqoob [35]       | Low              | Moderate         | Info unavailable | Moderate         | High             | Info unavailable | -               |
| Moyle et al. [39]         | Low              | High             | Low              | High             | Moderate         | Moderate         | 2               |
| Mrakic-Sposta et al. [36] | Low              | High             | Moderate         | Moderate         | Moderate         | Moderate         | 2               |
| Optale et al. [43]        | Low              | Moderate         | Low              | Low              | Moderate         | Low              | 1.4             |
| Park & Yim [44]           | Moderate         | Moderate         | Moderate         | Info Unavailable | Moderate         | Info Unavailable | -               |
| Schwenk et al. [37]       | Low              | Moderate         | Low              | Low              | Moderate         | Low              | 1.4             |
| Threapleton et al. [32]   | Low              | Low              | Low              | Moderate         | Low              | Low              | 1.2             |
| Vallejo et al. [45]       | Low              | Moderate         | Low              | Moderate         | High             | Moderate         | 1.8             |
| White & Moussavi [40]     | High             | Moderate         | High             | Low              | High             | High             | 2.4             |

classification. The average quality score for the studies was 17.7 (SD = 4.1, range = 10–27), out of 31 possible points. We included case studies as part of this review. Table 4 presents the percentage of the studies that met the criteria in the checklist.

The analysis of Reporting, which assessed whether the information provided in the article was sufficient to allow a reader to make an unbiased assessment of the findings of the study, revealed that the distributions of principal confounders in each group of participants to be compared were not clearly described and that all important adverse events that may be a consequence of the intervention have not been reported. On average, reporting scores were high (7.8 of 10, SD = 1.6, range = 5–10).

External validity, addressing the extent to which the findings from the studies could be generalized to the population from which the study participants were derived, indicates that the staff, places, and facilities where the participants were treated were not representative of the treatment the majority of clients receive. In almost 40%, the interventions were delivered in a university laboratory, which makes sense given that these are new treatments and that some of them correspond to feasibility studies. On average, external validity scores were high (1.3 of 3, SD = 1.1, range = 0–3).

The analysis of Bias, which addressed biases in the measurement of the intervention and the outcome, revealed that there was not an attempt made to blind study participants to the intervention they have received. On average, Bias scores were high (4.4 of 7, SD = 1, range = 2-6).

Confounding, that addressed bias in the selection of study participants revealed that there was not adequate adjustment for confounding in the analyses from which the main findings were drawn. However, average confounding scores were moderate (2.9 of 6, SD = 1.4, range = 0-5).

Finally, the item evaluating Power, or whether the negative findings from a study could be due to chance indicated that only 31.8% of the studies had sufficient power to detect a clinically important effect where the probability value for a difference being due to chance is less than 5%. In addition, average Power scores were low (1.2 of 5, SD = 1.9, range = 0-5).

Based on the criteria to classify Downs and Black score ranges [26], none of the studies reached excellent quality levels ( $\geq$ 26). A total of 10 studies reached good quality levels (20–25) [27,29,30,32–34,38,39,41,47], seven reached fair quality levels (15–19) [31,36,37,42–44,48], and only five reached poor quality levels ( $\leq$ 14) [28,35,40,45,46].

#### 4. Discussion

The present systematic review was conducted to study the effects of virtual reality on overall cognitive and psychological rehabilitation in individuals with NCDs. We provided descriptive analyses based on the characteristics of the studies, study samples, diagnoses, types of VR technologies, subjective and objective levels of immersion, and the risk of bias and quality assessment of 22 studies with an aggregated sample of 564 individuals with NCD. We extracted the

