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Serous endometrial cancer (SEC) and high grade serous ovarian cancer (HGSOC) are
aggressive gynecological malignancies with high rates of metastasis and poor prognosis.
Endometrial intraepithelial carcinoma (EIC), the precursor for SEC, and serous tubal
intraepithelial carcinoma (STIC), believed to be the precursor lesion for HGSOC, can also
be associated with intraabdominal spread. To provide insight into the etiology of these
precancerous lesions and to explore the potential molecular mechanisms underlying their
metastatic behavior, we performed a proteomic mass spectrometry analysis in a patient
with synchronous EIC and STIC. Through histological and molecular identification of
precancerous lesions followed by laser capture microdissection, we were able to identify
over 450 proteins within the precancerous lesions and adjacent healthy tissue. The
proteomic analysis of STIC and EIC showed remarkable overlap in the proteomic patterns,
reflecting early neoplastic changes in proliferation, loss of polarity and attachment. Our
proteomic analysis showed that both EIC and STIC, despite being regarded as
premalignant lesions, have metastatic potential, which correlates with the common
presentation of invasive serous gynecological malignancies at advanced stage.

Keywords: proteomics, serous tubal intraepithelial carcinoma, endometrial intraepithelial carcinoma, serous
endometrial carcinoma, high grade serous ovarian carcinoma
INTRODUCTION

Endometrial cancer (EC) is the 6th most common cancer in women worldwide and is the most
common gynecological malignancy (1). Despite significant advances in early detection (2),
molecular subtyping (3, 4), and new or improved treatment regimens (5), the relative survival of
patients with EC has declined in recent times (6, 7).
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Serous endometrial carcinoma (SEC) is a highly aggressive
malignancy (8). It represents only 10% of EC cases (9, 10) but is
responsible for 39% of EC related deaths (11) and is frequently
diagnosed at late stage when prognosis is poor (9, 10). The
current model of SEC development suggests that it evolves from
a pre-neoplastic lesion in atrophic endometrium called
endometrial glandular dysplasia (EmGD) (12, 13). This lesion
then progresses further into endometrial intraepithelial
carcinoma (EIC) and, finally, into SEC (14).

EmGD is characterized by loss of cell polarity, nuclear atypia,
and nuclear hyperchromasia (12). It has a marked loss of
heterozygosity in TP53 and chromosome p1; however, this is to a
lesser extent than that seen in EIC and SEC (12). Although quite
difficult to identify, nucleomegaly and staining for p53, MIB-1 as
well as IMP3 are characteristics of EmGD (14). The connection
between EmGD and SEC has been confirmed through identical
mutations observed in EmGD and subsequent SEC (15).

EIC was first described in the 1990s (16) and seen to arise
almost exclusively in atrophic endometrium and in the context of
SEC in a majority of cases (17). EIC exhibit similar features as
EmGD but with further nucleomegaly, nuclear irregularity and
hyperchromasia (14). However, cases of EIC associated with
extrauterine metastasis suggest that EIC may more closely
resemble SEC (18, 19). This early peritoneal spread is in stark
contrast to non-serous endometrial cancers which usually do not
show early peritoneal spread but preferentially invade the
myometrium and spread to the lymph nodes (18, 19).

SEC closely resembles other serous cancers of the female genital
tract, such as high grade serous ovarian cancer (HGSOC) (4). Both
diseases share similarmolecular features andclinical properties (20)
and, consequently, are treated in a similar way (21, 22).

In recent years the fallopian tube has been identified as the
precursor site of HGSOC, specifically serous tubal intraepithelial
carcinoma (STIC) (23–27). These lesions are identified
histopathologically by a “p53 signature” comprised of strong
p53 staining (28), p53 mutations (29), positive g-H2AX staining
(indicating DNA damage) and lack of Ki-67 staining (indicating
low proliferation) (30) (Table 1). STICs share many genomic
features with HGSOC, such as genomic instability (31, 32), and
HGSOC has a gene expression profile more similar to the
fallopian epithelium than the ovarian surface epithelium (33).

