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ABSTRACT

Streams and rivers form dense networks that drain the

terrestrial landscape and are relevant for biodiversity

dynamics, ecosystem functioning, and transport and

transformationofcarbon.Yet, resolving inbothspaceand

time gross primary production (GPP), ecosystem respi-

ration (ER) and net ecosystem production (NEP) at the

scale of entire stream networks has been elusive so far.

Here, combining RandomForest (RF)with time series of

sensordata in12reachsites,wepredictedannual regimes

ofGPP,ER,andNEPin292individualstreamreachesand

disclosed properties emerging from the network they

form. We further predicted available light and thermal

regimes for the entire network and expanded the library

of streammetabolism predictors. We found that the an-

nual network-scale metabolism was heterotrophic yet

with a clear peak of autotrophy in spring. In agreement

with the River Continuum Concept, small headwaters

and larger downstream reaches contributed 16% and

60%, respectively, to theannualnetwork-scaleGPP.Our

results suggest that ER rather than GPP drives the meta-

bolic stability at the network scale, which is likely

attributable to thebuffering functionof the streambed for

ER, while GPP is more susceptible to flow-induced dis-

turbance and fluctuations in light availability. Further-

more, we found large terrestrial subsidies fueling ER,

pointing to an unexpectedly high network-scale level of

heterotrophy, otherwise masked by simply considering

reach-scale NEP estimations. Our machine learning ap-

proach sheds new light on the spatiotemporal dynamics

of ecosystemmetabolismat thenetwork scale,which is a

prerequisite to integrate aquatic and terrestrial carbon

cycling at relevant scales.
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HIGHLIGHTS

� Machine learning enables extrapolating stream

metabolism, temperature, and light to the net-

work scale.

� GPP, ER, and NEP change predictably across the
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river network.

� ER at network-scale allows for separation be-

tween allochthonous and autochthonous contri-

butions.

INTRODUCTION

Primary producers fix carbon dioxide (CO2) as or-

ganic carbon through photosynthesis, a flux known

at the ecosystem level as gross primary production

(GPP). Terrestrial GPP is the largest global carbon

flux on Earth and drives critical ecosystem func-

tions, foremost respiration, growth, and nutrient

cycling. Terrestrial and marine GPP and ecosystem

respiration (ER, as the respiration from all hetero-

trophic and autotrophic organisms) control land-

atmosphere and ocean-atmosphere CO2 exchange

with feedbacks on the world’s climate (Falkowski

and others 1998; Heimann and Reichstein 2008;

Beer and others 2010). The balance between GPP

(positive flux) and ER (negative) flux is the net

ecosystem production (NEP), which informs on the

net accumulation of organic carbon and its poten-

tial trophic transfer, or on its export to other

ecosystems. Understanding and predicting GPP and

ER in terrestrial and marine ecosystems has been in

a mainstay in global carbon cycling research and

Earth system sciences (Chapin and others 2006;

Goulden and others 2011; Xiao and others 2013).

Streams and rivers drain the continents in dense

networks. Today we understand that the CO2

evasion fluxes from these ecosystems, including the

smallest headwaters within the networks, are

within the same range as ocean uptake fluxes of

CO2, although in the opposite direction (Raymond

and others 2013; Drake and others 2018; Horgby

and others 2019b; Rocher-Ros and others 2019).

Although these fluxes are becoming increasingly

better constrained, the relative importance of CO2

sources within the catchment versus those from in-

stream metabolism to the emitted CO2 is still often

unclear (Hotchkiss and others 2015; Duvert and

others 2018; Horgby and others 2019a). The proper

quantification of metabolic fluxes in streams and

rivers networks, and this across spatial and tem-

poral scales, is therefore critical to pinpoint the role

of these ecosystems in the global carbon cycle.

The advent of environmental sensor technology

has profoundly changed the way we study stream

ecosystem metabolism. Today, we are able to pro-

duce high-resolution time series of GPP, ER, and

NEP at reach scale to draw conclusions on the

drivers of stream ecosystem metabolic regimes (for

example, Beaulieu and others 2013; Hall Jr and

Beaulieu 2013; Hall Jr and others 2015; Bernhardt

and others 2018). With such annual or even mul-

tiannual time series, the effects of shifts in the

hydrological regime, including storm-induced dis-

turbance and recovery dynamics, or of pulsed re-

source supply, for instance, can be studied

(Uehlinger and Naegeli 1998; Raymond and others

2016; Demars 2019). Encompassing daily and sea-

sonal variation of the metabolic regime, these time

series are also critical to establish solid annual

budgets of metabolic fluxes within streams, which

are essential to assess catchment-scale carbon bio-

geochemistry and ecosystem fluxes (Tank and

others 2018). In this context, NEP is particularly

relevant as it links the terrestrial and aquatic car-

bon cycles (that is, the ‘‘boundless carbon cycle’’,

Battin and others 2009) through lateral carbon

fluxes (Regnier and others 2013) and furthermore

informs on the biogeochemical connectivity

downstream and throughout fluvial networks

(Battin and others 2008). Finally, understanding

and predicting the metabolic regime of streams and

rivers is also critical for ecosystem restoration at the

nexus between hydrology, and both carbon and

nutrient cycling (Palmer and Ruhi 2019).

Most studies on metabolic regimes refer to indi-

vidual stream reaches (for example, Uehlinger and

Naegeli 1998; Roberts and others 2007; Beaulieu

and others 2013; Hall and others 2016; Appling and

others 2018; Bernhardt and others 2018; Ulseth

and others 2018), and therefore they do not allow

to draw conclusions on potentially emerging

properties at the scale of entire stream networks.

This, however, would be essential to properly assess

the relevance of streams and rivers for carbon cy-

cling at regional and global scales. One noticeable

exception is the study by Rodriguez-Castillo and

others (Rodrı́guez-Castillo and others 2019) using

spatial statistics to extrapolate ecosystem metabo-

lism from 41 reaches over 72 hours to a stream

network. While this study helps to resolve the

spatial variation of stream ecosystem metabolism

within a network, it does not inform on its tem-

poral dynamics. The combination of both spatial

and temporal variation (that is, the regime) of

stream metabolism at the level of entire networks

has been hampered by the lack of suitable model-

ing approaches. Resolving this issue is relevant for

the proper upscaling of metabolic fluxes in time

and space and to detect emerging properties of

stream networks. Owing to the dendritic and other

topological characteristics of stream networks, the

hydrological regime and its resilience are not uni-

formly distributed across a given network (Botter

and others 2013). Furthermore, network structure
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seems to affect the community structure of stream

biofilms (Widder and others 2014), which orches-

trate numerous ecosystem processes, including

metabolism (Battin and others 2016). A recent

series of theoretical studies using optimal channel

networks have highlighted the potential role of

stream network emerging properties for the re-

moval of dissolved organic carbon and nitrogen,

and for GPP regimes (Bertuzzo and others 2017;

Helton and others 2018; Koenig and others 2019).

