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Abstract: Acoustic devices have found wide applications in chemical and biosensing fields owing to
their high sensitivity, ruggedness, miniaturized design and integration ability with on-field electronic
systems. One of the potential advantages of using these devices are their label-free detection
mechanism since mass is the fundamental property of any target analyte which is monitored by these
devices. Herein, we provide a concise overview of high frequency acoustic transducers such as quartz
crystal microbalance (QCM), surface acoustic wave (SAW) and film bulk acoustic resonators (FBARs)
to compare their working principles, resonance frequencies, selection of piezoelectric materials for
their fabrication, temperature-frequency dependency and operation in the liquid phase. The selected
sensor applications of these high frequency acoustic transducers are discussed primarily focusing on
the two main sensing domains, i.e., biosensing for working in liquids and gas/vapor phase sensing.
Furthermore, the sensor performance of high frequency acoustic transducers in selected cases is
compared with well-established analytical tools such as liquid chromatography mass spectrometry
(LC-MS), gas chromatographic (GC) analysis and enzyme-linked immunosorbent assay (ELISA)
methods. Finally, a general comparison of these acoustic devices is conducted to discuss their
strengths, limitations, and commercial adaptability thus, to select the most suitable transducer for a
particular chemical/biochemical sensing domain.

Keywords: quartz crystal microbalance (QCM); surface acoustic wave (SAW); film bulk acoustic
wave resonator (FBAR); chemical sensors; biochemical sensors

1. Introduction

Chemical/biochemical sensors [1–3] are smart miniaturized devices having chemical or biologically
derived recognition elements integrated with a suitable transducer that transforms the binding event
information between sensor layer and analyte into a measurable electrical signal. The nature of the
transducer plays a vital role in obtaining high sensitivity, faster response/recovery time, and low noise
level. Moreover, the stability of the device is also critical against surrounding parameters such as
viscosity, temperature, humidity and others. For on-field measurements [4], the size, design, data
acquisition, and integration ability of transducer devices [5] are also considered necessary features.
Apart from all these characteristics, one of the most important traits of an ideal sensor is the detection
of target analyte without using any labeling indicator [6]. This means that target analyte should be
analyzed as such based on its intrinsic or built-in features which may include optical, electrochemical,
thermal, magnetic and other properties. Thus, for instance, optical transducers [7,8] would detect

Sensors 2019, 19, 4395; doi:10.3390/s19204395 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0903-7788
https://orcid.org/0000-0003-3053-8541
http://www.mdpi.com/1424-8220/19/20/4395?type=check_update&version=1
http://dx.doi.org/10.3390/s19204395
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 4395 2 of 29

optical shifts resulted from analyte binding with the sensor interface. In the case where target analyte
does not have any pronounced optical, electrochemical or other functionalities, it still can be recognized
by acoustic devices [9–13]. Mass is the fundamental property of any analyte that can be monitored
using acoustic or gravimetric devices which makes acoustic resonators as universal transducers.

Acoustic devices have been widely used for developing smart chemical and biochemical sensor
applications. The principal advantage of using these transducers is their ability for label-free [14–16]
recognition of target analyte without using any external reagent/chemical. This allows eliminating the
labeling step thus, recognizing analyte exclusively based on to its intrinsic properties, thus reducing the
cost and time of the labeling step. Modern sensor research is largely focused on label-free detection
protocols and acoustic devices are highly suitable transducers to meet this requirement. Although there is a
huge number of electrochemical [17–19] and optical sensing technologies [20–22] reported in literature for
a variety of targets however, acoustic sensors [23] are well distinguished from the former types of devices
due to their unique label-free detection feature, exceptionally high sensitivity i.e., down to pg level [24,25],
miniaturized size as low as 1 mm or below and straightforward integration for wireless communication.