Results from studies using mouse models have established a
connection between STIC and subsequent HGSOC (34, 35).
Inactivation of PTEN, p53 and BRCA1/2 in the fallopian tubes
of mice resulted in STIC and concurrent HGSOC with ovarian
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and peritoneal spread (34, 35). However, in the absence of
BRCA1/2 inactivation, STIC developed but did not progress to
metastatic HGSOC in this mouse model (34).

Cases of HGSOC arising in the absence of STIC (35–37) have
also been reported suggesting that other, as yet unidentified,
precursor lesions might exist (38). “Early Serous Tubal
Proliferations” (ESTP) have been identified as a potential HGSOC
precursor. They are found in the fimbria (30), demonstrate DNA
damage (30), andare found innon-ciliated cells,which also give rise
to STIC (39). A physical and lineage continuity has been
demonstrated between ESTP and STIC suggesting that some
ESTP give rise to STIC and subsequently to HGSOC (30, 32).

The understanding that HGSOC arises from the fallopian
tube in many cases has changed the understanding of serous
ovarian cancer. Now serous cancers of the fallopian tube,
peritoneum and ovary are thought to share a common origin
in the fallopian tube (20). While it is well established that many
HGSOC arise from the fallopian tube, it has not been excluded
that some serous cancers of the endometrium and ovary may
share common origins. For example, Roelofsen et al. (40)
suggested that some serous ovarian cancers (SOC) may arise
from EIC by showing that they shared TP53 mutations, similar
expression of p53, Ki67, estrogen, and progesterone receptors
(40). Additionally, Tolcher et al. (20) analyzed 38 patients with
SEC and investigated their fallopian tubes. They found STIC,
without evidence of tubal metastasis, in 2 of these cases (20).

To better understand the potential link between serous
preinvasive lesions of the female genital tract and serous
gynaecological cancer, molecular investigations of the
precursor lesions of the endometrium and fallopian tube are
required. Here, we present the first proteomic analysis of
synchronous precancerous lesions of the endometrium and
fallopian tubes in a patient without invasive malignancy, by
means of mass spectrometry. This precludes the possibility of
these premalignant lesions representing metastases from
established primary tumors. The analysis of EIC and STIC in
this context provides insight into the temporal and mechanistic
features of their development and dissemination.
MATERIALS AND METHODS

Sample
Archived formalin-fixed paraffin-embedded (FFPE) fallopian
tube and endometrial tissues from a 67-year-old female who
TABLE 1 | Morphological and molecular features of precancerous lesions of the gynecological tract.

Location Precancerous
lesion

Morphological features Molecular features

Endometrium EmGD Some nuclear atypia, some nucleomegaly. Low rates of loss of heterozygosity in TP53 and chromosome P1. p53 mutations in 50%
of cells. Staining for P53, MIB1, and IMP3.

EIC Extensive nuclear atypia, extensive
nucleomegaly, hyperchromasia.

High rates of loss of heterozygosity in TP53 and chromosome P1. p53 mutations in 75%
of cells. Strong staining for P53, MIB1, and IMP3.

Fallopian
tube

ESTP No visible morphological features. TP53 mutations, p53 staining, DNA damage.
STIC Hyperchromasia, nucleomegaly. TP53 mutations, p53 and MIB1 staining, DNA damage, Chromosomal instability.
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had undergone a total abdominal hysterectomy and bilateral
salpingo-oophorectomy for endometrial hyperplasia was
retrieved for analysis with approval of the Research Ethics
Committee of the Royal Adelaide Hospital. The fallopian tube
and endometrial tissues were processed using standard
procedures, stained with hematoxylin and eosin, and annotated
by a pathologist. P53 and MIB1 immunostaining was also
performed to confirm the location of precancerous lesions.