Machine learning is now offering novel oppor-

tunities to advance geosciences at the interface

between climate and global carbon models (for

example, Reichstein and others 2019), for instance,

but also ecological sciences (for example, Olden

and others 2008). Despite the power of machine

learning to resolve complex nonlinear or multi-

modal relationships as they often underlie Earth’s

surface and ecological processes, to date, it remains

poorly used in stream biogeochemistry. Here, we

propose that machine learning has the potential to

extend stream ecosystem metabolism from the

reach scale to the scale of entire stream networks.

Over the last years, a suite of environmental pre-

dictors for stream ecosystem GPP and ER has been

identified (for example, Mulholland and others

2001; Beaulieu and others 2013; Bernhardt and

others 2018). Chief among them figure photosyn-

thetic active radiation (PAR) and temperature (T).

Machine learning could thus be used to extrapolate

both in time and space such heterogeneous forcings

(for example, streamwater temperature and light)

required, for instance, to run process-based models

for reach-scale metabolism (Hall and others 2016;

Segatto and others 2020) to the scale of an entire

stream network. Furthermore, the same procedure

could be tested directly on reach-scale estimates of

ecosystem metabolism to check whether available

data contain enough information to explain net-

work-scale variations in metabolic regimes.

In this study, we used Random Forests (RF,

Breiman 2001) as a supervised learning technique

to describe and predict patterns of metabolic re-

gimes (that is GPP and ER) and critical environ-

mental forcings (that is PAR and T) at the scale of

an entire stream network. To do so, we used 18-

month-long time series of data available for the

Ybbs River network (Austria, Figure 1).

Streamwater temperature, photosynthetic active

radiation, and dissolved oxygen concentration

were available for all 12 reach sites (Ulseth and

others 2018). Furthermore, we used such data to

estimate daily rates of ecosystem GPP, ER, and NEP

via the single-station approach (see ‘‘Methods’’

section). We explicitly trained our RF model by

integrating distal factors, such as vegetation type,

canopy cover, hydraulic flow geometry, hydroge-

omorphic properties, incident light, precipitation,

and other climatic variables.

This approach allowed us to reliably establish

annual regimes of water temperature, light, and

metabolic fluxes (GPP, ER, and NEP) across the

Ybbs River network and to quantify the relative

contributions from small and large streams to these

fluxes at the network scale. We were also able to

quantify the annual variability of each of these

fluxes across the network with the goal to assess

the metabolic resilience from small to larger

streams. Finally, we partitioned the allochthonous

and autochthonous components of ER, which is

important to assess allochthony at the network le-

vel. Our findings shed new light on stream network

metabolic regimes and provide empirical evidence

for long-standing theory predicting shifts of

ecosystem metabolism along the stream continuum

(Vannote and others 1980).

METHODS

Study Area

We combined our machine learning approach with

data from the Ybbs River network, which drains a

256 km2 prealpine catchment in Austria

(47�48’22.9’’ N, 14�57’00.8� E). The stream net-

work is shown in Figure 1 and has been delineated

from a 10-m-resolution digital elevation model

(DEM) (Besemer and others 2013). The climate is

prealpine with an average annual precipitation of

approximately 900 mm and an average tempera-

ture of approximately 7 �C (Ceola and others

2014).

The response variables that we aim to predict and

extrapolate are water temperature (T), photosyn-

thetic active radiation (PAR), GPP, and ER. Infor-

mation about such variables is available

simultaneously for 12 stream reaches for the period

going from January 2013 to June 2014 (Figure 1).

Daily metabolic rates of GPP and ER [gO2m
-2d-1]

have been locally inferred from high-frequency

measurements of dissolved oxygen concentration

using the single-station approach (Demars and

others 2015). Specifically, we adopted the approach

described in Segatto and others (2020) in which

GPP is assumed linearly dependent on PAR and ER

is constant throughout the day. Further details on

the dataset can be found in Ulseth and others

(2018); Segatto and others (2020), and in the

Supporting Information (SI) Methods.
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Random Forest

Random forest (RF) is an ensemble learning algo-

rithm combining many classification or regression

trees (CARTs, see Breiman and others 1984) which

has been developed to overcome some of the lim-

itations of single CARTs: their poor predictive

power and the fact that they do not generalize well

from the training data (that is, overfitting, Bramer

2007). One such improvement is bootstrap aggre-

gating, also called bagging (Breiman 1996), which

increases the stability and accuracy of CARTs and

avoids overfitting. In bagging, multiple trees are

trained independently on each other. Trees are

created (up to a user-defined number Ntree) by

drawing a random subset of training samples with

replacement (bootstrap sample). About two-thirds

of the sample (referred to as in-bag sample) is

typically used to train the single trees. Observations

in the original dataset that do not occur in a

bootstrap sample are called out-of-bag observations

(OOB observations) and are used to estimate the

prediction error (typically the root mean square

error, RMSE, in case of regression) of the tree (out-

of-bag error, OOB error). Random forests (Breiman

2001) are a slightly modified version of bagged

trees in which, at each node, only a small number

of randomly selected variables (Mtry, typically set to

one-third of the features for regression trees, Gis-

lason and others (2006)), are made available for the

split. In both cases (bootstrap aggregating and RF),

the response variable is calculated averaging, in the

case of regression, the predictions of all trees. RF

turns out to perform very well compared to many

other classifiers including popular support vector

machines and neural networks and is robust

against overfitting (Breiman 2001). To assess the

importance of a specific predictor in a RF, the val-

ues of that variable are randomly permuted for the

Figure 1. Ybbs Catchment and related major spatiotemporal covariates employed in the learning process: elevation, tree

cover density (TCD), dominant leaf type (DLT), and light exposition (top four panels, clockwise order). Sampled reaches

(yellow dots numbered from 1 to 12) and the weather station (red dot) are shown as well. Major temporal covariates are

displayed from January 2013 to June 2014 in the right-hand side of figure. High-frequency measurements of irradiation,

air pressure, precipitation, and air temperature have been collected at the Lunz am See weather station. Hourly discharge

displayed in the last subplot refers to the measured signal at the outlet of the catchment. Light and air temperature are

shown both at hourly (thin line) and daily (thick line) timescale.
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OOB observations, and then the modified OOB

data are passed down the tree to get new predic-

tions (Breiman 2001). The difference between the

RMSEs for the modified and original out-of-bag

data is a measure of the importance of the variable.

