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Abstract: Anguimorphan lizards are a morphologically variable group of squamate reptiles with
a wide geographical distribution. In spite of their importance, they have been cytogenetically un-
derstudied. Here, we present the results of the cytogenetic examination of 23 species from five
anguimorphan families (Anguidae, Helodermatidae, Shinisauridae, Varanidae and Xenosauridae).
We applied both conventional (Giemsa staining and C-banding) and molecular cytogenetic methods
(fluorescence in situ hybridization with probes for the telomeric motifs and rDNA loci, comparative
genome hybridization), intending to describe the karyotypes of previously unstudied species, to
uncover the sex determination mode, and to reveal the distribution of variability in cytogenetic
characteristics among anguimorphan lizards. We documented that karyotypes are generally quite
variable across anguimorphan lineages, with anguids being the most varying. However, the derived
chromosome number of 2n = 40 exhibits a notable long-term evolutionary stasis in monitors. Differ-
entiated ZZ/ZW sex chromosomes were documented in monitors and helodermatids, as well as in
the anguids Abronia lythrochila, and preliminary also in Celestus warreni and Gerrhonotus liocephalus.
Several other anguimorphan species have likely poorly differentiated sex chromosomes, which
cannot be detected by the applied cytogenetic methods, although the presence of environmental sex
determination cannot be excluded. In addition, we uncovered a rare case of spontaneous triploidy in
a fully grown Varanus primordius.
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1. Introduction

Sex chromosomes have evolved independently across vertebrates multiple times [1–3].
They mostly evolve from a pair of autosomes by the emergence of a sex-determining gene,
and may further differentiate via the suppression of recombination leading to the loss
of functional genes, accumulation of heterochromatin and/or repetitive elements in the
sex-specific chromosome [4–6]. For decades, conventional and, more recently, molecular
cytogenetic methods have been used to identify sex chromosomes and the degree of their
differentiation. Cytogenetic analysis showed that the process of sex chromosome differenti-
ation varies significantly among lineages: some lineages such as skinks possessed for a long
evolutionary time relatively poorly differentiated, cytogenetically hardly distinguishable
sex chromosomes [7], while others such as the chameleons of the genus Furcifer evolved het-
eromorphic sex chromosomes in a much shorter evolutionary time than, e.g., skinks [8,9].
Sex chromosomes are often detectable by cytogenetic techniques due to their unusual
content of repetitive sequences. Extensive accumulation of various repetitive elements
such as rDNA loci, microsatellite motifs, and retrotransposons has been detected in sex
chromosomes of many animal and plant species, often in heterochromatic regions [10–19].

Anguimorpha is a group of squamate reptiles distributed in all continents except
Antarctica, containing around 240 extant species [20] divided into seven families: Anguidae,
Anniellidae, Helodermatidae, Lanthanotidae, Shinisauridae, Varanidae, and Xenosauri-
dae [21]. The most species-rich anguimorphan groups are the families Anguidae (slow
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worms, glass lizards, and alligator lizards) and Varanidae (monitors) [20]. Monitors are
also the cytogenetically most studied group of the anguimorphan clade. The karyotype
has been so far described in 30 species [16,22–33]. All species of monitors show karyotypes
with the 2n = 40 chromosomes (16 macro- and 24 microchromosomes) and similar mor-
phology of chromosomes. A notable variability has been detected in them only in the
morphology of the chromosome pairs 5–8, which can be attributed to intrachromosomal
rearrangements according to the results of chromosome painting [33]. All studied species
of monitors show ZZ/ZW system of sex determination [33,34]. The sex chromosomes were
cytogenetically identified in several species of monitors as a pair of microchromosomes,
where the W is usually heterochromatic [16,25,33]. Comparative chromosome painting [33]
and comparison of the differences in gene copy numbers of Z-specific genes between sexes
by quantitative PCR (qPCR) revealed an extensive homology of the sex chromosomes
across monitors [34]. The Z chromosome of monitors is largely homologous to chicken
chromosome 28, and the gene anti-Müllerian hormone (amh) was proposed as a candidate
sex-determining locus [34,35].

In addition to monitors, sex chromosomes were uncovered by cytogenetic methods
in Heloderma suspectum (Helodermatidae) [36]. The sex chromosomes of this species are
microchromosomes with highly heterochromatic W [36]. The qPCR test of sex chromosome
homology revealed that three tested species of helodermatids (Heloderma suspectum, Helo-
derma horridum and Heloderma exasperatum) as well as the alligator lizard Abronia lythrochila
(Anguidae) share the same sex chromosomes with monitors [34]. The homology of the
Z chromosomes among the families Anguidae, Helodermatidae, and Varanidae suggests
that the age of the anguimorphan sex chromosomes can be estimated to 115–180 MY [34].
Interestingly, the tested Z-specific genes of monitors and helodermatids were pseudoauto-
somal or autosomal in the slow worm Anguis fragilis (Anguidae) suggesting that the sex
chromosomes of certain species of anguids might not be homologous to those of the other
studied anguimorphan lizards [34].