Laser Microdissection and Sample
Preparation
FFPE tissues were sectioned at 4-µm thickness, water bath
mounted onto PEN membrane slides (Micro-Dissect, Herborn,
Germany), and deparaffinized by submersion in xylene for 5 min,
following by two 2-min incubations in 100% ethanol, and two 5-
min incubations in water. Areas of STIC, EIC and adjacent
healthy epithelium were dissected using a Leica AS LCM
microscope (Leica Microsystems, Wetzlar, Germany) into 20 ml
of 10 mM citric acid buffer (pH = 6) and subjected to heat
induced antigen retrieval by incubation at 100°C for 90 min. The
solution containing the protein extracts were digested with
trypsin gold (Promega, Madison, WI, USA) as described in
Mittal et al. (41) using a modified FASP method (42). In brief,
protein extracts were mixed with 0.2 ml of 8M urea in 0.1M Tris/
HCl, pH 8.5 before being loaded into a 30k Microcon filtration
device (Millipore) and centrifuged at 14,000g for 15 min. This
step was repeated to ensure the removal of any residual
contaminants. Samples were reduced with 5 mM DTT (Roche)
for 45 min at room temperature and alkylated with 10mM
iodoacetamide (IAA) (GE Healthcare, Little Chalfont, UK) for
30 min at room temperature in the dark followed by
centrifugation at 14,000g for 15 min. The protein concentrate
was diluted with 0.2mL of 8M urea in 0.1M Tris/HCl, pH 8.5,
and spun again at 14,000g for 15 min. This step was repeated
twice. Samples were buffered with 10mM NH4HCO3 and
digested with 100ng trypsin gold overnight at 37°C. Peptides
were collected by centrifugation of the filter unit at 14,000g
for 20 min.

Nanoflow Liquid Chromatography Tandem
Mass Spectrometry
Nanoflow liquid chromatography tandem mass spectrometry
(Nano-LC-MS/MS) was performed on each sample in duplicate
using an Ultimate 3000 RSLC system (Thermo-Fisher Scientific,
Waltham, USA) coupled to an Impact HD™ QTOF mass
spectrometer (Bruker Daltonics, Bremen, Germany) via an
Advance CaptiveSpray source (Bruker Daltonics). Peptide
samples were pre-concentrated onto a C18 trapping column
(Acclaim PepMap100 C18 75 mm × 20 mm, Thermo-Fisher
Scientific) at a flow rate of 5 ml/min in 2% (v/v) ACN 0.1% (v/v)
TFA for 10 min. Peptide separation was performed using a 75 mm
ID C18 column (Acclaim PepMap100 C18 75 mm × 50 cm,
Thermo-Fisher Scientific) at a flow rate of 0.2 ml/min using a
linear gradient from 5 to 45% B (A: 5% (v/v) ACN 0.1% (v/v) FA,
B: 80% (v/v) ACN 0.1% (v/v) FA) over 130 min, followed by a 20-
min wash with 90% B, and a 20-min equilibration with 5% A. MS
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scanswere acquired in themass range of 300 to 2,200m/z in a data-
dependent fashion using Bruker’s Shotgun Instant Expertise™

method. This method uses IDAS (intensity dependent acquisition
speed) to adapt the speed of acquisition depending on the intensity
of precursor ions (fixed cycle time), and RT2 (RealTime Re-Think)
to exclude previously selected precursor ions from undergoing re-
fragmentationunless the chromatographic peak intensity of the ion
has increased by a factor of 5. Singly charged precursor ions were
excluded from acquisition. Collision energy ranged from 23% to
65% as determined by the m/z of the precursor ion.

Data Analysis
Spectra were analyzed using the MaxQuant software (version
1.5.2.8) with the Andromeda search engine (43) against the
UniProt non-redundant human database. The standard Bruker
QTOF settings in MaxQuant were used with a mass error
tolerance of 40 ppm. The variable modifications of oxidation
of methionine and the fixed modification of carbamidomethyl of
cysteines were specified, with the digestion enzyme specified as
trypsin. The protein false discovery rate (FDR) and peptide
spectrum match FDRs were both set to 1% using a target
decoy approach, with a minimum peptide length of 7 amino
acids (43). Only unique and razor peptides were used when
reporting protein identifications.