Overfitting can be reduced by selecting only fea-

tures that improve prediction performances of un-

seen observations.

Feature Variables

We defined the stream reach (that is, the channel

segment between two consecutive confluences or

between the head of a stream and the next con-

fluence), and its underlying subcatchment, as the

basic unit of this study. The Ybbs network consists

of 292 reaches. An entry for the training of the RF

can be established only if all features (or predictors,

or learners, that is measurable properties of the

phenomenon under study) and response variables

(that is, the recorded observations of that phe-

nomenon) are simultaneously available for the

same reach and time. A full list of all features used

in the RF to predict the response variables is re-

ported and further described in Table S1 in SI

Methods, while a summary is given in what follows.

Discharge was measured at the catchment clo-

sure (Figure 1), and was downscaled to every reach

of the network by assuming local discharge pro-

portional to contributing area (Segatto and others

2020). The geomorphic properties of the Ybbs

network have been extensively studied by Ceola

and others (2014), and we adopted the same

exponents to characterize how stream width w [m]

and the Gauckler Strickler’s roughness coefficient

Ks [m
1/3s-1], scale as a power-law function of the

contributing area A [km2]. We determined the

average streambed slope of each reach from the

DEM and estimated the time series of mean water

depths, z(t) [m], assuming rectangular reach cross

sections of constant width and uniform flow con-

ditions (Manning equation, as in Segatto and oth-

ers (2020)). Few other geomorphological network

properties such as distance to the outlet and total

upstream length have also been added (SI Methods).

We further included spatial information on veg-

etation cover obtained starting from high-resolu-

tion layers of dominant leaf type (DLT), describing

the presence or absence of broadleaved or conif-

erous trees, and tree cover density (TCD) obtained

via the Copernicus Land Monitoring Service (Fig-

ure 1). Information about surface light exposition

has been derived from the DEM by creating a

grayscale normalized representation of the catch-

ment exposition, with the sun’s relative position

taken into account for shading the image (Fig-

ure 1). Starting from the distributed information,

we derived both reach vegetation coverage (that is,

the average DLT and TCD over the reach pixels) as

a proxy of stream canopy shading (termed DLT

Local and TCD Local) and watershed vegetation

coverage (that is, the average DLT and TCD over

the entire subcatchment) as a possible proxy of

substrate and nutrients availability (termed DLT

WS and TCD WS). The same procedure was fol-

lowed also for light exposure.

We integrated climatic information using data

collected at the weather station in Lunz am See

(Figure 1), which included precipitation [mm] and

its cumulative duration [min], air temperature [C],

barometric pressure [mmHg], irradiation [W m-2],

duration of sunshine [min] and some derived

smoothed signals from temperature (see Figure 1

and Table S1 in SI Methods). Moreover, we included

distance from the meteo-station to account for

possible spatial correlation between variables

measured there and in other places of the network.

Time-related predictors such as flags tracking the

fraction of the day and of the year, month, and

season have been added to the feature library. Fi-

nally, we implemented the algorithms in Meeus

(1991) to predict for each day, the apparent (re-

fraction corrected) sunrise, noon, and sunset times

in seconds from midnight and from which we

characterized intra-daily expected solar temporal

dynamics (see SI Methods).

Finally, to possibly account for biophysical

properties not explicitly considered, or not avail-

able for all reaches, we embodied geometrical fea-

tures along which such properties could cluster.

Specifically, we included Euclidean (that is the

subcatchment Cartesian coordinates) and network

(that is distance from the outlet) geometrical fea-

tures.

Model Training Procedure

We trained the RF for PAR at daily timescale (12

sites 9 609 d = 7308 observations/feature; 24 fea-

tures, (Table S1 in SI Methods) and the RF for T at 1

h (7308 9 24 h = 175392 observations/feature; 33

features, Table S1 in SI Methods). RFs for GPP and

ER have been trained at daily scale as it corre-

sponds to the scale of the single station estimates.

Moreover, we investigated the gain in performance

that can be achieved including the RF estimates of

mean daily T and PAR in the feature portfolio of

GPP and ER RFs. After the first set of trials to

appreciate the relationship between OBB error and

the number of trees Ntree, we set Ntree = 500 for
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daily-scale RFs and Ntree = 200 for the hourly-scale

RF, whereas Mtry has been fixed, for all the fol-

lowing scenarios, to the customary value of one-

third of the features number (see ‘‘Random Forest’’

section).

We devised two training setups, termed S and T,

designed to probe the performance of the devel-

oped RF to extrapolate in space and time, respec-

tively. In training S, we assessed the RF spatial

prediction power by completely excluding, one at a

time, a monitored reach site from the learning stage

of each response variable, and evaluating model

performance as the RMSE in the predicted response

variable in the excluded site. This setup thus im-

plies training 12 RFs (as many as the number of

sites) for each response variable. The RFs were

originally trained using all available features that

were then ranked according to their cumulative

OOB variable importance (see ‘‘Random Forest’’

section) over the 12 RFs. The optimal subset of

features ensuring nonoverfitting was then selected

as follows. The RFs were then retrained multiple

times progressively excluding features from the

least to the most important. Finally, we selected the

subset of features that minimized the RMSE of the

prediction of the response variables in the excluded

sites (see Table S1 and Figures S1–S6 in SI Methods).

When extrapolating RF results to the whole river

network (292 reaches), we averaged the prediction

of the 12 RFs (termed ensemble RF).

To test for the temporal prediction power, we

trained a single RF per response variable in which

the training dataset included the first year of the

time series of all the 12 sites (January 2013–Jan-

uary 2014), while excluding the last six months

(named training T). Model performance was eval-

uated as the RMSE in the excluded months of all

sites together. Feature selection was then per-

formed as described for training S (see Table S1 and

Figures S7–S12 in SI Methods). Although other

configurations are possible, for example simulta-

neously leaving out a particular site and a partic-

ular time span for training, lack of distributed data

prevented the investigation of more complex sce-

narios as the resulting training set would not have

left enough information to properly train the

model.

Contrarily to the S training, we observed that

RFs in the T setup achieved a low predictive error

with few features variable and were not very sen-

sitive to the further addition of features (Fig-

ures S7–S12 in SI Methods). To have a unique set of

features for each response variable, we retained the

predictors selected under the more demanding

training S (see Table S1 in SI Methods), and using

only the selected features, we repeated the whole

training sequence illustrated above (that is, ranking

of feature importance, re-training progressively

excluding least importance features) to check for

possible residual overfit (Figures S13–S22 in SI

Methods) and evaluate the final predictive error.