Table 4 Percentages of studies meeting the criteria for quality assessment

| Item | Question                                                                                                                                                                                                                              | Percent                        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1    | Is the hypothesis/aim/objective of the study clearly described?                                                                                                                                                                       | 97.7                           |
| 2    | Are the main outcomes to be measured<br>clearly described in the Introduction or<br>Methods section?                                                                                                                                  | 90.1                           |
| 3    | Are the characteristics of the participants included in the study clearly described?                                                                                                                                                  | 95.5                           |
| 4    | Are the interventions of interest clearly described?                                                                                                                                                                                  | 95.4                           |
| 5*   | Are the distributions of principal confounders<br>in each group of subjects to be compared<br>clearly described?                                                                                                                      | 0 = 0<br>1 = 45.45<br>2 = 54.5 |
| 6    | Are the main findings of the study clearly<br>described?                                                                                                                                                                              | 97.7                           |
| 7    | Does the study provide estimates of the<br>random variability in the data for the main<br>outcomes?                                                                                                                                   | 72,735                         |
| 8    | Have all important adverse events that may be<br>a consequence of the intervention been<br>reported?                                                                                                                                  | 6.7                            |
| 9    | Have the characteristics of patients lost to follow-up been described?                                                                                                                                                                | 77.3                           |
| 10   | Have actual probability values been reported<br>for the main outcomes except where the<br>probability value is less than 0.001?                                                                                                       | 75                             |
| 11   | Were the subjects asked to participate in the<br>study representative of the entire<br>population from which they were<br>recruited?                                                                                                  | 47.7                           |
| 12   | Were those subjects who were prepared to<br>participate representative of the entire<br>population from which they were<br>recruited?                                                                                                 | 45.5                           |
| 13   | Were the staff, places, and facilities where the<br>patients were treated, representative of the<br>treatment the majority of patients receive?                                                                                       | 38.6                           |
| 14   | Was an attempt made to blind study subjects to the intervention they have received?                                                                                                                                                   | 0                              |
| 15   | Was an attempt made to blind those<br>measuring the main outcomes of the<br>intervention?                                                                                                                                             | 20.5                           |
| 16   | If any of the results of the study were based on<br>"data dredging" was this made clear?                                                                                                                                              | 88.6                           |
| 17   | In trials and cohort studies, do the analyses<br>adjust for different lengths of follow-up of<br>patients, or in case-control studies, is the<br>time period between the intervention and<br>outcome the same for cases and controls? | 77.3                           |
| 18   | Were the statistical tests used to assess the main outcomes appropriate?                                                                                                                                                              | 88.6                           |
| 19   | Was compliance with the intervention/s reliable?                                                                                                                                                                                      | 72.7                           |
| 20   | Were the main outcome measures used accurate (valid and reliable)?                                                                                                                                                                    | 93.1                           |
| 21   | Were the patients in different intervention<br>groups (trials and cohort studies) or were<br>the cases and controls (case-control<br>studies) recruited from the same<br>population?                                                  | 70.4                           |
|      | population.                                                                                                                                                                                                                           | (Continued)                    |

| Percentages of studies | meeting | the c | criteria | for | quality | assessment |
|------------------------|---------|-------|----------|-----|---------|------------|
| (Continued)            |         |       |          |     |         |            |

| Item | Question                                                                                                                                                                                   | Percent                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 22   | Were study subjects in different intervention<br>groups (trials and cohort studies) or were<br>the cases and controls (case-control<br>studies) recruited over the same period of<br>time? | 61.4                             |
| 23   | Were study subjects randomized to<br>intervention groups?                                                                                                                                  | 49.9                             |
| 24   | Was the randomized intervention assignment<br>concealed from both patients and health<br>care staff until recruitment was complete<br>and irrevocable?                                     | 6.8                              |
| 25   | Was there adequate adjustment for<br>confounding in the analyses from which<br>the main findings were drawn?                                                                               | 25                               |
| 26   | Were losses of patients to follow-up taken into account?                                                                                                                                   | 79.5                             |
| 27†  | Did the study have sufficient power to detect<br>a clinically important effect where the<br>probability value for a difference being<br>due to chance is less than 5%?                     | 0 = 50<br>3 = 18.18<br>5 = 31.82 |

NOTE. (A) study quality -10 items (items 1–10), (B) external validity -3 items (items 11–13), (C) study bias -7 items (items 14–20), (D) confounding and selection bias -6 items (items 21–26), (E) power of the study -1 item (item 27).

\*0 = No; 1 = Partially, 2 = Yes.

 $^{\dagger}0$  = No power calculation is provided; 3 = The power calculation is provided, but the importance or impact of the difference between groups used in the calculation is unclear; 5 = The difference between groups is clearly defined as a clinically important difference.

information with two independent reviewers to increase the accuracy in the process.