Previous studies described the karyotypes of one unspecified species of the genus
Xenosaurus (Xenosauridae), three species of the family Anniellidae (Anniella geronimensis,
Anniella pulchra, Anniella stebbinsi) and 12 species of the family Anguidae (Abronia monti-
cola, Anguis fragilis, Anguis veronensis, Celestus costatus, Diploglossus fasciatus, Diploglossus
millepunctatus, Elgaria coerulea, Elgaria multicarinata, Elgaria paucicarinata, Ophiodes striatus,
Ophisaurus ventralis, Pseudopus apodus [37–43]. Sex chromosomes were not identified in any
of these species; however, they might escape detection, as in some cases individuals of
single or unknown sex were studied and mostly only conventional cytogenetic methods
were applied.

Our current knowledge of the sex determination systems in anguimorphan lizards has
been limited to monitors, helodermatids, and a single species of alligator lizard [33,34,36]. In
the current study, we examined anguimorphan lizards from five families (Anguidae, Heloder-
matidae, Shinisauridae, Xenosauridae, and Varanidae) by both conventional (Giemsa staining,
C-banding) and molecular cytogenetic methods (fluorescence in situ hybridization with probes
for telomeric motifs and rDNA loci, comparative genome hybridization).

2. Materials and Methods
2.1. Studied Material, Chromosome Preparations and Staining

We studied 23 species from five families of Anguimorpha: Abronia campbelli, Abronia
deppii, Abronia graminea, Abronia lythrochila, Abronia mixteca, Abronia smithi, Abronia
taeniata, Barisia rudicollis, Celestus warreni, Gerrhonotus liocephalus (Anguidae), Heloderma
exasperatum, Heloderma horridum (Helodermatidae), Shinisaurus crocodilurus (Shinisauri-
dae), Varanus auffenbergi, Varanus cumingi, Varanus kordensis, Varanus olivaceus, Varanus
primordius, Varanus salvadorii, Varanus salvator komaini (Varanidae), Xenosaurus grandis,
Xenosaurus platyceps, Xenosaurus rectocollaris (Xenosauridae) (Table S1).

We collected 0.2–2 mL of peripheral blood, which was subsequently used for DNA
isolation and preparation of mitotic chromosome suspensions. DNA was isolated using the
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DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s
protocol. We used whole blood cell cultures to prepare mitotic chromosome suspensions
according to our standard protocol described in [44].

We used C-banding to determine the distribution of constitutive heterochromatin.
Slides were treated according to the protocol of Sumner [45] with slight modifications:
first, we treated the slides with 0.2 N HCl for 35 min at room temperature, then in 5%
Ba(OH)2 for 9 min at 45 ◦C, and subsequently in 2× SSC for 1 h at 60 ◦C. In a final step, the
slides were washed with distilled water, air-dried, and stained with Fluoroshield mounting
medium with DAPI (4′, 6-diamidino-2-phenylindole; Sigma-Aldrich, St. Louis, MO, USA).

2.2. Fluorescence In Situ Hybridization with Probe for Telomeric Sequences

For the Fluorescence in situ Hybridization (FISH) with telomeric probes, we used stan-
dard protocols of Ijdo et al. [46] and Mazzoleni et al. [44]. The telomeric probe (TTAGGG)n
was prepared by Polymerase Chain Reaction (PCR) without DNA template using the
primers (TTAGGG)5 and (CCCTAA)5. The probe was precipitated overnight at −20 ◦C
by sodium acetate (3M), salmon sperm, and ethanol and subsequently diluted in 50%
formamide in 2× SSC (pH 7).

The chromosomal spreads were treated according to the protocol described in [44].
Briefly, the slides were treated with RNAse (100 µg/mL) for 60 min at 37 ◦C, and washed
in 2× saline–sodium citrate (2× SSC) buffer. They were subsequently treated with 0.01%
pepsin for 10 min at 37 ◦C, washed in phosphate-buffered saline (PBS), then treated with the
solution of 1% formaldehyde in 2× SSC, and afterwards washed again in PBS. Slides were
dehydrated in ethanol series and air-dried. Dried slides were denatured in 70% formamide
in 2× SSC at 70 ◦C for 3 min, washed in 2× SSC, and again dehydrated in ethanol series and
air-dried. The probe was applied to the chromosome spreads for overnight hybridization
at 37 ◦C.

The following day the slides were washed three times in 50% formamide in 2× SSC
at 37 ◦C for 5 min, then in 2× SSC and subsequently in 4× SSC/0.05% Tween20 (Sigma-
Aldrich) for 5 min. Afterwards, we applied 4× SSC/5% blocking reagent (Roche, Basel,
Switzerland) and incubated the slides for 45 min at 37 ◦C. The slides were washed in
4× SSC/0.05% Tween20 and incubated with 4× SSC/5% blocking reagent with avidin-
FITC (Vector Laboratories, Burlingame, CA, USA) for 30 min at 37 ◦C. The signal was
amplified by using avidin-FITC/biotinylated anti-avidin system (Vector Laboratories
Burlingame, CA, USA). Subsequently, the slides were washed in 4× SSC/0.05% Tween20
and PBS solution, dehydrated in ethanol series and air-dried. The slides were stained by
Fluoroshield mounting medium with DAPI (Sigma-Aldrich, St. Louis, MO, USA).