Allochthonous vs Autochthonous
Respiration

Combining a carbon removal model with the scal-

ing theory of fractal river network, Bertuzzo and

others (2017) predicted that the respiration of al-

lochthonous (that is, coming from the terrestrial

ecosystem) material should exhibit a power-law

scaling with the drainage area. We combined such

prediction with the RF results to provide a first

approximation of the separation of the total ER into

its allochthonous (ERal, that is, terrestrial deliveries

to the stream network) and autochthonous (ERau,

that is, of organic material produced within the

network) components. Specifically, we determined

the exponent of the power-law scaling via a

quantile regression of daily ER values in the dif-

ferent reaches assuming that the lower bound

represents the ERal and that any additional respi-

ration should come from ERau. We repeated the

procedure for four different seasons to capture the

possible effect of temperature and delivery rates on

ERal (further details in Figure 6).

RESULTS

RF Modeling in the Ybbs River Network

Training T consistently achieved lower predictive

error than training S for all response variables

(Table 1). Although the latter uses a higher fraction

of data (11/12 versus 2/3), this result was expected

because training S has only 11 sites to learn how to

extrapolate spatial features to the whole network.

In contrast, training T relies on more than 365 time

points to learn to predict temporal patterns. We

retained the results of training S which is deemed

more demanding yet more suitable for spatial

extrapolation (to which all figures and results re-

fer). A compendium of site-by-site RF predictions

for all the implemented training schemes (that is,

RF for PAR, T, GPP, ER, and GPP and ER including

extrapolated T and PAR under both training T and

S setups) is available in SI Results in Figures S23–

S30. Partial dependence plots showing the isolated

effect of each predictor for each response variable

are reported in SI Results in Figures S31–S34.
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The trained RF correctly recognized upstream

reaches with low PAR because of high tree cover

density compared to the wider downstream reaches

with higher PAR (Figure 2). PAR was heteroge-

neously distributed throughout the Ybbs River

network with daily averages ranging from 5112 to

17555 lux. Modeled average annual streamwater

temperatures ranged from 6 to 8�C and clearly in-

creased downstream (Figure 2). The temporal re-

gimes of PAR and streamwater temperature have

been correctly learned. For instance, predicted daily

PAR and streamwater temperature closely followed

measured values in two different subcatchments

(Figure 2, see SI Results for all other sampled

reaches time series and related prediction errors).

Overall, the RF model reliably predicted the an-

nual regimes of ecosystem GPP and ER and, by

difference, also NEP across the Ybbs River network

(Figure 3, Table 1). However, we found that

including modeled daily PAR and streamwater

temperature (Figure 2) did not significantly im-

prove our RF predictions of both GPP and ER re-

gimes. We, therefore, retained the simpler

formulation that does not include them in the li-

brary of predictive features. Daily metabolism pre-

dicted by RF agreed reasonably well with GPP and

ER computed from the single-station method as

indicated by normalized root-mean square errors

(GPP: 5.8 to 18 %; ER: 11 to 18 %) (Figure 3, see SI

Results for all other sites). Furthermore, we found

good agreement between reach-scale mean annual

GPP and ER computed from the single-station ap-

proach and the RF predictions when the focus site

was excluded from training (that is, training S)

(GPP: r = 0.7, p < 0.05; ER: 0.6, p < 0.05, across

the 12 streams within the Ybbs River network,

Figure S35 in SI Results). The main predictors for

GPP were precipitation, irradiation, sunshine

duration and period of the year, air temperature

and pressure, discharge, streamwater depth, posi-

tion along the river network, and light exposure.

The main predictors for ER were irradiation, sun-

shine and precipitation duration, period of the

year, air temperature and pressure, discharge,

slope, length, flow depth, position, and watershed

tree cover density and dominant leaf type (see

Table S1 in SI Methods). RF predicted increasing

patterns of mean daily GPP moving from the

smallest headwaters (0.2 to almost 1 g O2 m
-2d-1),

toward the outlet (2.7 g O2 m-2d-1, Figure 3). By

contrast, mean daily ER was highest in the head-

waters (up to 3.1 g O2 m-2d-1), lowest in the

mainstem within the upper catchment (around 0.9

g O2 m-2d-1) and intermediate (around 1.5 g O2

m-2d-1) at the outlet of the Ybbs River network.

Calculated mean daily NEP values consistently

indicate heterotrophy (-2.5 to -0.5 g O2 m-2d-1)

within the headwaters and autotrophy (up to 1 g

O2 m-2d-1) along the mainstem, particularly to-

ward the most downstream reaches.

Spatiotemporal Variation of Ecosystem
Metabolism at Network Scale

Integrating the reach-scale metabolic fluxes, we

were able to assess ecosystem metabolic regime at

the network scale and this across an entire year

(Figure 4). This approach detected a conspicuous

peak in GPP during spring (April, May), which

transiently rendered the entire network metabo-

lism autotrophic with a cumulative NEP of 0.1 Gg

O2 (equivalent to an areal flux of �3 g O2 m
-2d-1)

during that window (Figure 4B). ER was elevated

during summer, which reversed the network-scale

metabolism to heterotrophy during the rest of the

year. This high level of heterotrophy becomes

obvious when comparing the metabolic fluxes

cumulated over the entire year and across the 292

streams, with GPP, ER, and NEP averaging 326

(95% range: 173 ‚ 576), -824 (95% range: -1068

Table 1. RF Model Efficiency.

Response Variable Training Sa NRMSEb (%) Training T NRMSEb (%)

PAR 6.8 4.8

T 5.5 5.0

GPP 7.8 7.1

ER 9.9 7.7

GPP including T, PAR 7.2 7.1

ER including T, PAR 8.9 7.2

aFigures displayed in ‘‘Results’’ section refer to this setup.
bError estimates refer to the RMSEs on the predicted data not used during training, normalized by the range (that is, the difference between the maximum and minimum value)
of the measured data. Lower values indicate less residual variance. See SI Results for the single sites prediction errors.
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‚ -476), and -498 (95% range: -824 ‚ 107) g O2

m-2y-1, respectively. These areal fluxes translate

into network-scale annual fluxes of 0.63, -0.83,

and -0.20 Gg O2 for GPP, ER and NEP, respectively

(Table 2).