In 1959, Sauerbrey published his classical contribution [26] related to weighing thin films using
quartz crystals, which established the basis of acoustic transducers for gravimetric sensing and other
applications. The early stage use of acoustic devices was mainly for developing frequency filters,
resonators, signal processing, actuating and others. The last two decades witnessed a significant
increase in the use of acoustic wave devices [27–29] for chemical/biochemical sensing. These devices
include mainly quartz crystal microbalance (QCM), film bulk acoustic resonators (FBARs), surface
acoustic wave (SAW), shear horizontal surface acoustic wave (SH-SAW), shear horizontal acoustic plate
mode (SH-APW) and shear transverse wave (STW) and flexural plate wave (FPW) devices. Anything
that influences the wave propagation or cause surface perturbations at device interface, would lead to
change the characteristic parameters of these devices including resonance frequency, acoustic wave
velocity and other acoustoelectric properties. Based on wave propagation mode, acoustic wave devices
are mainly categorized in two classes, i.e., bulk acoustic and surface acoustic wave devices. In bulk
acoustic wave (BAW) resonators [30,31], the acoustic wave propagates through the piezoelectric crystal
in thickness direction whereas, in SAW devices [32,33], the acoustic wave travels parallel to the surface
of the piezoelectric substrate. Thus, QCM, FBARs, SH-APM are representative bulk acoustic devices
while SAW, SH-SAW, and STW are surface acoustic devices.

There is a wide variety of receptor coatings that can be combined with acoustic devices for
developing highly sensitive sensors. These receptors may range from natural antibodies [34–37],
aptamers [38–41], DNA [42–45], protein/peptides [46–49] to synthetic affinity materials including
functionalized polymeric layers [50–53], nanoparticles [54–57], carbon nanotubes [58–61], graphene
oxide [62–65] and many others. As a result, the sensing domain of acoustic devices is significantly
large which covers the detection of diverse bio-analytes such as bacteria [66,67], viruses [68,69] and
whole cells [70–73], recognition of clinical biomarkers in complex samples [74–76], food analysis [77,78],
process control and monitoring of environmental toxins [79] in liquid and gaseous phases. In terms
of sensitivity and reliability, the sensor results of these devices are often comparable to classical
analytical instruments such as liquid chromatography-mass spectrometry (LC-MS) systems, gas
chromatography (GC), enzyme-linked immunosorbent assay (ELISA), polymerized chain reaction
(PCR) and others. Moreover, the size of acoustic sensor devices is greatly reduced comparing to other
large size instruments which enable them for on-field measurements. Unlike many established electrical
sensors, the beneficial aspect of acoustic sensors is their ability to work under ambient environments
which means that these devices do not require special conditions for example of temperature to operate
thus, making detection of target analytes straightforward.

Among acoustic resonators, QCM [80–82] is one of the best known and most extensively studied
gravimetric transducer. The highlight features of QCM devices are their low-cost, easy availability,
simple design, and ability to work both in liquid and gaseous environments. The resonance frequency
of QCM devices is usually in the range of 5–20 MHz [83,84]. Since QCMs are a type of thickness shear



Sensors 2019, 19, 4395 3 of 29

mode (TSM) resonators [85] and thus, higher frequency devices demand thinner quartz wafers, which
eventually make QCM fragile and limit its applications. According to Sauerbrey [26], fundamental
resonance frequency has prime importance in obtaining higher sensitivity and therefore, acoustic
devices with high operating frequency are highly desirable. Surface acoustic devices such as SAW
sensors [86–88] offer much high operating frequencies than QCM and consequently, result in enhanced
sensitivity. However, they suffer from excessive damping loss in liquid media which makes them
unsuitable for liquid phase sensing. FBARs [89,90] are typical BAW devices that have a similar structure
and working principle like QCMs. However, their operating resonance frequency is even higher than
SAW devices i.e., in GHz range. In this review article, we shall provide a concise overview of high
frequency acoustic sensors going through QCM, SAW, and FBARs including their working principle,
operating frequencies, selection of piezoelectric material and design fabrication, temperature-frequency
relationship and working in liquid environments. The selected or showcased sensing applications of
high frequency QCM, SAW and FBAR devices for biosensing as well as gas phase sensing would be
exclusively covered. In selected cases, we shall compare the sensing performance of high frequency
acoustic devices with established analytical techniques to demonstrate the potential of acoustic
transducers. Each type of acoustic transducer has distinct features in respect to sensitivity, miniaturized
design, ability to work in liquids, manufacturing costs, commercial adaptability, and fabrication issues.
Therefore, apart from their significant advantages their main limitations are also discussed.

2. Acoustic Sensors QCM, SAW and FBARs

This section is primarily dedicated to the representative high frequency acoustic chemical sensors
i.e., QCM, SAW and FBARs. Herein, we shall briefly describe their working principle, operating
frequencies, selecting of piezoelectric materials for their fabrication, temperature-frequency dependence
and operation in liquid phases.