2.3. Fluorescence In Situ Hybridization with Probe for 18S/28S rDNA Loci

A plasmid (pDmr.a 51#1) with an 11.5-kb insert encoding the 18S and 28S ribosomal
units of Drosophila melanogaster [47] was used to prepare the probe for the rDNA loci,
according to the protocol of Rovatsos et al. [8]. The probe was labeled with dUTP-biotin
(Roche, Basel, Switzerland) by nick translation using the manufacturer’s protocol of Nick
Translation Kit (Abbott Laboratories, Lake Bluff, IL, USA). The probe was precipitated and
the FISH was performed according to the protocol described above.

2.4. Comparative Genome Hybridization

For comparative genome hybridization (CGH) we used a standard protocol described
in Rovatsos et al. [9]. The probes were labeled by the Nick Translation Kit (Abbott Labora-
tories, Lake Bluff, IL, USA) according to the manufacturer’s protocol. The female-specific
probe was labeled by dUTP-digoxigenin (Roche, Basel, Switzerland) and the male-specific
probe by dUTP-biotin (Roche, Basel, Switzerland). We prepared the probes for both male
and female genome per species with equal concentrations and mixed them during the
probe precipitation. The probes were precipitated as described above. Chromosome prepa-
ration and denaturation were the same as in the FISH experiments. The probes hybridized
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for 48 h. For the signal detection, the slides were first washed three times in 50% formamide
in 2× SSC at 37 ◦C for 5 min, subsequently twice in 2× SSC and once in 4× SSC/0.05%
Tween20 for 5 min. In the next step, we applied 4× SSC/5% blocking reagent (Roche, Basel,
Switzerland) for 30 min at 37 ◦C. Afterwards, we incubated the slides with 4× SSC/5%
blocking reagent with avidin-FITC (Vector Laboratories Burlingame, CA, USA) and anti-
digoxigenin-Rhodamine (Roche, Basel, Switzerland) for 30 min at 37 ◦C. In the end, the
slides were washed twice in 4× SSC/0.05% Tween20, once in PBS solution, and dehy-
drated in ethanol series. The slides were air-dried and stained by Fluoroshield with DAPI
(Sigma-Aldrich, St. Louis, MO, USA).

2.5. Microscopy and Image Analyses

The Giemsa-stained slides were scanned with an Axio Imager Z2 microscope (Zeiss,
Oberkochen, Germany) equipped with Metafer-MSearch scanning platform and a Cool-
Cube 1 b/w digital camera (MetaSystems, Altlussheim, Germany). The karyograms were
constructed in the program Ikaros (MetaSystems). The photos of slides stained by DAPI
(slides from C-banding and FISH experiments) were taken by a Provis AX70 microscope
(Olympus, Tokyo, Japan) equipped with a DP30BW camera (Olympus). The photos were
subsequently processed in DP Manager (Olympus).

2.6. qPCR Test for Sex Chromosome Constitution in the Triploid Varanus primordius

The cytogenetic analysis revealed a spontaneous triploid Varanus primordius. We
applied a qPCR approach, based on Rovatsos et al. [34], to estimate the number of Z
chromosomes per cell and, therefore, to reveal the sex chromosome constitution. For
the qPCR test, we used primers for two autosomal genes (adarb2, eef1a, mecom) and one
Z-specific gene (grin3b), designed by Rovatsos et al. [34] (Table S2).

3. Results

Out of 23 species of anguimorphan lizards examined in the current study, 22 species
have been to our knowledge cytogenetically studied for the first time here. We performed
karyogram reconstruction from Giemsa-stained metaphases (Figures 1–3), C-banding
(Figures 4 and 5), and FISH with probes for telomeric motifs (Figures 6 and 7) and rDNA
loci (Figures 8 and 9) in all species, except Abronia smithi, Abronia taeniata, and Xenosaurus
grandis, where only karyograms were prepared due to the small amount of the obtained
chromosomal material (Figures 1 and 3). In addition, CGH was performed in selected
species (Figure 10).

3.1. Abronia campbelli (Brodie & Savage, 1993)

We examined only a male individual. Karyotype with 2n = 30 chromosomes (20 macro-
and 10 microchromosomes). Among macrochromosomes, the pairs 1–3 and 7–10 are bi-
armed, while the pairs 4–6 are acrocentric. The morphology of the microchromosomes
cannot be determined (Figure 1a). The C-banding revealed heterochromatin mainly in
centromeric regions of all macrochromosomes (Figure 4a). The telomeric sequences were
detected only in the terminal positions of the chromosomes (Figure 6a). The FISH with
rDNA probe revealed a signal on the 10th pair of macrochromosomes (Figure 8a).