Gene Expression Analysis
In order to assess the gene expression levels of the corresponding
proteins of interest in early stage I ovarian carcinoma tissues, the
dataset of Yoshihara et al. (44) [Gene Expression Omnibus
(GEO) Accession GSE12470, http://www.ncbi.nlm.nih.gov/geo/
] was considered. From this dataset the expression of EPCAM
and CAPS was considered in 8 in early stage I patients compared
to 10 healthy peritoneum control tissues. The results were
natural log transformed and compared using paired T-tests
and p-values < 0.05 were considered significant. Full patient
details are available in the Yoshihara et al. (44) manuscript.

To assess the gene expression levels of the corresponding
proteins of interest in differing subtypes of EOC, the dataset of
Hendrix et al. (45) (GEO Accession GSE6008, http://www.ncbi.
nlm.nih.gov/geo/) was considered. From this dataset the
expression of TPPP3, SORD and VCAN was investigated in 37
endometrioid, 41 serous, 13 mucinous, and 8 clear cell ovarian
carcinoma tissues, and 4 normal control tissues. Transformation
of the data and full patient details are available from the Hendrix
et al. (45) manuscript. Groups were compared using paired T-
tests and p-values < 0.05 were considered significant.

With the aim to assess the gene expression levels of
corresponding proteins in early stage 1 endometrial carcinoma
tissue, Rwas used to investigate the data set ofDays et al. (46) (GEO
Accession GDS4589, http://www.ncbi.nlm.nih.gov/geo/). This this
dataset the expressionofEPCAMandCAPSwere investigated in79
endometrioid and 12 serous papillary endometrial carcinoma
tissues, and in 12 normal control tissues. The results were natural
log transformed and compared using pairedT-tests. P-values< 0.05
were considered significant. Full patient details are available
through the Day’s et al. (46) manuscript.
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To evaluate the gene expression levels of corresponding
proteins in different subtypes of endometrial carcinoma tissue,
R was used to investigate the data set of Kandolth et al. (4)
(https://gdc.cancer.gov/node/875). From this data set the
expression of TPPP3, SPATA18, ERO1A, SORD and VCAN
were investigated in 13 CN high, 15 CN low, 16 MSI
hypermutated, and 4 POLE ultra-mutated carcinoma tissues.
Transformation of the data set is detailed in Kandolth et al. (4).
Groups were compared using paired T-tests and p-values < 0.05
were considered significant. Full patient details are available in
the Kandolth et al. (4) manuscript.
RESULTS

Histological Analysis Identifying STIC and
EIC
Upon analysis of the H&E stained tissue sections, atypical
intraepithelial proliferation involving a small population of
cells in the endometrium were identified. These changes were
consistent with early stages of EIC (Table 1). Similarly, atypical
changes involving a small population of cells in the fimbriated
tube (Table 1), consistent with early stages of STIC, were
detected and both EIC and STIC are represented in Figure 1.
Immunoperoxidase staining for p53 and MIB1 revealed atypical
intraepithelial epithelial proliferations in both the fimbriated
tube and endometrial lining, confirming the presence of STIC
and EIC (data not shown).
Frontiers in Oncology | www.frontiersin.org 4
Proteomic Comparison of Healthy
Epithelia to STIC and EIC
Regions of STIC, EIC, and adjacent healthy epithelium were laser
microdissected (LMD) from sectioned tubal and endometrial
specimens and analyzed by Nano-LC-MS/MS. In total, 453
proteins were detected across the 4 tissue types (369 proteins
in the STIC, 110 proteins in healthy tubal epithelium, 428
proteins in EIC, and 162 proteins in healthy endometrial
epithelium (Supplementary Table 1).

When comparing the numbers of identified proteins, the
greatest overlap occurred between STIC and EIC with 348
identical proteins identified in both samples. Across all tissue
types 73 proteins were detectable, with 96 identical proteins
identified in both the STIC and healthy tubal tissue, 157 identical
proteins detected in both the EIC and healthy endometrial tissue,
and 85 identical proteins were detected in both healthy tissues
(Figure 2).