To assess the relative contributions of small and

larger streams to the network metabolism, we

aggregated streams into three groups according to

their Strahler’s order and the related catchment

size. Group I includes all streams with catchment

size smaller than the largest first-order stream (5.6

km2), group II those smaller than the largest third-

order stream (that is, from 5.6 to 36 km2), and

group III all the other larger streams. Figure 4B

shows how the annual, network scale metabolic

regime is partitioned among the three groups,

while Figure 4C reports the variability of the me-

tabolic patterns among individual reaches belong-

ing to the three different groups. Not unexpectedly,

larger streams contributed more than 60% to the

network annual GPP despite their smaller contri-

bution by streambed area extent (Table 2). Smallest

streams (that is, group I) contributed 26% of the

total streambed area, but only 16% of the annual

primary production. Interestingly, streams from all

three groups contributed more evenly to the net-

work ER (Table 2). As a result of GPP and ER pat-

terns across the network, the smallest streams

largely drove the heterotrophy (negative NEP) that

we observed at the network scale. A further way to

Figure 2. Random forest (RF) predictions of light (PAR) and water temperature (T). Maps in the left column show RF

predictions for mean daily PAR (top) and streamwater temperature (bottom) of the 292 stream reaches composing the

Ybbs river network. Plots in the right column show the comparison between the time series of measured and predicted

mean daily PAR and T for two representative reach sites (a and b, see location on the maps). The comparison for the

remaining sites is reported in SI Results in Figures S23 and S25. Results refer to the S training (see ‘‘Methods’’ section). The

predicted time series reported here are derived using the RFs trained excluding the site shown (that is, site a and b,

respectively). Maps show the results of the ensemble RF, that is, the average of the 12 RFs obtained excluding all sites one

at a time (see ‘‘Methods’’ section).
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explore stream metabolism across the network is to

establish scaling relationships between metabolic

fluxes of stream reaches and their position along

the river network, here indicated by their catch-

ment size (Figure 4A). Annual mean GPP did not

change significantly with catchment size below 18

km2, but beyond this threshold GPP significantly

increased with the logarithm of catchment size. On

the other hand, annual mean ER increased (that is,

decreased in absolute value) with catchment size

up to 47 km2 and decreased beyond this break-

point. Finally, annual mean NEP increased (that is,

became less heterotrophic) with catchment size up

to a breakpoint at 13 km2, beyond which it in-

creased at an even higher rate, eventually becom-

ing positive toward the outlet.

It is relevant to understand the stability of

ecosystem processes as a property that potentially

emerges from stream networks (for example, Sabo

and others 2010; Terui and others 2018). Our

predictions from RF modeling allowed us to assess

the temporal variability of the metabolic fluxes

across the Ybbs River network (Figure 5). Mea-

sured as the coefficient of variation (CV) of the

daily fluxes over one year, we found that the

temporal variability of GPP increased downstream

(Pearson’s r = 0.33, p < 0.01), whereas the tem-

poral variability of ER exhibits a weaker linear

downstream trend (r = 0.13, p < 0.05).

We further combined the RF modeling results

and an organic carbon removal model (Bertuzzo

and others 2017) to estimate how daily reach-scale

Figure 3. Random Forest (RF) predictions of network-scale metabolic regimes. Maps show RF predictions for mean daily

GPP (top-left) and ER (top-right), and NEP (bottom-left) as difference between GPP and ER. Plots (bottom-right) show the

comparison between the time series of estimated (via the single-station approach) and predicted (via RF) daily GPP and ER

for two representative reach sites (a and b, see location on the maps). The comparison for the remaining sites is reported in

SI Results in Figure S27. Results refer to the RF trained in the S setup and that does not include the predicted PAR and T in

the feature library (see ‘‘Methods’’ section). Maps show the results of the ensemble RF, that is the average of the 12 RFs

obtained excluding all sites one at a time (see ‘‘Methods’’ section). Plots report both the prediction of the ensemble RF (tick

line) and of the RF trained excluding the site shown (thin line).
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ER is partitioned between the respiration of auto-

chthonous (ERau, that is, produced as GPP within

the same reach or upstream) and allochthonous

(ERal, that is, carbon imported from the surround-

ing terrestrial ecosystem) material (Figures 6, 7). In

stream ecology, allochthonous could sometimes

refer to the ecosystem outside the single reach

being analyzed, including the upstream stream

Figure 4. Stream ecosystem metabolic regime at network scale. Stream reaches have been clustered in three major groups

according to their Strahler’s stream order and catchment size (panel a and c). Group I (green) includes all streams with

catchment size smaller than the largest first-order stream (5.6 km2), group II (orange) those smaller than the largest third-

order stream (that is, from 5.6 to 36 km2) and group III (blue) all the other larger streams. Panel a displays scatter plots of

reach-scale mean daily GPP, ER and NEP against drainage area, in logarithmic scale, and their piece-wise regression lines

whose equations read as follows (lbp = left side; rbp = right site of the break point): GPPlbp = 0.779 - 0.027 log(A);

GPPrbp = -1.264 + 0.676 log(A); ERlbp = - 2.43 + 0.270 log(A); ERrbp = - 0.59 - 0.207 log(A); NEPlbp = - 651 + 0.240

log(A); NEPrbp = -2.712 + 0.649 log(A). Breakpoints have been selected to minimize the overall RMSE among all

possible combinations (including no breakpoints). Panel b displays the contribution of the different groups to the total,

network-scale GPP and ER, expressed per unit of streambed area of the entire river network. Bottom plot of panel b shows

network scale NEP per unit of river network streambed area. Top row of panel c shows the frequency distribution of the

Strahler’s order of the streams belonging to the three different groups. Bottom plots show the range of variability (colored

areas) and the average trend (black lines) of the reach-scale GPP, ER, and NEP of the three different groups.

Table 2. Whole River Network Annual Ecosystem Metabolism Along with the Contribution of the Three
Groups Identified.

Streambed area [km2] GPP [GgO2] ER [GgO2]
b NEPa [GgO2]

River Network 1.30 0.63 0.83 - 0.20

Group I (n = 204c) 0.34 (26.2%d) 0.10 (16.2%) 0.28 (33.7%) - 0.18

Group II (n = 59) 0.42 (32.1%) 0.13 (20.2%) 0.25 (29.9%) - 0.12

Group III (n = 29) 0.54 (41.7%) 0.40 (63.6%) 0.30 (36.4%) 0.10

aNEP, calculated as the difference between GPP and ER.
bGgO2: Giga-grams of O2 = 109 gO2.
cN, refers to the number of reaches included in the ith group.
dPercentages between parenthesis refer to the relative contribution of the single group to the river network values.
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ecosystems. We instead highlight that, as the scale

of the present study is the whole network, al-

lochthonous here refers to an origin other than the

whole stream ecosystem. We found that at the scale

of the entire network and over one year, 37% of

the GPP is respired (ERau = 0.37 Gg O2) and that

allochthonous C was the dominant source to ER

(ERal = 0.46 Gg O2). Clearly, ERau mirrored the

seasonal pattern of GPP, with a peak in spring and a

minimum in winter, when the potential for GPP

and downstream transport thereof was low. ERal

peaked instead in late summer fall. At the network

scale ERau was lower than ERal except during

spring when a switch in the dominant energy

source was observed. When breaking the network-

scale fluxes down to groups of stream sites (I, II and

III), ERal clearly dominated in almost all groups,

whereas ERau increased downstream as did GPP.