2.1. Comparison of Working Principle

QCMs and FBARs belong to the family of BAW resonators while SAW devices are the typical
surface acoustic resonators. QCMs are the first-generation acoustic resonators that are used for over
two decades as gravimetric chemical/biochemical sensors. They are referred to as thickness shear mode
(TSM) resonators that consist of thin AT-cut quartz wafer having symmetrically patterned circular
electrodes on both sides. On applying a voltage between the electrodes, shear deformation takes place
which makes QCM wafers highly sensitive to any surface perturbations [91]. Moreover, due to the
propagation of shear waves in these devices, they do not radiate considerable energy thus, are suitable
for liquid phase operations [92] without much damping loss.

Figure 1A shows an image of 195 MHz high fundamental frequency (HFF) QCM obtained from
KVG Quartz Crystal Technology GmbH (Neckarbischofsheim, Germany). Figure 1B shows an image of
150 MHz HFF-QCM integrated with a customized printed circuit board (PCB) for improved handling
of HFF-QCM device.
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Figure 1. (A) Image of 195 MHz HFF-QCM from KVG Quartz Crystal Technology GmbH,
(Neckarbischofsheim, Germany). The quartz crystal has diameter of approximately 5 mm, adapted
from [93]. (B) A 150 MHz HFF-QCM manufactured by Advanced Wave Sensors (AWS) S. L. (Paterna,
Spain). The device is integrated in a customized printed circuit board (PCB) to improve handling, PCB
has dimension of 17.5 × 14 mm2 with thickness 1.55 mm, adapted from [94].
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In SAW devices, acoustic wave propagation mode can be described by Rayleigh waves as
explained by Lord Rayleigh [95]. These waves have two components i.e., longitudinal and shear
vertical component which can couple with the layer material in contact at device interface. The coupling
between layer material and the device strongly influences acoustic wave propagation. This means
that acoustic energy is highly confined at device interface and therefore any surface interactions with
layer material make these devices extremely sensitive to mass loadings, conductive changes and other
factors. The penetration depth of these waves is in the range of a few acoustic wavelengths and does
not depend on the entire thickness of the substrate. In a typical SAW design, interdigital transducer
(IDT) electrodes [96,97] are fabricated on piezoelectric material where on the application of electric
voltage, acoustic waves are generated that travel across the substrate surface. By covering these IDTs
with suitable recognition layer, these devices can be used for chemical sensing. Figure 2A shows a
high-resolution image of a SAW device captured by an optical microscope, while Figure 2B displays a
magnified image showing the geometrical details of IDTs. Figure 2C shows images of different SAW
resonators having frequencies 100, 200, 433 and 1000 MHz. As the frequency of the device increases
from 100 to 1000 MHz, the size decreases from 8 to 1 mm. This suggests that an increase in resonance
frequency demands a more compact design. The dimensions of IDTs including length, width, height
and spacing between IDTs fingers can be optimized to enhance the sensing performance of SAW
devices. SAW devices are well known for gaseous phase sensing and found a number of applications
including commercial sensors [98,99] as well. However, when these devices are immersed in the
liquid phase, compressional waves are generated which suffers from high attenuation loss of acoustic
energy. This issue is addressed by adjusting the cutting angle of the piezoelectric material so that
vertical component of acoustic waves is changed to shear horizontal polarized surface acoustic waves
(SH-SAW) resulting in a significant decrease in device’s attenuation when used in liquids [100,101].
SH-SAW devices are also considered as shear transverse wave (STW) resonators which also found a
number of liquid phase sensing applications [102,103].
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Figure 2. (A) A high resolution optical microscopic image of surface acoustic wave (SAW) resonator,
adapted with permission from [102]. (B) The magnified image shows the geometrical details of IDTs
i.e., the width of electrode is 1.69 µm and the distance between two consecutive fingers is 0.76 µm,
adapted from [104]. (C) Images of different SAW resonators as going from 100 MHz to 1000 MHz,
the size of devices changes from about 8 mm to 1 mm. This indicates that increase in fundamental
resonance frequency of SAW demands more compact design.