3.2. Abronia deppii (Wiegmann, 1828)

Karyotype with 2n = 30 chromosomes (20 macro- and 10 microchromosomes). The
pairs 1–3 and 7–10 are bi-armed, while the pairs 4–6 are acrocentric (Figure 1b,c). The
C-banding revealed heterochromatin mainly in the centromeric regions of all macrochromo-
somes (Figure 4b,c). The telomeric sequences were detected only in the terminal positions
of the chromosomes (Figure 6b,c). The FISH with rDNA probe revealed a signal on the 10th
pair of macrochromosomes (Figure 8b,c). CGH did not detect any sex-specific differences
(Figure 10a,b).
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3.3. Abronia graminea (Cope, 1864)

We examined only a male individual. Karyotype with 2n = 30 chromosomes (20 macro-
and 10 microchromosomes). The pairs 1–3, 8 and 10 are bi-armed, while the pairs 4–7 and
9 are acrocentric. Polymorphism was detected in the chromosomal pair 10, which consists
of one submetacentric and one subtelocentric chromosome (Figure 1d). The C-banding
revealed heterochromatin in the telomeric and centromeric regions of all macrochromo-
somes and in some microchromosomes (Figure 4d). The telomeric sequences were detected
only in the terminal positions of the chromosomes (Figure 6d). The FISH with rDNA probe
revealed a signal on the 10th pair of the karyogram (Figure 8d).
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Figure 1. Giemsa-stained karyograms of Abronia campbelli (a), Abronia deppii (b,c), Abronia graminea (d), Abronia lythrochila 
(e,f), Abronia mixteca (g), Abronia smithi (h) and Abronia taeniata (i). 
Figure 1. Giemsa-stained karyograms of Abronia campbelli (a), Abronia deppii (b,c), Abronia graminea (d), Abronia lythrochila
(e,f), Abronia mixteca (g), Abronia smithi (h) and Abronia taeniata (i).

3.4. Abronia lythrochila Smith & Alvarez del Toro, 1963

Karyotype with 2n = 30 chromosomes (20 macro- and 10 microchromosomes). The
pairs 1–3 and 7–10 are bi-armed, while the pairs 4–6 are acrocentric (Figure 1e,f). The
C-banding revealed the accumulation of heterochromatin in the centromeric regions of all
macrochromosomes and in the telomeric regions of some macrochromosomes (Figure 4e,f).
A prominent accumulation was revealed on one of the microchromosomes in the female
(Figure 4c). The telomeric sequences were detected only in the terminal positions of all
chromosomes (Figure 6e,f). The FISH with rDNA probe revealed a signal on the 10th
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macrochromosome pair (Figure 7e,f). CGH did not detect any sex-specific differences
(Figure 10c,d).
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Figure 3. Giemsa-stained karyograms of Varanus auffenbergi (a), Varanus cumingi (b,c), Varanus kordensis (d), Varanus oli-
vaceus (e,f), Varanus primordius (g,h), Varanus salvadorii (i,j), Varanus salvator komaini (k,l), Xenosaurus grandis (m), Xeno-
saurus platyceps (n) and Xenosaurus rectocollaris (o). UN: sex not known. 

Figure 3. Giemsa-stained karyograms of Varanus auffenbergi (a), Varanus cumingi (b,c), Varanus kordensis (d), Varanus olivaceus
(e,f), Varanus primordius (g,h), Varanus salvadorii (i,j), Varanus salvator komaini (k,l), Xenosaurus grandis (m), Xenosaurus
platyceps (n) and Xenosaurus rectocollaris (o). UN: sex not known.
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Figure 4. C-banded metaphases of Abronia campbelli (a), Abronia deppii (b,c), Abronia graminea (d), Abronia lythrochila (e,f), 
Abronia mixteca (g), Barisia rudicollis (h,i), Celestus warreni (j,k), Gerrhonotus liocephalus (l), Heloderma exasperatum (m,n) 
and Heloderma horridum (o,p). When visible, the W chromosomes are indicated by arrows. 

Figure 4. C-banded metaphases of Abronia campbelli (a), Abronia deppii (b,c), Abronia graminea (d), Abronia lythrochila (e,f),
Abronia mixteca (g), Barisia rudicollis (h,i), Celestus warreni (j,k), Gerrhonotus liocephalus (l), Heloderma exasperatum (m,n) and
Heloderma horridum (o,p). When visible, the W chromosomes are indicated by arrows.

3.5. Abronia mixteca Bogert & Porter, 1967

We examined only a male individual. The karyotype with 2n = 30 chromosomes
(20 macro- and 10 microchromosomes). The pairs 1–3 and 7–10 are bi-armed, while the
pairs 4–6 are acrocentric (Figure 1g). The C-banding revealed an accumulation of hete-
rochromatin in the centromeric regions of the macrochromosomes and in the telomeric
region of a pair of macrochromosomes (Figure 4g). Some microchromosomes are also
enriched in heterochromatin. The telomeric sequences were detected only in the terminal
positions of all chromosomes (Figure 6g). The FISH with rDNA probe revealed a signal on
the 10th pair of macrochromosomes (Figure 8g).
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3.6. Abronia smithi Campbell & Frost, 1993

We examined only a male individual. Karyotype with 2n = 30 chromosomes (20 macro-
and 10 microchromosomes). The chromosome pairs 1–3 and 7–10 are bi-armed, while the
pairs 4–6 are acrocentric (Figure 1h).
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known.
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(l), Heloderma exasperatum (m,n) and Heloderma horridum (o,p).