The main finding is that the results of the VR interventions in individuals with NCDs indicate an improvement at different levels of cognition (e.g. memory, dual tasking, and visual attention) and an improvement in psychological functioning (e.g. reduction of anxiety, higher levels of well-being, and increased use of coping strategies). VR interventions have been mainly used in individuals with NCDs due to stroke, followed by individuals with mild cognitive impairment and AD. The evidence provided in this systematic review supports the use of VR interventions as a way to provide cognitive rehabilitation and to treat psychological symptoms in individuals with NCDs of different etiologies.

Most of the VR technologies reported subjective levels of immersion described as semi-immersive. The average number of sessions was close to 14, with a duration of approximately 30 minutes each, two or three times per week. As such, VR interventions were primarily delivered in university laboratories or hospital facilities as part of innovation initiatives. Although almost 40% of the studies did not report acceptability, VR interventions seem to be greatly accepted by individuals with NCDs (e.g. enjoyment with the technology, user satisfaction, interest, engagement, motivation, safety, helpfulness, and easiness of use). Adverse effects do not seem to be exclusive of NCDs (e.g. simulator sickness, negative emotions when participants fail in specific activities facilitated by the technology, oculomotor disturbances, nausea, disorientation, neck pain, and some dizziness), as they have been reported in only 5% of participants in a study of VR aiming to document those effects [51]. As such, adverse effects need to be monitored but do not represent a reason for exclusion on their own.

Most of the studies met objective criteria for moderate levels of immersion. Higher levels of immersion can increase the user experience and play a major role in the sense of presence. The sense of presence corresponds to the experience of actually feeling "being there," as in a real-world situation, which is vital to substantially affect the behavioral responses [17]. In the present state of the literature, we do not know if a fully immersive VR technology is better than a moderate or low immersive VR technology in individuals with NCDs.

Although the overall quality of the studies was good, it is important to insist on the documentation of adverse effects, make sure to attempt to blind study participants to the intervention they receive, and make sure to adjust for confounding in the analyses from which the main findings are drawn and increase power. In regard to the external validity, the results of this systematic review indicate that the staff, places, and facilities where the participants were treated were not representative of the treatment the majority of clients receive. This was expected as VR technologies are being developed, and their use is in the early stages. There were no studies that could achieve a quality level of excellent in accordance with the scoring methodology of the Downs and Black checklist. As such, future research needs to focus on randomized controlled studies.

# 5. Conclusion and recommendations for research and practice

In conclusion, we presented a systematic review of the literature on VR technologies for the rehabilitation of cognition and psychological functioning in minor and major NCDs. VR interventions are useful to improve cognition (e.g. memory, dual tasking, and visual attention) and psychological functioning (e.g. reduction of anxiety, higher levels of well-being, and increased use of coping strategies) in individuals with NCD. VR interventions are mainly used in individuals with NCDs due to stroke. Although this systematic review was not suitable for a meta-analysis, the results indicate that VR interventions are helpful and promising in providing cognitive rehabilitation and to treat psychological symptoms in individuals with NCDs of different etiologies, which should be further explored in future with well-designed studies.

Based on the conclusions of the present review, the following recommendations for future studies can help to increase research in individuals with NCDs.

- To describe the clinical information of the samples. The type and severity of NCD are very important to be able to compare findings across studies. The use of widely known instruments to track cognitive changes (e.g. MMSE and MoCA) and a clear diagnosis allow clinicians to easily identify candidates for these interventions.
- 2. To conduct longitudinal studies on VR interventions of NCDs. Longitudinal studies allow capturing the progression of NCDs and help to observe whether the benefits of the VR interventions are maintained with the evolution of the disease.
- To compare different levels of immersion. To date, we do not know whether higher levels of immersion are more effective to treat cognitive and psychological problems in individuals with NCDs, as compared to lower levels of immersion.
- 4. To systematically assess user acceptance and adverse effects. We do not know whether adverse effects or acceptance levels differ in NCDs of different etiologies or in the same NCD at different stages of the disease.
- 5. To use widely known measures for cognition and psychological outcomes showing cross-cultural validity. The use of core instruments that have been developed and used in different cultures will allow performing a meta-analysis and facilitate comparisons across studies.
- 6. Report effect sizes for all the outcomes. This will allow readers to have a better appreciation of the effect of VR interventions on cognition.
- 7. Provide examples of generalization to real-life situations. This could provide evidence that the results of VR interventions have an impact on the everyday life of individuals with NCDs. Measures can be collected through family caregiver reports or professional caregivers.