The basic working principle of FBARs devices is similar to that of QCMs however; these devices
offer much higher resonance frequency with smaller base mass than QCMs which makes them superior
in terms of sensitivity. Furthermore, their miniaturized design and simple operation are highly suitable
for integrating with electronic systems. The fabrication design, nature of substrate and transduction
mechanism of FBARs is different from QCMs. As in case of FBARs a thin film of the piezoelectric
material is sandwiched between two metal electrodes and on applying an electric voltage across the
electrodes, a standing wave is generated in piezoelectric layer resonating at a frequency depending
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on the thickness of the piezoelectric layer. The piezoelectrically active area is isolated from substrate
material so that acoustic waves generated may not radiate into the substrate thus, losing any resonance.
Based on isolation methods, there are two structures of FBAR: in the first case an air cavity is designed
for acoustic isolation of piezoelectric area from the substrate while in the second type acoustic Bragg
reflectors are designed i.e., consisting of alternating layers of low and high acoustic impedance.
The latter type of devices is also called solidly mounted resonators (SMRs) [105]. Figure 3A shows
a schematic diagram of a FBAR device while Figure 3B represents SMR design. Figure 3C shows
packaged FBAR device connected with a network analyzer and integrated with customized PCB.
There are two resonating modes [106] in FBARs devices i.e., thickness longitudinal mode (TLM) and
thickness shear mode (TSM). In the first type, longitudinal waves are generated while in second type
shear waves are produced. The basic difference between these modes is the orientation of piezoelectric
crystal, i.e., c-axis angle [107,108], as in the case of TLM where the c-axis angle of crystal orientation is
perpendicular to the substrate material. Whereas in TSM, the crystal is planar, i.e., inclined around
34.5◦, which produces shear waves. In TLM, the acoustic waves suffer from high attenuation loss when
used in liquid media and thus, mainly used for gaseous phase sensing, while TSM devices exhibit low
damping and thus, better suited for liquid phase operations.
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Figure 3. (A) Schematic design of a typical film bulk acoustic wave resonator (FBAR), (B) Schematic
diagram of solidly mounted resonator (SMR), adapted with permission from [90]. (C) (a) Image of
packaged FBAR sensor designed for sensing of formaldehyde, (b) FBAR device integrated with PCB,
(c) magnified image of sensor element, adapted with permission from [109].

2.2. Comparison of Operating Frequencies

Typical resonance frequency of QCMs is in the range of 5–20 MHz [110,111] with most of the
devices having 10 MHz. Since QCMs are examples of TSM resonators [112], their resonating frequency
depends on the thickness of piezoelectric substrate. Therefore, reducing thickness beyond a certain
point would make them mechanically unstable and fragile. This is a major limitation in producing
QCMs of high fundamental resonance frequencies. This problem has been addressed by developing
the central part around the circular electrode area of QCM thinner while the outer frame is kept thick
which is mechanically stable. The strategy is named as “inverted mesa” or “biconvex” design [113]
and such devices are called HFF-QCMs [114]. This technique leads to the fabrication of ultrasensitive
QCMs sensors having fundamental resonance frequency as high as 200 MHz. These devices can be
manufactured by different technologies including wet etching, deep reactive ion etching (DRIE), i.e., gas
phase etching and metal sputtering methods. The wet etching is relatively an inexpensive method
whereas DRIE is more expensive but offers highly anisotropic etching. Q-factor or quality factor is a
dimensionless parameter that describes the damping spectra of an acoustic resonator. The decrease
in the thickness of quartz wafer increases the Q-factor which can be explained on the basis that by
decreasing the thickness, acoustic energy trapping [115] is improved. Moreover, thinner QCMs offer
good electrical conductivity and reduce the unwanted or spurious vibrational modes.

The fundamental resonance frequency of first generation SAW devices was initially in the range
of few hundreds of MHz and nowadays with the ensuing technological advancements, the resonance
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frequency has been increased substantially up to the GHz range. In SAW devices, the fundamental
frequency depends on IDT electrode geometries including the spacing between IDT fingers. Seidel and
Hesjedal [116,117] explained that in order to achieve 5 GHz frequency of SAW device, the electrode
geometries of around 0.15 µm dimensions (lines and the gaps) are needed to be developed while
having two electrodes per wavelength with equal widths and gaps and an acoustic wave velocity
of about 3000 m/s. The electrode geometries of 0.15 µm are difficult to achieve by conventional
photolithographic processes since these methods are limited to produce electrode dimensions of
around 0.5 µm. Therefore, in order to develop smaller electrode dimensions for developing high
frequency SAW devices, alternative fabrication techniques such as nanoimprint lithography [118],
electron beam lithography [119] and others could be adopted. Due to the restricted IDTs geometries,
they are operated at higher frequency harmonics i.e., generated by low fundamental frequency sources.
Nevertheless, in conventional device structures, the efficiency of SAW excitation decreases at higher
harmonics thus, limiting their operation at higher GHz. In addition to IDT’s geometries, the nature of
piezoelectric substrate is also decisive for enhanced acoustic wave velocities that can lead to higher
operating frequencies.