Proteins Relevant to STIC, EIC, and the
Development of Gynecological Cancer
In analyzing potential links between STIC and EIC cells and their
respective invasive carcinomas, two of the identified proteins
were of particular interest based on their involvement in
gynecological cancer development: Epithelial cell adhesion
molecule (EPCAM) and Calcyphosin (CAPS) (47–49). EPCAM
was identified in both the STIC and EIC tissue samples but was
not detected in either of the healthy tissues while CAPS was only
detected in the healthy tube and in STIC.
FIGURE 1 | Hematoxylin and Eosin stained fallopian tube (A, B) and endometrium tissue (C, D) at 6× (A, C) and 12× (B, D) magnification. Areas of STIC (B) and
EIC (D) are indicated by the red arrows.
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Expression of EPCAM and CAPS in Early
Stage Serous Ovarian Carcinomas
Compared to Healthy Peritoneal Tissue
To evaluate the expression of EPCAM and CAPS in early stage I
serous ovarian carcinoma tissues, oligonucleotide microarray
data was considered from the GEO data set GSE12470 (44).
We chose to investigate the expression of these genes in early
stage ovarian cancer as this is expected to be the stage following
STIC in the development of serous ovarian cancer. STIC lesions
were not deemed an appropriate comparison samples as they are
often taken in the context of metastatic disease and potentially
represent metastatic implants, and therefore more developed
cancer, rather than true precursor lesions.

The gene expression levels were analyzed in 10 healthy
peritoneal control tissues compared to 8 Stage I serous EOC
tissues. The median expression levels of both CAPS and EPCAM
were found to be significantly increased in the Stage I serous OC
tissues compared to healthy peritoneal controls (p = 0.00014 and
p = 3.3 × 10−7, respectively) (Figure 3).

Healthy OSE is infrequently available for research purposes
given healthy ovaries are rarely removed during any type of
medical procedure. Healthy peritoneum is an effective control
because the lining of the ovaries is comprised of a single-cell
mesothelial layer of poorly differentiated epithelium derived
from the coelomic epithelium and extended to the serosa
Frontiers in Oncology | www.frontiersin.org 5
peritoneal cavity (50). In addition, it has been reported that
peritoneal mesothelium and OSE are structurally very similar
(51) and are both negative for EPCAM and CAPS expression
(52, 53).

Expression of EPCAM and CAPS in Early
Stage Endometrial Carcinoma Compared
to Healthy Endometrial Tissue
To assess the expression of EPCAM and CAPS in early stage
endometrial cancer, oligonucleotide microarray data was
considered from the GEO data set GDS4589. The gene
expression levels were analyzed from 79 endometrioid and 12
serous papillary endometrial carcinomas as well as 12 healthy
controls. The median expression of CAPS was increased
significantly in EEC (p = 0.00066), while it was significantly
decreased in SEC (p = 0.023) compared to healthy endometrium.
The median expression of EPCAM was significantly increased in
EEC (p = 0.02) and further increased in SEC (p = 0.0007)
compared to healthy controls (Figure 4).

Expression of Proteins Identified
Exclusively in the STIC or EIC Across
Ovarian Cancer Subtypes
Proteins detected exclusively in either the STIC or EIC tissues
were analyzed to determine if their expression is specific to
FIGURE 2 | Venn diagram describing overlapping protein identifications in endometrial intraepithelial carcinoma (EIC), healthy endometrium (HE), serous tubal
intraepithelial carcinoma (STIC) and healthy fallopian tube (HFT). A significant overlap of (348 proteins) is observed between EIC and STIC (diagram generated at
http://bioinformatics.psb.ugent.be/webtools/Venn/).
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certain gynecological tissues. Marker proteins expressed
exclusively by the precancerous cells of either the tube or
endometrium, which are also expressed by ovarian carcinomas,
may aid in determining the tissue specific origin of HGSOC.
Eighteen proteins were detected exclusively in the STIC tissue
and 57 proteins in the EIC tissue. Of these proteins a small
number appear to be specific to certain gynecological tissues
according to Protein Atlas; 2 identified from STIC (MIEAP,
Frontiers in Oncology | www.frontiersin.org 6
TPPP3), and 3 identified from EIC (ERO1A, DHSO, CSPG2/
VCAN). These proteins and their tissue specificities across all
gynecological tissues are listed in Table 2. The remaining
proteins appeared to be more homogenously expressed and
hence were not analyzed further.