#### Acknowledgments

Dr Alexander Moreno received an ACCESS award from the Networks of Centers of Excellence (NCE) of Canada, AGE-WELL NCE (Aging Gracefully across Environments using Technology to Support Wellness, Engagement and Long Life NCE Inc.) to support this project. Dr Nadeeka Dissanayaka is supported by the NHMRC Boosting Dementia Research Leadership Fellowship. The authors would like to thank Christine Médaille

(librarian at the Université du Québec à Montréal) and Lars Eriksson (Librarian at the University of Queensland) who helped to perform the literature review.

# **RESEARCH IN CONTEXT**

- Systematic review: The authors conducted a systematic review of the published literature on immersive and nonimmersive virtual reality technologies targeting cognition in minor and major neurocognitive disorders following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.
- 2. Interpretation: Virtual reality interventions are useful to improve cognition (e.g. memory, dual tasking, and visual attention) and psychological functioning (e.g. reduction of anxiety, higher levels of well-being, increased use of coping strategies) in individuals with minor and major neurocognitive disorders.
- 3. Future directions: To improve research in this area, we recommend to describe the clinical information of the samples, to conduct longitudinal studies on virtual reality interventions of neurocognitive disorders, to compare different levels of immersion, to systematically assess user acceptance and adverse effects, to use widely known measures for cognition and psychological outcomes showing cross-cultural validity, to report effect sizes for all the outcomes, and to provide examples of generalization to real-life situations.

#### References

- American Psychiatric Association, & DSM-5 Task Force. Diagnostic and statistical manual of mental disorders : DSM-5. 5th ed. Washington, DC: American Psychiatric Association; 2013.
- [2] Simpson JR. DSM-5 and neurocognitive disorders. J Am Acad Psychiatry Law 2014;42:159–64.
- [3] Fratiglioni L, De Ronchi D, Aguero-Torres H. Worldwide prevalence and incidence of dementia. Drugs Aging 1999;15:365–75.
- [4] Wimo A, Jonsson L, Winblad B. An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dement Geriatr Cogn Disord 2006;21:175–81.
- [5] Li G, Larson EB, Shofer JB, Crane PK, Gibbons LE, McCormick W, et al. Cognitive Trajectory Changes Over 20 Years Before Dementia Diagnosis: A Large Cohort Study. J Am Geriatr Soc 2017;65:2627–33.
- [6] Moline J. Virtual Reality for healthcare: A survey. In: Riva G, ed. Virtual Reality in Neuro-Psycho-Physiology. Cognitive, clinical and methodological issues in assessment and rehabilitation. Vol. 44. Amsterdam: IOS Press; 1997. p. 3–34.
- [7] Miller HL, Bugnariu NL. Level of Immersion in Virtual Environments Impacts the Ability to Assess and Teach Social Skills in Autism Spectrum Disorder. Cyberpsychol Behav Soc Netw 2016;19:246–56.
- [8] Slater M, Wilbur S. A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence Teleoperators Virtual Environ 1997;6:603–16.
- [9] Joseph PA, Mazaux JM, Sorita E. Virtual reality for cognitive rehabilitation: From new use of computers to better knowledge of brain black box? Int J Disabil Hum Development 2014;13:319–25.