Although QCMs and FBARs, both are BAW devices and have same working mechanism, the
operating resonance frequency of FBAR devices is usually in the range of sub GHz to around
10 GHz [120], which is substantially higher than QCMs. Moreover, FBARs also have higher frequencies
than SAW as the former device offers higher GHz frequency range compared to a few GHz offered
by SAW. There are two important factors that contribute towards the high resonance frequency of
FBARs i.e., the thickness and the nature of piezoelectric material. The thickness of piezoelectric films is
in the range of sub-µm to few µm e.g., 0.5–3 µm [121] as it ultimately leads to a small base mass of
piezoelectric substrate which yields high resonance frequency. The high sensitivity of FBARs is mainly
driven by the fundamental resonance frequency and Q-factor which characterizes the bandwidth
of resonance phenomena. The small frequency shifts are more accurately determined by FBARs
having high Q-factor with sharp resonances than FBARs with low Q-factor thus, ultimately leading to
enhanced sensitivity. Moreover, high Q-value is an indication of adequate acoustic energy trapping in
the piezoelectric layer.

2.3. Selection of Piezoelectric Material

There is a wide range of piezoelectric substrates both natural and synthetic used for acoustic
devices, nevertheless, quartz is the fundamental piezoelectric material that is most widely and
frequently used for acoustic sensors, especially for QCMs. The selection of typical piezoelectric material
and a specific cutting angle is vital in developing high frequency acoustic devices. The use of quartz as
first choice piezoelectric material is because of its high Q-value, simple design, easy availability and
low fabrication cost. AT-cut quartz i.e., singly rotated Y-cut having its normal axis parallel to y-axis
with θ � 35.25◦ [122] is the most common design of QCMs for sensor applications.

Apart from quartz, lithium tantalate (LiTaO3) and lithium niobate (LiNbO3) are the most common
piezoelectric materials used for SAW manufacturing. LiTaO3 (36◦ Y-X) and LiNbO3 (64◦ Y-X) offer
higher wave velocities than quartz and are therefore suitable for manufacturing high frequency SAW
devices. Aluminum nitride (AlN) is a suitable piezoelectric material [123] that shows high acoustic
wave velocity and are suitable for developing high frequency SAW devices. The AlN/diamond
films [124] are known for remarkably high acoustic velocity i.e., around 11,000 m/s which offers high
electromechanical coupling constants that leads to the development of high frequency SAW devices.
Kirsch et al. [125] used AlN/diamond layered structures for SAW fabrication having a frequency of
5 GHz. The width of IDT electrodes was 0.5 µm developed by electron beam lithography.

Like other acoustic devices, the selection of piezoelectric material for fabrication of FBAR is an
imperative step to have both high resonance frequency and improved Q-value. Zinc oxide (ZnO) [126]
and AlN [127] thin films are the two most extensively studied piezoelectric materials used in the
development of FABRs due to their enhanced electro-acoustic features. The structural properties



Sensors 2019, 19, 4395 7 of 29

of piezoelectric material such as crystallographic orientation, surface morphology and electrical
impedance have a significant influence on FBARs performance. As mentioned above, AlN offers high
acoustic wave velocity that yields high frequency FBAR devices. In addition to this, AlN interface is
inert and biocompatible thus, suitable for integrating with biological receptor materials for biosensing
applications. Garcia-Gancedo et al. [128] showed the growth of carbon nanotubes (CNTs) on AlN
surface to use them as top electrodes and compared its performance with metal i.e., Au electrodes.
The resulted device had shown higher Q-values indicating that CNT electrodes had a lower acoustic
loss and higher acoustic energy trapping at the piezoelectric layer. Moreover, the surface of CNTs can
be functionalized with chemical or biological derived layer for enhanced sensitivity and selectivity
in typical sensor applications. In comparison to AlN, ZnO thin films possess finer and smoother
surface, high electromechanical coupling coefficient and relatively easy to synthesize. On the other
hand, the acoustic velocity in ZnO is comparatively less and it is not compatible for fabricating with
microelectronic devices such as a complementary metal oxide semiconductor (CMOS) which somewhat
limits its applications. Lead zirconium titanate (PZT) [129] is another choice of piezoelectric material
with high electromechanical coupling coefficient than AlN and ZnO. However, on the other hand, PZT
shows higher acoustic attenuation, lower acoustic velocity, and inadequate biocompatibility which
limit its use in sensor applications. In general, AlN and ZnO are the two most common piezoelectric
materials used for FBAR fabrication. Nevertheless, the choice between them mainly relies on fabrication
conditions and ultimate applications of device.