The excess of GPP that is not respired within the

river network is mostly produced in group III.

DISCUSSION

Over the last decade, the River Continuum Con-

cept has fundamentally shaped our conceptual

understanding of how ecosystem metabolism may

change along the longitudinal continuum from

small streams to larger rivers downstream (Vannote

and others 1980; Fisher and others 2004). Despite

this, we have not been able to reliably predict

stream ecosystem metabolism at the scale that is

relevant to carbon cycling. Clearly, this is at the

scale of stream networks that drain the landscapes.

Although this has been achieved with increasing

accuracy for terrestrial ecosystems (Field and others

1998; Anav and others 2015), the heterogeneous

and nested structure of stream and river networks

has encumbered the prediction of their metabolic

fluxes on an annual basis. As a consequence, we

have not yet been able to assess properties of me-

tabolic regimes potentially emerging from real-

world stream networks.

Our study provides a first proof of concept that

data-driven machine learning is a valuable tool to

predict the annual regime of ecosystem metabolism

at the level of an entire stream network. We opted

for RF as a flexible algorithm, whose predictive

performance can compete with the best supervised

learning techniques (for example, artificial neural

networks) (Liu and others 2013; Rodriguez-Galia-

no and others 2015). Overall, RF predicted rea-

sonably well the annual regimes of GPP and ER.

We do acknowledge, however, that our approach

failed to reconstruct some temporary and localized

events of ecosystem metabolic activity; this failure

increased the predictive error of the individual site

excluded from training. On the other hand, the

annual GPP and ER fluxes agreed well with the

observed ones (Figures S35 and S36 in SI Results).

This highlights the advantage of our modeling ap-

proach as it allows the continuous appreciation of

annual metabolic regimes that are otherwise often

prone to missing data. Furthermore, our annual

estimates of GPP and ER are closely bracketed by

those reported from other headwater streams cov-

ering various biomes (for example, Battin and

others 2008; Hoellein and others 2013; Rodrı́guez-

Castillo and others 2019). We are therefore confi-

dent that RF modeling is a valuable tool to

extrapolate metabolic regimes in every reach of an

entire stream network.

The Ybbs streamwater temperature regime at the

network scale was predicted by a combination of all

available predictors (see SI Methods in Table S1),

Figure 5. Variability of GPP and ER time series. Coefficient of variation (CV) of the predicted time series of reach-scale GPP

(A) and ER (B) as a function of drainage area (log-scale). Each dot represents the CV of one stream reach.
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Figure 6. Separation between allochthonous (ERal) and autochthonous (ERau) ecosystem respiration. Left panels show

scatter plots of extrapolated (via RF) daily ER [gO2m
2d-1], during the four indicated seasons and in all 292 reaches, as a

function of the reach drainage area (A [km2]). We determined the exponent of the power law scaling via a 0.05-quantile

regression of daily ER values in the different reaches and days assuming that the lower bound represents the ERal and that

any additional respiration should come from ERau. The ERal time series for each reach has then be derived via a spline

interpolation of the four seasonal values. Example for the final separation results is shown in the right panels for one

randomly selected reach (A–C) per group (I–III).
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while PAR was best inferred using a combination of

meteorological (that is, precipitation, sunshine

duration, irradiation, and air temperature and

pressure), hydrological (discharge, slope, reach

length, and water depth) and geomorphological

responses (subcatchment position, local DLT, TCD,

and light exposure). Both long- and short-term

measurements of ecosystem metabolism at reach

scale have revealed PAR and flow-induced distur-

bance as the major drivers of GPP (for example,

Mulholland and others 2001; Beaulieu and others

2013; Blaszczak and others 2019). Using spatial

statistics, Rodriguez-Castillo and others (2019) re-

tained channel cross-sectional area, nitrate con-

centration, and algal biomass as predictors for GPP

at the network scale. In our study, out of a library

of 35 potential predictors (that is, the ‘‘learners’’),

the RF model retained daily sunshine duration,

season, and position within the Ybbs River net-

work, but also discharge, water depth, air temper-

ature, irradiation, light exposure, barometric

pressure, and precipitation. In the final version of

the model selected, we did not retain the modeled

PAR and streamwater temperature T as predictors

for GPP (and ER) because the efficiency gain was

not high enough (Table 1) to justify the use of a

more complicated procedure (a cascade of two RFs)

and the introduction of predicted features (PAR

and T) possibly prone to errors. It should be noted

that all the predictors used by the RF generated to

predict PAR and T were also fed to the GPP and ER

RFs. Therefore, the algorithm was able to learn the

complex nonlinear interactions relating the original

predictors to PAR and T, and eventually to GPP and

ER, without the need to provide PAR and T sepa-

rately. Predictors retained for ER included, besides

position within the Ybbs River network, descriptors

of temperature, soil water content (as approxi-

mated by rainfall duration), precipitation and dis-

charge, but also watershed tree cover density and

type, for instance. We argue that these predictors

translate into the catchment potential to produce

and deliver organic matter to the streams and fur-

ther into the potential of stream ecosystem meta-

bolism. This approach allowed us to extend the

library of predictors usually employed in metabo-

lism models (see, for example, Demars and others

2015). Overall, most predictors used are relatively

straightforward to extract from various repositories

of spatial and meteorological data. Flow-related

variables throughout the network can be obtained

by combining gauging data (or alternatively

hydrological modeling) with scaling relationships

of hydraulic geometry (Leopold and Maddock

1953).

We stress that the scope of our study is to

investigate emerging patterns of the metabolic re-

gime specifically of the Ybbs river network. For this

purpose, we gathered all possible features and let

the validation step to properly select those relevant.

Figure 7. Autochthonous vs allochthonous ecosystem respiration. Comparison between cumulative (mass units, GgO2)

GPP, autochthonous ER and allochthonous ER, throughout the entire year and at seasonal scale. The main panel displays

quantities at the river network scale, while right panels focus on the three groups of stream reaches introduced in Figure 4.
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In general, the interactions between network

properties and biological predictors (for example,

stream elevation, discharge, and vegetation cover)

could be different for different network systems.

Moreover, we included few spatial features that

improved the performance of the model but are

specific to this case study, for example the spatial

coordinates and the network geometry. Therefore,

the trained models we developed herein are not

directly transferable to other river networks.