The gene expression levels corresponding to the proteins
listed in Table 2 were compared using oligonucleotide
microarray data from the GEO data set GSE6008 (Figure 5).
A B

FIGURE 4 | Gene expression analysis of (A) CAPS and (B) EPCAM in early stage endometrioid (EEC) (n = 79) and serous (SEC) endometrial carcinoma (n = 12)
compared to normal endometrium (NE) (n = 12). Expression levels were extracted from the data of Days et al. (46) (GEO Accession GDS4589, http://www.ncbi.nlm.
nih.gov/geo/) using R.
A B

FIGURE 3 | Gene expression of (A) CAPS and (B) EPCAM in early stage I serous ovarian cancer tissues (SOC) (n = 8) compared to normal peritoneum (NP) (n =
10). Expression levels were extracted from the data of Yoshihara et al. (44) (GEO Accession GSE12470) via the R package CuratedOvarianData (http://www.ncbi.
nlm.nih.gov/geo/).
December 2020 | Volume 10 | Article 523989

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Acland et al. Proteomics of Pre-Invasive Serous Lesions
For the gene TPPP3 there was reduced expression in ovarian
clear cell carcinoma compared to healthy tissue and other
ovarian cancer subtypes. SORD showed significantly lower
expression levels in the normal control tissues, and to a smaller
extent, in serous ovarian carcinoma compared to the other
Frontiers in Oncology | www.frontiersin.org 7
subtypes. The high expression of SORD, whose related protein
was detected only in EIC in our data set, in non-SOC was
unexpected as the protein atlas reports low expression of SORD
in ovarian cancer. CSPG2/VCAN expression, which was detected
at the protein level in EIC only, was increased in CCOC when
A B

C

FIGURE 5 | Expression levels of genes whose protein abundance is specific to certain to gynaecological tissues. (A) SORD, (B) TPP3, and (C) VCAN in 4 normal
ovarian (NO), 8 clear cell (CCOC), 37 endometrial (EEOC), 13 mucinous (MOC), and 41 serous (SOC) ovarian carcinomas. Blue dots represent data points from late
stage patients while the red represent early stage. Data gathered from Hendrix et al. (45) (GEO Accession GSE6008, http://www.ncbi.nlm.nih.gov/geo/).
TABLE 2 | Proteins identified exclusively in the STIC or EIC that appear to be specific to certain gynecological tissues.

Protein Detected
In

Protein abundance levels in healthy tissues * Protein abundance in
ovarian cancer *

Protein abundance in
endometrial cancer *

Mitochondrial eating protein (MIEAP),
SPATA18#

STIC High in fallopian tube, low in endometrium and breast.
Not expressed in the ovary.

Low Low

Tubulin polymerization-promoting protein
member 3 (TPPP3), TPPP3

STIC Medium in glandular cells of the endometrium and
cervix. Highly enriched in tube, negative in ovaries.

Medium Medium to high

Endoplasmic reticulum oxidoreductin1-like
protein alpha (ERO1A), ERO1A#

EIC High in cervix and medium in endometrium. No
expression in tube or ovary.

Low Low

Sorbitol dehydrogenase (DHSO), SORD EIC High in endometrium, cervix/uterinus, and low in breast.
Negative in tube and ovaries.

Low Medium

Versican core protein (CSPG2), VCAN EIC High in placenta. Medium in cervix/uterus, and
endometrium. Low in tube and ovaries.

Low to medium Low to Medium
December 2020 | V
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compared to the normal tissue and other EOC subtypes
(Figure 5).