2.4. Temperature-Frequency Dependency

The acoustic wave velocity is temperature dependent and the nature of piezoelectric material, crystal
orientation and cutting angle are important factors that influence frequency shifts due to change in
temperature. While selecting a typical piezoelectric material for developing high frequency acoustic
devices, it is equally important to consider temperature-frequency relationships [23]. The frequency
shifts due to temperature fluctuations should be as minimal as possible during sensor measurements.
Quartz is advantageous in this regard, as it shows negligible or almost zero temperature-frequency shifts
around room temperature. The maximum working temperature for quartz is much high [130] suggesting
that quartz-based acoustic devices are stable in high thermal stress. AT-cut quartz crystals i.e., the most
popular material for QCMs remains stable against temperature shifts as long as they are bare. However,
when certain coating material is applied to these devices, they no longer remain insensitive to temperature.
Moreover, temperature sensitivity becomes more serious when a chemical/biological layer coated QCM
is exposed to liquid environments. The suitable way to address this issue is introducing a reference
electrode/channel to compensate frequency shifts due to temperature fluctuations.

ST-cut i.e., stable temperature cut quartz has nearly zero temperature coefficient of frequency
(TCF) for developing SAW sensors, which means that such SAW devices are nearly stable against
temperature shifts. LiTaO3 and LiNbO3 are the two most frequently used piezoelectric materials for
SAW fabrication. These materials show linear temperature-frequency relationship which indicate
that the increase in temperature would increase in frequency shifts. The crystal orientation and the
cutting angle of these piezoelectric materials also have influence on TCF values. SAW devices as
physical sensors are widely used for monitoring temperature shifts [131], however, the use of SAW for
chemical or biochemical sensing require temperature compensation element to figure out temperature
frequency shifts.

In the case of FBARs, AlN and ZnO are sensitive to temperature shifts, having TCF values [132] of
25 and 40 ppm/◦C, respectively. In order to compensate for frequency shifts due to temperature, the
use of an additional compensation layer of a certain piezoelectric material is reported in literature [133].
The main drawback of this strategy is that the overall thickness of the piezoelectric layer increases which
ultimately decreases the fundamental resonance frequency as well as the electromechanical coupling
coefficient. Bjurstrom et al. [134] reported that the temperature compensation of second harmonic
shear mode in a composite thin film of Al/AlN/Al/SiO2 resulted in high Q-value and high fundamental
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resonance frequency. Apart from using composite arranged layers, Pang et al. [135] reported the
fabrication of micro-designed air-gap capacitor which passively minimizes TCF about 40 ppm/◦C.
When the temperature increases, the airgap of the capacitor also increases due to a difference in thermal
expansion coefficients of the bimetallic layer which eventually decreases the capacitance. The authors
reported that nearly zero TCF could be achieved by this strategy using AlN derived FBARs.

2.5. Operation in Liquid Phase

All the acoustic devices work efficiently as sensors in gaseous conditions. However, for liquid
phase measurements, the liquid properties such as density, viscosity, conductivity and surface charge
strongly influence the oscillations of acoustic resonators and thus, results the damping of acoustic
energy. QCMs are TSM resonators that generate shear acoustic waves that do not radiate a considerable
amount of energy in the liquid phase. Thus, these devices exhibit low damping and suitable resonance.
QCMs are the most extensively studied acoustic sensors for liquid phase operations [136,137] and
reported for diverse applications. Kanazawa and Gordon [138] studied the influence of liquid properties
i.e., viscosity and density on QCM oscillation and derived a mathematical relationship for calculating
the shift in fundamental resonance frequency. Later, Martin et al. [139] characterized QCM behavior
under simultaneous liquid and mass loadings. The fundamental resonance frequency was decreased
by both in contact liquid and surface mass and it was important to differentiate frequency shifts due to
these factors. The authors had shown that with the help of an electromechanical model, the change
in surface mass can be distinguished from changes in solution properties. Recently, Kang et al. [140]
reported an associated high frequency resonance (HFR) model to study QCM operations in the liquid
phase. The HFR model explains that the total resonance is resulted from solvent capacitance and
inductance, static capacitance of quartz wafer and inductance of leading wires. The authors monitored
a typical cell adhesion process and discussed the responses from HFR and TSM peaks. They figured
out that the combined application of HFR and TSM is a suitable way to enhance the stability of QCM
signals in liquid phase and thus, obtaining reliable sensor data.