However, this first case study provides a road map

for the development of similar applications in other

contexts. At this stage, any new application would

require enough reach-scale metabolic data to be

trained. However, when data for several river

networks will be available, and recent technologi-

cal advances suggest this goal is not that far into the

future (Appling and others 2018), we envision that

it will be possible to train a model to predict the

metabolic regime also in ungauged catchments.

Network-Scale Ecosystem Metabolism

The GPP regime at the network scale exhibited a

bimodal pattern with a conspicuous peak during

spring and a reduced, second summer peak. Our

findings on a real-world stream network corrobo-

rate the emerging property of network-scale GPP as

recently reported in theoretical optimal channel

networks (Koenig and others 2019). Indeed, the

bimodal pattern found for the Ybbs River network

resembles that obtained by Koenig and others

(2019) under the stochastic assignment, that is, the

scenario proposed to be more representative of real

rivers by the authors. Dissecting this pattern into

the contributions of stream reaches of different si-

zes to network-scale GPP, we found that down-

stream reaches were mostly responsible for the

spring and summer peak in GPP. This pattern was

clearly driven by light availability as modulated by

channel geomorphology as predicted by the River

Continuum Concept (Vannote and others 1980).

Our findings reveal that the annual metabolism

of the Ybbs River network is heterotrophic, with

the smallest headwaters contributing most to its

heterotrophy. This is in line with earlier predictions

on stream ecosystem metabolism (Fisher and

Likens 1973; Vannote and others 1980) and studies

compiling data from a wide suite of stream

ecosystems (Battin and others 2008; Hoellein and

others 2013). Perhaps less trivial, our findings

provide first insights into the contributions of

streams by the areal extent and metabolic fluxes

beyond the longitudinal dimension. In this context,

the disproportionate contribution of small head-

water streams (that is, Group I) to ER and hence to

NEP highlights their role for metabolic fluxes at the

network scale. Besides the fact that headwater

streams are often light-limited owing to riparian

vegetation (as tree cover density), per unit area

they are more tightly connected to the terrestrial

environment than wider reaches further down-

stream. This increases the terrestrial deliveries of

organic matter to these streams. Owing to elevated

channel slope, bed roughness, and sediment

porosity, the hydrodynamic exchange between the

surface water and the streambed is typically higher

in headwaters than in downstream reaches, which

may enhance the respiratory breakdown of al-

lochthonous organic carbon in these headwater

streams (Battin and others 2008).

ER is largely associated with the streambed, no-

tably with its hyporheic zone, which may explain

why its annual variability (as CV) does not sys-

tematically change across the stream network.

Looking more in details at the pattern shown in

Figure 5b, the variability of ER is greater in reaches

of intermediate size (around few km2 of drainage

area) and lower for both small headwaters and

large streams. From a biophysical point of view,

this pattern could be explained by the dominant

role of hyporheic respiration in headwaters. In-

deed, the hyporheic zone has been proposed as a

buffer to ecosystem processes (Boulton and others

1998). In large streams instead, the ER regime

could be buffered by the availability of auto-

chthonous biomass and damped thermal and

hydrological regimes. However, it should be noted

that reaches of intermediate size are also more

abundant and therefore this pattern could also be

induced by systematic sampling bias.

On the other hand, the downstream increase in

the annual variation of GPP (Figure 5a) could be

attributed to the susceptibility of GPP to changes in

light- and flow-induced disturbance (for example,

Uehlinger and others 1996; Uehlinger and Naegeli

1998; Bernhardt and others 2018). In fact, the

annual light regime becomes more pronounced

downstream as channels widen up. Our findings on

the annual variability of GPP at network scale

complement those that have related variations in

discharge and catchment size to food chain length

(Sabo and others 2010). In fact, the annual varia-

tion of GPP, and hence the basis of the green food

chain, changing through a stream network may

shape the phenology of herbivores and their pro-

ductivity (Bernhardt and others 2018; Rüegg and

others 2020). Furthermore, our findings suggest

that the respiratory breakdown of organic carbon

rather than its photosynthetic buildup shapes the
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stability of metabolic carbon fluxes at the network

scale.

At the stream reach, a negative NEP typically

informs on the external deliveries of organic carbon

required to satisfy the ER in excess to GPP produced

in that reach. It does not inform, however, on the

sources of such deliveries, which either derive from

the terrestrial environment (that is, allochthonous

sources) or from GPP within upstream reaches. This

latter would still be considered as an auto-

chthonous source. Combining results from RF

modeling with network scaling theory (Bertuzzo

and others 2017), we segregated the contributions

from allochthonous and autochthonous sources to

ER at the network level. This allowed us to assess

the relevance of terrestrial subsidies as an energetic

linkage between ecosystems (sensu Polis and others

1997). GPP consistently exceeding ERau at the

network level indicates that up to 45% of GPP is

either exported from the network, potentially

fueling metabolism further downstream, or trans-

ferred to higher trophic levels. Such a production

excess was particularly pronounced during the

spring peak of autotrophy in the downstream

reaches. Indeed, we estimated that streams drain-

ing catchments up to 36 km2 in size (group I and II)

respire on an annual basis all the organic carbon

produced therein (Figure 7).

Strikingly, our findings on ERal suggest that

stream networks are more heterotrophic than hith-

erto assumedby simply looking atNEP. In fact, while

the annual network-scale NEP is -0.2 g O2 m
-2d-1,

the corresponding ERal is -0.46 g O2 m-2d-1

(Figure 7), the difference being due to the GPP not

respired within the network. This difference

becomes even more pronounced for the small

streams in fall and winter (Figure 7). We interpret

this finding as evidence for strong ecosystem-level

allochthony in streams, in analogy to the lake

allochthony (Carpenter and others 2005), and

otherwise explored at the level of food webs in

streams (for example, Collins and others 2016).

Furthermore, these findings evoke a high retention

efficiency of individual reaches. In fact, GPP fuels the

heterotrophic metabolism because of the typically

high bioavailability of algal exudates and the close

spatial proximity of algae and heterotrophs within

benthic biofilms (for example, Haack and McFeters

1982; Kaplan and Bott 1989). Our ecosystem-level

observations that a large proportion of GPP is

respired are indeed supported by experimental work

on photoautotrophic biofilms from the Ybbs River

network (Oberer Seebach) showing that benthic

community respiration is sustained between 60 and

90% by organic carbon exuded from algae (Wagner

and others 2017).