3.7. Abronia taeniata (Wiegmann, 1828)

We examined only a male individual. Karyotype with 2n = 30 chromosomes (20 macro-
and 10 microchromosomes). The chromosome pairs 1–3 and 7–10 are bi-armed, while the
pairs 4–6 are acrocentric (Figure 1i).

3.8. Barisia rudicollis (Wiegmann, 1828)

Karyotype with 2n = 44 chromosomes (18 can be classified as macro- and 26 as
microchromosomes, but the distinction is not prominent). The 1st and 2nd chromosome
pairs are metacentric, the pairs 3–9 are acrocentric (Figure 2a,b). Heterochromatin is
accumulated in the centromeric regions (Figure 4h,i). The telomeric sequences were
detected only in the terminal positions (Figure 6h,i). The FISH with rDNA probe revealed
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a signal on a pair of microchromosomes (Figure 8h,i). CGH did not reveal any sex-specific
differences (Figure 10e,f).
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salvator komaini (m,n), Xenosaurus platyceps (o) and Xenosaurus rectocollaris (p). UN: sex not known.

3.9. Celestus warreni (Schwartz, 1970)

Karyotype with 2n = 36 chromosomes (12 macro- and 14 microchromosomes). All
macrochromosomes are bi-armed (Figure 2c,d). The C-banding revealed heterochromatin
in the pericentromeric as well as telomeric regions of the macrochromosomes. The telomeric
sequences were detected in the terminal positions of the chromosomes, in some of them
also in the telomeric positions. A single microchromosome in the female possesses a notable
accumulation of heterochromatin, which is not present in the male (Figure 4j,k). Interstitial
telomeric repeats (ITRs) were detected in the pericentromeric regions of the chromosome
pairs 1–5 (Figure 6j,k). The FISH with rDNA probe revealed a signal in the telomeric region
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of the 2nd chromosome pair (Figure 8j,k). CGH did not reveal any sex-specific differences
(Figure 10g,h).
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(l), Heloderma exasperatum (m,n) and Heloderma horridum (o,p).

3.10. Gerrhonotus liocephalus (Wiegmann, 1828)

We examined only a female individual. Karyotype with 2n = 48 chromosomes
(22 macro- and 26 microchromosomes, but the differences in size are more gradual). All
macrochromosomes are acrocentric (Figure 2e). The C-banding revealed heterochromatic
regions in the centromeric region of all chromosomes. Notably, a single chromosome from
the first pair has a prominent accumulation of heterochromatin in comparison to other
chromosomes (Figure 4l). The telomeric sequences were detected only in the terminal
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positions of all chromosomes (Figure 6l). The FISH with rDNA probe revealed a signal
on one pair of microchromosomes (Figure 8l). Although the chromosomal material from
the male individual was not available to us, we isolated DNA from a male, which we
used for CGH. By using CGH method we detected a female-specific region in the female
metaphases. The signal was detected in one of the chromosomes from the 1st chromosome
pair (Figure 10i).
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3.11. Heloderma exasperatum Bogert & Martin del Campo, 1956

Karyotype with 2n = 36 chromosomes (14 macro- and 22 microchromosomes). All
macrochromosomes are bi-armed (Figure 2f,g). C-banding revealed heterochromatin
mainly in the centromeric regions, in female animals the heterochromatin was accumulated
also on the W chromosome (Figure 4m,n). ITRs were detected in 10 pairs of microchro-
mosomes (Figure 6m,n). The FISH with rDNA probe revealed a signal at the telomeric
region of the 3rd or 4th (both chromosome pairs have the same morphology) and the
5th chromosome pairs (Figure 8m,n). CGH revealed a female-specific signal in a single
microchromosome in females, which corresponds to the W chromosome (Figure 10j,k).

3.12. Heloderma horridum (Wiegmann, 1828)

Karyotype with 2n = 36 chromosomes (14 macro- and 22 microchromosomes). All pairs
of macrochromosomes are bi-armed (Figure 2h,i). The C-banding revealed heterochromatin
in the centromeric region of all macrochromosomes and in the W chromosome of the
females (Figure 4o,p). ITRs were detected in 10 pairs of microchromosomes (Figure 6o,p).
The FISH with rDNA probe revealed a signal at the telomeric region of the 3rd or 4th (not
possible to distinguish, as both chromosome pairs have the same morphology) and the
5th chromosome pairs (Figure 8o,p). CGH revealed a female-specific signal in a single
microchromosome in the metaphases from the female specimen, which corresponds to the
W chromosome (Figure 10l,m).

3.13. Shinisaurus crocodilurus Ahl, 1930

Karyotype with 2n = 32 chromosomes (14 macro- and 18 microchromosomes) (Figure 2j,k).
The chromosome pairs 1–5 are bi-armed, while the pairs 6 and 7 are acrocentric. The
C-banding revealed accumulation of heterochromatin in the centromeric region of the
chromosomes, with a similar pattern in both sexes (Figure 5a,b). The telomeric sequences
were detected only at the terminal positions of all chromosomes (Figure 7a,b). The FISH
with rDNA probe revealed a signal at the pericentromeric region of the 6th chromosomal
pair (Figure 9a,b). CGH method did not reveal any sex-specific differences (Figure 10n,o).