In case of SAW devices, the liquid phase operation is seriously hampered due to the coupling
of the longitudinal component of Rayleigh waves with the in-contact liquid. This coupling leads to
high attenuation in amplitude and velocity of surface waves. In addition to this, using quartz as the
piezoelectric material for SAW, causes serious problems in aqueous phase due to the considerable
difference in dielectric constants of quartz (3.8) and of water (78). This mismatch in dielectric constants
leads to no resonance signal when high frequency is applied. Keeping in view the above issues, there is
a need to explore alternative piezoelectric materials with high dielectric constant and suitable cutting
angles as well to study other wave propagation modes that don’t suffer from acoustic energy loss in the
liquid phase. Shiokawa and Moriizumi [141] studied SAW operation in liquids using the leaky SAW
mode that has shear horizontal propagation. Their findings revealed that cutting angle of piezoelectric
material, i.e., LiTaO3 has to be rotated around 36◦ so that acoustic wave propagation mode changes
form vertical to shear-horizontal mode that considerably reduces the acoustic loss. Furthermore,
LiTaO3 (36◦ Y-X) having a sufficiently high dielectric constant of about 43 which is suitable piezoelectric
material for liquid phase sensing. LiNbO3 is another choice of piezoelectric material for fabricating
SH-SAW devices that has much higher electromechanical coupling constant. However, the acoustic
loss is relatively higher. With the proper selection of the piezoelectric substrate and crystal cutting
angle, SH-SAW also called as STW device has been reported for liquid phase sensing applications.
Love wave acoustic devices are a typical example of SH-SAW which exhibit high sensitivity and low
attenuation losses when exposed to liquid phase [142]. In Love wave sensors [143,144], a special wave
guiding layer is coated so that acoustic energy is confined in this layer while a chemical recognition
layer is applied on top of this guiding layer. The thickness of the guiding layer is important to achieve
the optimal performance.

FBAR devices as mentioned above have two main resonating modes i.e., TLM and TSM with only
difference in piezoelectric crystal orientation. In TLM devices, longitudinal waves propagate which
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suffer from severe damping in liquids leading to a significant reduction in Q-values and thus, limit its
operation to dry environments mainly. Whereas TSM devices exhibit strong shear resonance in liquids
with little damping resulting in high Q-value and thus, is suitable for liquid phase sensing. There are
a number of liquid phase sensor applications of shear mode FBAR devices including biosensing
and others. Zhang et al. [145] reported that for FBARs in liquids, the Q-value at second harmonic
resonance is significantly higher than at fundamental resonance frequency. In a later report [146], the
authors investigated the impact of liquid properties such as density and conductivity on the resonance
frequency of FBAR devices. The authors showed that with increasing density of solvents i.e., acetone,
water and dimethyl sulfoxide; both the parallel and series resonance frequencies decreased. This can
be explained in a way that density and mass have a direct relationship thereby, causing a decrease in
frequency at increasing liquid density. While the increase in conductivity of loaded liquid demonstrated
a decrease in series resonance frequency but an increase in the parallel frequency. The authors proposed
that this converse behavior of resonance frequencies due to the conductivity of liquid could be used to
distinguish the resonance frequency shifts due to mass loading from the conductive effects.

Table 1 summarizes an overview of high frequency QCM, SAW and FBAR devices describing the
nature of acoustic wave type, operating frequency, sensitivity, selection of piezoelectric materials and
their characteristics, working medium, availability, manufacturing cost, commercial adaptability and
some general comments about these devices.

Table 1. An overview of high frequency acoustic devices for chemical/biochemical sensor applications.
The acoustic wave type, operating frequency, sensitivity, nature of piezoelectric materials, dielectric
constants, acoustic wave velocity, temperature coefficient of frequency, working medium, availability,
manufacturing costs, commercial success and general comments are described briefly.