- [10] Pareto L, Sharkey P, Merrick J. Using virtual reality technologies to support everyday rehabilitation. J Pain Manage 2016;9:197–8.
- [11] Pugnetti L, Mendozzi L, Motta A, Cattaneo A, Barbieri E, Brancotti A. Evaluation and retraining of adults' cognitive impairment: which role for virtual reality technology? Comput Biol Med 1995;25:213–27.
- [12] Spiegel BM. Virtual medicine: how virtual reality is easing pain, calming nerves and improving health. Med J Aust 2018;209:245–7.
- [13] Cherniack EP. Not just fun and games: applications of virtual reality in the identification and rehabilitation of cognitive disorders of the elderly. Disabil Rehabil Assist Technol 2011;6:283–9.
- [14] Coyle H, Traynor V, Solowij N. Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: systematic review of the literature. Am J Geriatr Psychiatry 2015; 23:335–59.
- [15] Gros A, Chapoulie E, Ramadour R, Robert V, Stoutz J, Guetin S, et al. Rel@x: Sensoryand virtual immersion to reduce the anxiety of patients consulting for the first time in nice memory center. Alzheimer's Demen 2017;13:P609–10.
- [16] Diaz-Perez E, Florez-Lozano JA. Virtual reality and dementia. Rev Neurol 2018;66:344–52.
- [17] García-Betances RI, Arredondo Waldmeyer MT, Fico G, Cabrera-Umpiérrez MF. A succinct overview of virtual reality technology use in Alzheimer's disease. Front Aging Neurosci 2015;7:80.
- [18] Grundy J, Mouzakis K, Vasa R, Cain A, Curumsing M, Abdelrazek M, et al. Supporting Diverse Challenges of Ageing with Digital Enhanced Living Solutions. Stud Health Technol Inform 2018;246:75–90.
- [19] Eliav, R., Rand, D., Schwartz, Y., Blumenfeld, B., Stark-Inbar, A., Maoz, S., et al (2017). Training with adaptive body-controlled virtual reality following acquired brain injury for improving executive functions. *Brain injury. Conference: 12th world congress on brain injury of the international brain injury association. United states*, 31, 857-858.
- [20] García-Betances RI, Jiménez-Mixco V, Arredondo MT, Cabrera-Umpiérrez MF. Using virtual reality for cognitive training of the elderly. Am J Alzheimer's Dis Other Demen 2015;30:49–54.
- [21] Ge S, Zhu Z, Wu B, McConnell ES. Technology-based cognitive training and rehabilitation interventions for individuals with mild cognitive impairment: a systematic review. BMC Geriatr 2018;18:213.
- [22] Tarnanas I, Tsolakis A, Tsolaki M. Assessing virtual reality environments as cognitive stimulation method for patients with MCI. Stud Comput Int 2014;536:39–74.
- [23] Laver K, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review. Eur J Phys Rehabil Med 2015;51:497–506.
- [24] Laver K, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation: Review. Cochrane Database Syst Rev 2017; 11:CD008349.
- [25] Bramer WM. Reference checking for systematic reviews using Endnote. J Med Libr Assoc 2018;106:542–6.
- [26] Hooper P, Jutai JW, Strong G, Russell-Minda E. Age-related macular degeneration and low-vision rehabilitation: a systematic review. Can J Ophthalmol 2008;43:180–7.
- [27] De Luca R, Russo M, Naro A, Tomasello P, Leonardi S, Santamaria F, et al. Effects of virtual reality-based training with BTs-Nirvana on functional recovery in stroke patients: preliminary considerations. Int J Neurosci 2018;128:791–6.
- [28] De Luca R, Torrisi M, Piccolo A, Bonfiglio G, Tomasello P, Naro A, et al. Improving post-stroke cognitive and behavioral abnormalities by using virtual reality: A case report on a novel use of nirvana. Appl Neuropsychol Adult 2018;25:581–5.
- [29] Faria AL, Andrade A, Soares L, I. Badia SB. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients. J Neuroeng Rehabil 2016;13:96.
- [30] Kim BR, Chun MH, Kim LS, Park JY. Effect of virtual reality on cognition in stroke patients. Ann Rehabil Med 2011;35:450–9.
- [31] Lee M, Pyun SB, Chung J, Kim J, Eun SD, Yoon B. A further step to develop patient-friendly implementation strategies for virtual reality-

based rehabilitation in patients with acute stroke. Phys Ther 2016; 96:1554-64.