3.14. Varanus auffenbergi Sprackland, 1999

We examined only a male individual. Karyotype with 2n = 40 chromosomes (16 macro-
and 24 microchromosomes). All macrochromosomes are bi-armed with the exception
of the 4th chromosomal pair which is acrocentric (Figure 3a). The C-banding revealed
the accumulation of heterochromatin in the pericentromeric and telomeric regions of the
macrochromosomes (Figure 5c). The telomeric sequences were detected only in the terminal
positions of all chromosomes (Figure 7c). FISH with rDNA probe revealed a signal in the
pericentromeric region of the 1st chromosome pair (Figure 9c).

3.15. Varanus cumingi Martin, 1893

Karyotype with 2n = 40 chromosomes (16 macro- and 24 microchromosomes). The
4th chromosomal pair is acrocentric, while the other macrochromosomes are bi-armed
(Figure 3b,c). The C-banding revealed the accumulation of heterochromatin in the pericen-
tromeric region of all chromosomes and the telomeric region of the second chromosome
pair. The W chromosomes in females are heterochromatic (Figure 5d,e). The telomeric
sequences were detected only in the terminal positions of all chromosomes (Figure 7d,e).
FISH with the rDNA probe revealed a signal in the pericentromeric region of the 1st
chromosome pair (Figure 9d,e).

3.16. Varanus kordensis (Meyer, 1874)

We examined only a female individual. Karyotype with 2n = 40 chromosomes
(16 macro- and 24 microchromosomes). All macrochromosomes are bi-armed except the
4th chromosome pair which is acrocentric (Figure 3d). The C-banding revealed accumula-
tion of heterochromatin in the pericentromeric region of the chromosomes and in the W
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chromosome in females (Figure 5f). The telomeric sequences were detected only in the
terminal positions of all chromosomes (Figure 7f). FISH with rDNA probe revealed a signal
in the pericentromeric region of the 1st chromosome pair (Figure 9f).

3.17. Varanus olivaceus Hallowell, 1857

Karyotype with 2n = 40 chromosomes (16 macro- and 24 microchromosomes). All
macrochromosomes are bi-armed, except the 4th pair which is acrocentric (Figure 3e,f). The
C-banding revealed accumulation of heterochromatin mainly in the pericentromeric and
telomeric regions of macrochromosomes and in the W chromosome in females (Figure 5g,h).
The telomeric sequences were detected only in the terminal positions of all chromosomes
(Figure 7g,h). The FISH with rDNA probe revealed a signal in the pericentromeric region
of the 1st chromosome pair (Figure 9g,h).

3.18. Varanus primordius Mertens, 1942

We examined only a male individual. Karyotype with 2n = 40 chromosomes (16 macro-
and 24 microchromosomes). The macrochromosome pairs 1–3 and 5–8 are bi-armed, the
4th pair is acrocentric (Figure 3h). An additional animal of unknown sex was identified as a
triploid with 3n = 60 (Figure 2g). The C-banding revealed accumulation of heterochromatin
mainly in the pericentromeric region of the chromosomes (Figure 5i,j). The telomeric
sequences were detected only in the terminal positions of all chromosomes (Figure 7i,j).
The FISH with rDNA probe revealed a signal in the pericentromeric region of the 1st
chromosome pair (Figure 9i,j). The qPCR test revealed that the triploid individual had
an average of 0.71 gene dose ratio for the Z-specific genes in comparison to the male,
which corresponds to ZZW sex chromosome constitution (Table S2). The W chromosome
cannot be accurately identified in the metaphases by the C-banding (Figure 5i,j) or CGH
(Figure 10p,q), due to its small size and the bright signals on the other microchromosomes.

3.19. Varanus salvadorii (Peters & Doria, 1878)

Karyotype with 2n = 40 chromosomes (16 macro- and 24 microchromosomes). The
chromosomal pairs 1–3 and 5–8 are bi-armed, while the pair 4 is acrocentric (Figure 3i,j).
The C-banding revealed the accumulation of heterochromatin in the pericentromeric region
of the chromosomes and in the W chromosome in females (Figure 5k,l). The telomeric
sequences were detected in the terminal positions of all chromosomes. ITRs were detected
in the pericentromeric region of the 6th chromosome pair (Figure 7k,l). The FISH with
rDNA probe revealed a signal in the pericentromeric region of the 1st chromosome pair
(Figure 9k,l).

3.20. Varanus salvator komaini Nutaphand 1987

Karyotype with 2n = 40 chromosomes (16 macro- and 24 microchromosomes). All
macrochromosomes are bi-armed, except the 4th pair which is acrocentric (Figure 3k,l).
The C-banding revealed accumulation of heterochromatin in the pericentromeric region of
all chromosomes, in the telomeric region of the second chromosomal pair, and in the W
of the female (Figure 5m,n). The telomeric sequences were detected only in the terminal
positions of all chromosomes (Figure 7m,n). The FISH with rDNA probe revealed a signal
in the pericentromeric region of the 1st chromosome pair (Figure 9m,n).