Expression of Proteins Identified
Exclusively in STIC or EIC Across
Endometrial Cancer Subtypes
By investigating the gene expression corresponding to proteins in
our data set which are enriched in specific gynecological tissues,
Frontiers in Oncology | www.frontiersin.org 8
we aimed to investigate the connection between preneoplastic
lesions of the endometrium and tube with subtypes of
endometrial cancer as defined by the TCGA. The expression
levels of the genes corresponding to the proteins listed in Table 1
were compared using oligonucleotide microarray data from
Kandolth et al. (4) (https://gdc.cancer.gov/node/875) (Figure 6).

They were selected as their related proteins were found
exclusively in a precancerous lesion and their abundance
A B

D

E

C

FIGURE 6 | Expression levels of genes whose proteins are associated with specific gynecological tissues. (A) ERO1A, (B) TPPP3, (C) SPATA18, (D) SORD, and
(E) VCAN in 13 copy number (CN) high, 16 micro satellite instability (MSI) hypermutated, 4 POLE ultra-mutated, and 15 CN low. Here, the blue dots represent data
points from late stage patients while the red represent early stage cancers. Data from Kandolth et al. (4) (https://gdc.cancer.gov/node/875).
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(according to protein atlas) was unique to specific gynecological
tissue. However, most did not show different gene expression
between the TCGA defined subtypes, except for TPPP3 and
SPATA18, which both showed decreased expression in the CN
high (serous) subgroup compared to other subtypes (Figure 6).
These proteins were detected exclusively in STIC in our analysis
and their expression was seen to be decreased in SEC compared
to healthy controls (Supplementary Figure 2).

Proteins Associated With Metastasis
Identified in STIC or EIC
The 34 identified proteins expressed exclusively in STIC and/or
EIC which are known to be involved in metastasis or migration
were listed in Supplementary Table 2. Most of these proteins are
implicated in the promotion of metastasis, with the exceptions of
Galectin-9 (54, 55), Mimecan (56, 57), and Catenin alpha-1 (58,
59) which have been implicated in the inhibition of metastasis.
DISCUSSION

The application of proteomic techniques, particularly that of
mass spectrometry, hold the potential to provide a temporal
snapshot of the molecular features within a given sample. Here,
we provide what is, to the best of our knowledge, the first
proteomic analyses of synchronous precursor lesions of serous
endometrial and high-grade ovarian cancer. Through
histological and molecular identification of precancerous
lesions, followed by laser-capture microdissection and mass
spectrometry analysis, we were able to identify over 450
proteins within the precancerous lesions and adjacent healthy
tissue. The proteomic profiles of the precancerous lesions
showed striking similarity (Figure 1) and shared a molecular
profile indicative of metastatic transformation (Supplementary
Table 2). To investigate the connection between these
precancerous lesions and serous gynecological malignancies we
investigated the gene expression of several proteins of interest in
serous endometrial and ovarian cancer data sets (Figures 3–6).

EPCAM and CAPS were selected for further investigation based
on their implication in the development of ovarian and endometrial
cancer (47–49). Genomic analysis of their expression in Stage I SOC
compared to peritoneal control tissue revealed significantly increased
levels in the cancerous specimens (Figure3). It iswell recognized that
EPCAMexpression has a complex relationship to SOCdevelopment
(60); however, it has not previously been identified in STIC or other
gynecological precancerous lesions. This transmembrane adhesion
molecule plays a role inmigration andproliferation inwoundhealing
(61) as well as the maintenance of pluripotency in stem cells (62).

The exact function of CAPS is unknown, but it is a suggested
target of cAMP-dependent protein kinase and has been
implicated in the cAMP and calcium-phosphatidylinositol
signaling cascades (63). According to protein atlas, CAPS has
high expression in the fallopian tube but is not expressed in
healthy OSE (http://www.proteinatlas.org/ENSG00000152611-
CAPSL/tissue) which is in agreement with our identification of
this protein in both the healthy fallopian tissue and STIC.
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Interestingly, CAPS gene expression was seen to be increased
in SOC compared to control tissue (Figure 3). Furthermore,
EPCAM is not expressed in healthy ovarian surface epithelium
(OSE) (53) but is frequently up regulated in ovarian cancer (60).
The single case study presented here is insufficient to draw
broader conclusions about potential markers of tissues of
origin, but we believe that expression of EPCAM and CAPS
merit further investigation in a larger cohort.