In this study, we have shown how network-scale

applications to stream ecosystem metabolism rep-

resent the cornerstone for unveiling metabolic

emerging properties, scaling relationships, and to

properly assess the relative contributions of small

and large streams to GPP, ER, and NEP fluxes at

scales relevant for regional carbon budgets. We

thus believe that this approach opens new possi-

bilities in modeling and estimating stream ecosys-

tem metabolism. For example, reach-scale models

leveraging on the knowledge of the extrapolated

forcings (for example, light and temperature) can

be developed to provide a more process-based

interpretation of network-scale metabolism.

Moreover, climate change implications, for in-

stance of more extreme thermal and hydrological

regimes, could be more reliably tested considering

the entire river continuum. Finally, we anticipate

that other emerging properties for metrics like

ecosystem efficiency, carbon turnover times, and

carbon spiraling (Newbold and others 1982; Web-

ster and Meyer 1997) could possibly be unveiled

and tested zooming out the analysis at the scale of

an entire stream network.
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Rödenbeck C, Arain MA, Bal- docchi D, Bonan GB, and

others, . 2010. Terrestrial gross carbon dioxide uptake: global

distribution and covariation with climate. Science

329(5993):834–38.

Bernhardt ES, Heffernan JB, Grimm NB, Stanley EH, Harvey J,

Arroita M, Appling AP, Cohen M, McDowell WH, Hall R Jr,

and others 2018. The metabolic regimes of flowing waters.

Limnology and Oceanography 63(S1):S99–118.

Bertuzzo E, Helton AM, Hall RO Jr, Battin TJ. 2017. Scaling of

dissolved organic carbon removal in river networks. Advances

in water resources 110:136–46.

Besemer K, Singer G, Quince C, Bertuzzo E, Sloan W, Battin TJ.

2013. Headwaters are critical reservoirs of microbial diversity

for fluvial networks. Proceedings of the Royal Society B:

Biological Sciences 280(1771):20131760.

Blaszczak JR, Delesantro JM, Urban DL, Doyle MW, Bernhardt

ES. 2019. Scoured or suffocated: Urban stream ecosystems

oscillate between hydrologic and dissolved oxygen extremes.

Limnology and Oceanography 64(3):877–94.

Botter G, Basso S, Rodriguez-Iturbe I, Rinaldo A. 2013. Resi-

lience of river flow regimes. Proceedings of the National

Academy of Sciences 110(32):12925–30.

Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM.

1998. The functional significance of the hyporheic zone in

streams and rivers. Annual Review of Ecology and Systematics

29(1):59–81.

Bramer M 2007. Principles of data mining volume 180. Springer.

Breiman L 1996. Bagging predictors. Machine Learning 24(2):

123–40.

Breiman L. 2001. Random forests. Machine learning 45(1):5–32.

Breiman L, Friedman J, Olshen R, Stone C 1984. Classification

and regression trees. wadsworth int. Group 37(15): 237–51.

Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL,

Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES.

2005. Ecosystem subsidies: terrestrial support of aquatic food

webs from 13c addition to contrasting lakes. Ecology

86(10):2737–50.

Ceola S, Bertuzzo E, Singer G, Battin TJ, Montanari A, Rinaldo

A. 2014. Hydrologic controls on basin-scale distribution of

benthic invertebrates. Water Resources Research 50(4):2903–

20.

Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett

GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS,

Valentini R, and others 2006. Reconciling carbon-cycle con-

cepts, ter- minology, and methods. Ecosystems 9(7):1041–50.

Collins SM, Kohler TJ, Thomas SA, Fetzer WW, Flecker AS.

2016. The importance of terrestrial subsidies in stream food

webs varies along a stream size gradient. Oikos 125(5):674–

85.

Demars BO. 2019. Hydrological pulses and burning of dissolved

organic carbon by stream respiration. Limnology and

Oceanography 64(1):406–21.

Demars BO, Thompson J, Manson JR. 2015. Stream metabolism

and the open diel oxygen method: Principles, practice, and

perspectives. Limnology and Oceanography: Methods

13(7):356–74.

Drake TW, Raymond PA, Spencer RG. 2018. Terrestrial carbon

inputs to inland waters: A current synthesis of estimates and

uncertainty. Limnology and Oceanography Letters 3(3):132–

42.

Duvert C, Butman DE, Marx A, Ribolzi O, Hutley LB. 2018. Co 2

evasion along streams driven by groundwater inputs and

geomorphic controls. Nature geoscience 11(11):813–18.

Falkowski PG, Barber RT, Smetacek V. 1998. Biogeochemical

controls and feedbacks on ocean primary production. Science

281(5374):200–6.

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P 1998. Pri-

mary production of the biosphere: integrating terrestrial and

oceanic components. science 281(5374): 237–40.

Fisher SG, Likens GE. 1973. Energy flow in bear brook, new

hampshire: an integrative approach to stream ecosystem me-

tabolism. Ecological monographs 43(4):421–39.

Fisher SG, Sponseller RA, Heffernan JB. 2004. Horizons in

stream biogeochemistry: flowpaths to progress. Ecology

85(9):2369–79.

Unveiling Metabolic Regimes at Network-Scale 1807

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Gislason PO, Benediktsson JA, Sveinsson JR. 2006. Random

forests for land cover classification. Pattern Recognition Let-

ters 27(4):294–300.

Goulden ML, McMillan A, Winston G, Rocha A, Manies K,

Harden JW, Bond-Lamberty B. 2011. Patterns of npp, gpp,

respiration, and nep during boreal forest succession. Global

Change Biology 17(2):855–71.

Haack TK, McFeters GA. 1982. Nutritional relationships among

microorganisms in an epilithic biofilm community. Microbial

ecology 8(2):115–26.

Hall RO, Tank JL, Baker MA, Rosi-Marshall EJ, Hotchkiss ER.

2016. Metabolism, gas exchange, and carbon spiraling in

rivers. Ecosystems 19(1):73–86.

Hall RO Jr, Beaulieu JJ. 2013. Estimating autotrophic respiration

in streams using daily metabolism data. Freshwater Science

32(2):507–16.

Hall RO Jr, Yackulic CB, Kennedy TA, Yard MD, Rosi-Marshall

EJ, Voichick N, Behn KE. 2015. Turbidity, light, temperature,

and hydropeaking control primary productivity in the c

olorado river, g rand c anyon. Limnology and Oceanography

60(2):512–26.

Heimann M, Reichstein M. 2008. Terrestrial ecosystem carbon

dynamics and climate feedbacks. Nature 451(7176):289.

Helton AM, Hall RO Jr, Bertuzzo E. 2018. How network struc-

ture can affect nitrogen removal by streams. Freshwater

Biology 63(1):128–40.

Hoellein TJ, Bruesewitz DA, Richardson DC. 2013. Revisiting

odum (1956): A synthesis of aquatic ecosystem metabolism.

Limnology and Oceanography 58(6):2089–100.
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