3.21. Xenosaurus grandis (Gray, 1856)

We examined only a single male individual. Karyotype with 2n = 36 chromosomes
(12 macro- and 24 microchromosomes). All macrochromosomes are bi-armed (Figure 3m).

3.22. Xenosaurus platyceps King & Thompson, 1968

Two individuals of unknown sex were examined. Karyotype with 2n = 36 chro-
mosomes (12 macro- and 24 microchromosomes). All macrochromosomes are bi-armed
(Figure 3n). The C-banding revealed the accumulation of heterochromatin in the pericen-
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tromeric regions (Figure 5o). The telomeric sequences were detected in the terminal posi-
tions of all chromosomes and ITRs were detected on the 5th chromosomal pair (Figure 7o).
The FISH with rDNA probe revealed a signal on one pair of microchromosomes (Figure 9o).

3.23. Xenosaurus rectocollaris Smith & Iverson, 1993

Only female individuals were examined. Karyotype with 2n = 36 chromosomes
(12 macro- and 24 microchromosomes). All macrochromosomes are bi-armed (Figure 3o).
C-banding revealed heterochromatin in the centromeric regions of all macrochromosomes
and in some microchromosomes (Figure 5p). The telomeric sequences were detected only
in the terminal positions of all chromosomes (Figure 7p). The FISH with rDNA probe
revealed a signal on one pair of the microchromosomes (Figure 9p).

4. Discussion

The diploid chromosome numbers are in general variable in Anguimorpha (Figure 11),
from 2n = 20 in Anniella stebbinsi (reported by Bezy et al. [40] as Anniella pulchra; [43]) to
2n = 48 in Elgaria multicarinata [37] and Gerrhonotus liocephalus (current study). However,
the variability in chromosome number is highly unequally distributed among anguimor-
phan families, with most of the variability concentrated in the families Anguidae and
Anniellidae. On the contrary, other anguimorphan lineages have much more stable chro-
mosome numbers. Karyotypes with 2n = 40 chromosomes were identified in all 36 studied
species of monitors (family Varanidae), 2n = 36 chromosomes in three examined species of
helodermatids (family Helodermatidae), and in three species of the knob-scaled lizards
(family Xenosauridae). The karyotype with 2n = 32 chromosomes was revealed in the
current study in the only species of the family Shinisauridae (Figure 11).

Notably, 2n = 36 chromosomes is the most common diploid chromosome number in
the species of the clade Toxicofera, and it is considered the ancestral state for caenophidian
snakes [48], chameleons [49], and potentially also in iguanas and agamid lizards [29,50].
These estimations were largely based on the distribution of diploid chromosome number
variation across the phylogenetic spectrum of each lineage, and at least in the case of snakes
and iguanas, the reconstructed ancestral karyotypes differ in several interchromosomal
rearrangements and thus in chromosome morphology. We think that the ancestral kary-
otype of the anguimorphan reptiles cannot be accurately reconstructed at the current state
of knowledge, due to the extensive variability in diploid chromosome numbers and chro-
mosome morphology. The karyotype evolution of the anguimorphan reptiles should be
reconstructed in future studies either by comparative chromosome painting as applied in
monitors [33] or by comparing chromosome level assemblies, which are currently available
only for the Komodo dragon, Varanus komodoensis [35] and the Chinese crocodile lizard,
Shinisaurus crocodilurus [51]. We are confident that the recent advances in next-generation
sequencing technologies will make chromosome level assemblies feasible for additional
phylogenetically informative species in the near future.

In addition to the terminal position (Figures 6 and 7), interstitial telomeric-like repeats
were detected in five out of 20 studied species, namely, in Celestus warreni, Heloderma exas-
peratum, Heloderma horridum, Varanus salvadorii, and Xenosaurus platyceps. In both species
of the genus Heloderma, extensive amplification of telomeric repeats were identified in
several pairs of microchromosomes. Telomeric repeats often tend to accumulate in the
microchromosomes of sauropsids, as was documented in birds [52], turtles [44,53,54],
and snakes [55]. Microchromosomes have generally higher rates of recombination in
comparison to macrochromosomes [56–58]; therefore, we can speculate that telomeres
extensively amplify in microchromosomes as a consequence of the DNA repair mecha-
nism occurring after recombination events [59,60]. ITRs were detected in a single pair
of macrochromosomes in Xenosaurus platyceps and Varanus salvadorii, and in five pairs of
macrochromosomes in Celestus warreni. The origin of the ITRs is not clear, it might be a
result of chromosomal rearrangements, such as chromosomal fusions or inversions, as well
as activity of retrotransposons [61–64]. In addition, telomeric-like sequences are often part
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of the (peri)centromeric satellite motifs [65,66]. Overall, the presence of ITRs is quite rare in
anguimorphan reptiles, in comparison to other toxicoferan reptiles, such as “haenophidian”
snakes [67] and chameleons [49].
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Animals often show variability in the chromosomal position and the amount of ac-
cumulation of rDNA loci among and within species, e.g. [72–78]. The rDNA loci were
detected only in one pair of chromosomes in most of the studied anguimorphan species,
but their topology varies from a pair of microchromosomes in four species (Barisia rudicollis,
Gerrhonotus liocephalus, Xenosaurus platyceps, Xenosaurus rectocollaris) to a pair of macrochro-
mosomes in the remaining studied species (Figures 8 and 9). Notably, rDNA loci were
detected in two pairs of macrochromosomes in Heloderma horridum and H. exasperatum
(Figure 8). The presence of rDNA loci in multiple chromosome pairs is rather uncommon in
reptiles, and it was previously reported in few species, such as the boa Candoia paulsoni [67]
and the iguanas Oplurus cyclurus [74], Leiocephalus carinatus and Leiocephalus raviceps [72].