To further investigate proteins which may act as markers of
tissue of origin in SEC or SOC, we investigated proteins
identified exclusively in either the STIC or EIC which were
unique to specific gynecological tissues according to protein
atlas. CSGP/VCAN was identified exclusively in EIC, was seen
to have increased expression in COCC compared to other
ovarian cancer cell types (Figure 5) and had increased
expression in SEC compared to healthy control tissue
(Supplementary Figure 2). This protein has been previously
seen to be increased in COCC (64, 65) and represents a potential
link between EIC and COCC. COCC has been suggested to arise
from endometriosis lesions (66) potentially representing a
pathway for endometrial origin of COCC.

A previous mass spectrometry-based analysis of ovarian cancer
precursor lesions was performed by Levenon et al. (67) and
investigated ex vivo culture derived cells from fallopian tube
fimbria (67). Their proteomic analysis identified 11 different
ovarian cancer biomarkers present in this ex vivo model. A larger
study by M. Eckart et al. (68) investigated both tumor and stroma
tissue from STIC, invasive fallopian tube lesions, invasive ovarian
lesions and omental metastasis (68). In addition to identifying N-
methyltransferase (NNMT) as a metabolic regulator of cancer
associated fibroblasts, they also showed that the molecular profiles
of primary cancers andmetastatic implants were remarkably similar
within the same patient while the microenvironment showed site
specific differences. The STIC lesion they investigated showed lower
expression compared to normal tube in 4 of our proteins of interest
(CAPS, ERO1A, TPPP3, and SPATA18) and similar expression in 2
(EPCAM and SORD). Only VCAN showed marginally increased
expression in STIC compared to normal fallopian tube epithelium
in this analysis. The authors’ focus on stromal tissue, a lack of
normal epithelial ovarian or omental controls and the potential that
STIC represents metastatic lesions from a primary ovarian tumor
limits further comparison to this data set.

The traditional understanding of cancer development is that
it acquires metastatic capacities over time within the primary
lesion (69). However, the identification of STIC as the origin site
of HGSOC implicates that these pre-invasive lesions can leave
their site of origin and establish themselves in distant locations.
In addition, EIC is often identified with extrauterine spread (18,
19) which can take the form of EIC like growths on the ovaries,
peritoneum and fallopian tube in the absence of obvious disease
in these locations (16, 18). Together, this suggests that these
premalignant lesions possess some migratory or metastatic
ability facilitating their translocation to distant sites within the
gynecological system. Here, we identified numerous metastasis
and migration related proteins in precancerous lesions in the
absence of malignant disease (Supplementary Table 2).
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A major limitation of this study is that the data is derived from a
single patient case study which makes generalized interpretation of
biological implication of this data difficult. Furthermore, only a
modest number of proteins was identified from these small tissue
regions. As highly abundant proteins are identified preferentially in
mass spectrometry analysis (70), the low number of proteins
identified potentially masks differences in lower abundance
proteins. The analysis of a larger cohort, coupled with the
utilization of advanced sample preparation and mass spectrometry
techniques to improve proteome coverage, holds the potential to
build upon the data presented here and paint a clearer picture of the
molecular landscape of precancerous lesions of serous cancers of the
ovary and endometrium.
CONCLUSION

Here, we present the first proteomic investigation of precancerous
lesions of the gynecological tract in a patient without advanced
gynecological malignancy. Interpretation of the data is limited by
the single case study and the modest number of proteins identified;
however, we provide a foundation for further analysis of the
molecular links between precancerous lesions and subsequent
caner. In addition, we identified several metastasis-related
proteins in precancerous tissues. The understanding that
precancerous lesions of the female genital tract potentially
possess metastatic potential raises many questions about when,
where, and how these cancers develop. Though the early steps are
not well understood, further proteomic analyses of gynecological
precancerous lesions hold the potential to unravel the early
temporal and molecular events underlying the development of
these malignancies which, in turn, holds the potential to improve
detection and treatment.
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