- [32] Threapleton K, Newberry K, Sutton G, Worthington E, Drummond A. Virtually home: Feasibility study and pilot randomised controlled trial of a virtual reality intervention to support patient discharge after stroke. Br J Occup Ther 2018;81:196–206.
- [33] Delbroek T, Vermeylen W, Spildooren J. The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: a randomized controlled trial. J Phys Ther Sci 2017;29:1137–43.
- [34] Hwang J, Lee S. The effect of virtual reality program on the cognitive function and balance of the people with mild cognitive impairment. J Phys Ther Sci 2017;29:1283–6.
- [35] Mirza RA, Yaqoob I. Effects of Combined Aerobic and Virtual Reality-Based Cognitive Training on 76 Years Old Diabetic Male with Mild Cognitive Impairment. J Coll Physicians Surg Pak 2018;28:S210–2.
- [36] Mrakic-Sposta S, Di Santo SG, Franchini F, Arlati S, Zangiacomi A, Greci L, et al. Effects of Combined Physical and Cognitive Virtual Reality-Based Training on Cognitive Impairment and Oxidative Stress in MCI Patients: a Pilot Study. Front Aging Neurosci 2018;10:282.
- [37] Schwenk M, Sabbagh M, Lin I, Morgan P, Grewal GS, Mohler J, et al. Sensor-based balance training with motion feedback in people with mild cognitive impairment. J Rehabil Res Dev 2016;53:945–58.
- [38] Davis R, Ohman JM, Weisbeck C. Salient Cues and Wayfinding in Alzheimer's Disease within a Virtual Senior Residence. Environ Behav 2017;49:1038–65.
- [39] Moyle W, Jones C, Dwan T, Petrovich T. Effectiveness of a Virtual Reality Forest on People With Dementia: a Mixed Methods Pilot Study. Gerontologist 2018;58:478–87.
- [40] White PJF, Moussavi Z. Neurocognitive Treatment for a Patient with Alzheimer's Disease Using a Virtual Reality Navigational Environment. J Exp Neurosci 2016;10:129–35.
- [41] Kizony R, Weiss PL, Harel S, Feldman Y, Obuhov A, Zeilig G, et al. Tele-rehabilitation service delivery journey from prototype to robust in-home use. Disabil Rehabil 2017;39:1532–40.
- [42] Man DW, Chung JC, Lee GY. Evaluation of a virtual reality-based memory training programme for Hong Kong Chinese older adults

with questionable dementia: a pilot study. Int J Geriatr Psychiatry 2012;27:513–20.

- [43] Optale G, Urgesi C, Busato V, Marin S, Piron L, Priftis K, et al. Controlling memory impairment in elderly adults using virtual reality memory training: a randomized controlled pilot study. Neurorehabil Neural Repair 2010;24:348–57.
- [44] Park J, Yim JE. A new approach to improve cognition, muscle strength, and postural balance in community-dwelling elderly with a 3-D virtual reality Kayak program. Tohoku J Exp Med 2016; 238:1–8.
- [45] Vallejo V, Tarnanas I, Yamaguchi T, Tsukagoshi T, Yasuda R, Müri R, et al. Usability assessment of natural user interfaces during serious games: Adjustments for dementia intervention. J Pain Management 2016;9:333–9.
- [46] Blackman T, van Schaik P, Martyr A. Outdoor environments for people with dementia: An exploratory study using virtual reality. Ageing Soc 2007;27:811–25.
- [47] Flynn D, van Schaik P, Blackman T, Femcott C, Hobbs B, Calderon C. Developing a virtual reality-based methodology for people with dementia: a feasibility study. Cyberpsychology Behav 2003; 6:591–611.
- [48] Manera V, Chapoulie E, Bourgeois J, Guerchouche R, David R, Ondrej J, et al. A Feasibility Study with Image-Based Rendered Virtual Reality in Patients with Mild Cognitive Impairment and Dementia. Plos One 2016;11:e0151487.
- [49] Lopez MN, Charter RA, Mostafavi B, Nibut LP, Smith WE. Psychometric properties of the Folstein Mini-Mental State Examination. Assessment 2005;12:137–44.
- [50] Sokolowska N, Sokolowski R, Polak-Szabela A, Mazur E, Podhorecka M, Kedziora-Kornatowska K. Comparison of the effectiveness of the Montreal Cognitive Assessment 7.2 and the Mini-Mental State Examination in the detection of mild neurocognitive disorder in people over 60 years of age. Preliminary study. Psychiatr Pol 2018;52:843–57.
- [51] Regan EC, Price KR. The frequency of occurrence and severity of side-effects of immersion virtual reality. Aviat Space Environ Med 1994;65:527–30.