In addition, rDNA loci often accumulate on the sex chromosomes of reptiles. Notable
differences in the copies of rDNA loci between the Z/W and X/Y sex chromosomes were
previously reported in several species of trionychid and chelid turtles [53,79–81]. On the
other hand, the rDNA loci are not detected on the Y chromosome of the common sandfish
Scincus scincus (Scincidae) and the W chromosome of the Peters’ keeled plated lizard
Tracheloptychus petersi (Gerrhosauridae), although they contain their X and Z chromosomes,
respectively [7,82]. Notably, we did not detect any sex-specific accumulation on the sex
chromosomes of anguimorphan reptiles (Figures 8 and 9).

The chromosomal regions with rDNA loci tend to act as “hotspots” for recombination,
which can explain, at least partially, the large variability in the accumulation and chromo-
some position of rDNA loci [73]. Such variability can be neutral and tolerated by the cell.
In support, the comparison of silver-stained NORs (i.e., transcriptionally active rDNA loci)
and rDNA-FISH (i.e., all chromosome positions with rDNA loci) revealed variability in
the activity of rDNA loci [83–85]. Therefore, we speculate that the genome of some species
might have more copies of rDNA loci than the minimum requirement for proper cellular
function. For example, only 25–50% of rDNA loci are needed for normal development in
the African clawed frog, Xenopus laevis [86]. On the other hand, the variability in rDNA
loci can cause the development of cancer [87,88] and genome instability [89].

During the cytogenetic analysis, we identified a triploid individual of Varanus pri-
mordius (3n = 60) with the ZZW combination of sex chromosomes revealed by qPCR
(Table S2). The sex of the individual was not possible to identify accurately by morphology.
Another case of triploidy in the family Varanidae was previously reported in a male indi-
vidual of Varanus albigularis with ZZZ sex chromosomes [33]. The spontaneous triploidy
occurs rarely in reptilian species with a typical diploid karyotype. In addition to the
above-mentioned cases of monitors, to the best of our knowledge, spontaneous triploidy
was previously described in two species of snakes, Elaphe bimaculata [90] and Agkistrodon
piscivorus [91]. Among reptiles, several species of obligatory parthenogens of hybrid ori-
gin are triploids [92–100]. The identification of spontaneous triploidy in adults and the
existence of obligatory parthenogenetic triploid species show that triploid individuals are
viable in many reptile lineages.

The C-banding revealed heterochromatin typically in the (peri)centromeric regions,
and occasionally in the telomeric regions (Figures 6 and 7). The W chromosomes were
detected by C-banding, in all studied species of helodermatids and monitors, except
V. primordius (Figures 4, 5 and 10). Putative W chromosomes were detected in Abronia
lythrochila, Celestus warreni, and Gerrhonotus liocephalus. In Abronia lythrochila, the C-banding
(Figure 4e,f) revealed a stronger accumulation of the heterochromatin in a single microchro-
mosome, which agrees with the previous report of a ZZ/ZW system in this species [34];
however, no sex-specific differences were detected by CGH (Figure 10c,d). Notably, C-
banding and CGH did not reveal any sex-specific pattern in the closely related species
Abronia deppii (Figure 4b,c and Figure 10a,b), which indicates that the species of the genus
Abronia might not share homologous, or at least not equally differentiated sex chromosomes.
In Celestus warreni, female-specific signal was detected in a single microchromosome by
both C-banding (Figure 4j,k) and CGH (Figure 10g,h). In Gerrhonotus liocephalus, female-
specific signal was detected in a single chromosome from the 1st pair by both C-banding
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(Figure 4l) and CGH (Figure 10i). However, chromosomal material was not available from a
male in Gerrhonotus liocephalus, and we were thus not able to compare both sexes to validate
the presence of a ZZ/ZW sex determination system.

We assume that sex chromosomes are likely homomorphic and poorly differentiated
in the rest of the studied anguimorphan species, although we cannot exclude that perhaps
some of these species might have environmental sex determination (ESD). To expand our
knowledge on sex determination and sex chromosome evolution in the anguimorphan
lizards, we will need to use advanced genomic/bioinformatic analysis (such as RAD-
seq, genome coverage analysis), as well as incubation experiments for the detection of
possible ESD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10071612/s1, Table S1: Summary of studied species and number of examined individuals,
Table S2: Primers and results of the qPCR test for estimating the sex chromosome constitution in the
triploid Varanus primordius.
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