Quartz Crystal Microbalance
(QCM) Surface Acoustic Wave (SAW) Film Bulk Acoustic Resonator

(FBAR)

Acoustic Wave Type Bulk Surface Bulk

Operating Frequency 5–200 MHz 100–1500 MHz 1.0–4.5 GHz

Sensitivity Low Intermediate High

Common Piezoelectric Materials Quartz Quartz, LiNbO3, LiTaO3 AlN, ZnO

Dielectric Constant Quartz = 3.8 LiNbO3 = 29
LiTaO3 = 43

AlN = 8.5
ZnO = 8.8

Acoustic Wave Velocity (m/s) Quartz = 3158 LiNbO3 = 3488–3992
LiTaO3 = 3230–3394

AlN = 5600
ZnO = 2558

Temperature Coefficient of
Frequency (TCF) (ppm/◦C) Quartz � 0 LiNbO3 = 75–94

LiTaO3 = 35–64
AlN = 25
ZnO = 40

Working Medium Liquids and Gases Gases Liquids and Gases

Availability Common and Easily Available Common and Easily Available Not Easily available

Manufacturing Costs Low Moderate High

Commercial Adaptability Medium High -

General Comments

Most common and widely used
acoustic transducer for sensor
applications. QCMs have low

fabrication costs. But has
comparatively low sensitivity

due to low resonance frequency.

Well known and widely used for
gas phase sensor applications

and found a number of
commercial applications.

However, not commonly used
for liquid phase sensing.

Highly sensitive acoustic transducer
for gaseous and liquid phase sensing.
Not commonly available as advance
fabrication techniques are need for
their manufacturing thus, has high

costs.

Acoustic wave velocity and TCF values for quartz, LiNbO3 and LiTaO3 are taken from [23]. The dielectric constant
value of quartz is from [102] while for LiNbO3, LiTaO3, AlN and ZnO are from [147]. Acoustic wave velocity of AlN
and ZnO are taken from [148] while TCF values are from [132].

3. Exemplary Sensor Applications

In this section, the selected sensor applications of high frequency QCMs, SAW and FBARs in
diverse fields would be briefly reviewed. The two main sensing domains i.e., biosensing related to
liquid phase sensor applications and the gas phase sensing would be exclusively covered. Furthermore,
we shall compare sensor characteristics of high frequency acoustic devices with other analytical
strategies where appropriate.
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3.1. Biosensors

A typical biosensor is a device which has a biochemical recognition layer integrated with a
transducer that converts the binding event information into a measurable signal. Here, we shall
discuss high frequency acoustic transducers i.e., QCM, SAW and FBAR for biosensing applications.
Uttenthaler and coworkers [149] used 39, 56, 70 and 110 MHz HFF-QCMs and compared their
results with 19 MHz QCM for the detection of bacteriophage M13. The 70 and 110 MHz HFF-QCMs
showed much higher noise while 56 MHz device exhibited the best signal to noise ratio. The authors
reported that by using 56 MHz HFF-QCM, the detection limit was enhanced by a factor of 200 as
compared to 19 MHz device, which is remarkable in view of improving sensitivity and lowering
detection limits in immunoassays. Fernandez et al. [94] used 150 MHz HFF-QCM for studying binding
interactions between protein A and IgG antibodies. The authors carried out finite element method
(FEM) simulations to improve the geometrical fabrication design of the developed sensor thus, to have
optimized electrical response. The numerical data from FEM simulations were in good correlation
with the experimental characterization of acoustic sensor. Using 150 MHz HFF-QCM, the authors
claimed a combined frequency shift of 51,000 Hz for protein A adsorption and IgG injection while in
literature the reported frequency shifts for a 9 MHz QCM sensor was only 200 Hz for the similar studies.
March et al. [150] developed HFF-QCM immunosensor having frequency 100 MHz for the detection of
pesticides i.e., carbaryl and thiabendazole. The authors compared the analytical performance i.e., assay
sensitivity (I50 value), limit of detection (LOD) and working range (WR) of HFF-QCM immunosensor
with conventional low frequency QCMs, SPR and ELISA methods. The comparative data of standard
and optimized ELISA, SPR and QCM sensors for carbaryl detection is shown in Table 2. Here, the
higher I50 value indicates lower sensitivity. For carbaryl sensing, they reported that 100 MHz HFF-QCM
immunosensor exhibited substantially higher sensitivity, lower detection limit and wider detection
ranges than SPR and QCMs with fundamental frequencies 9, 10 and 50 MHz. While comparing the
data with ELISA, the HFF-QCM sensor performance is somewhat less than optimized ELISA but still
closely related to the results of standard ELISA method. In a similar way, 100 MHz HFF-QCM sensor
for thiabendazole exhibited better detection limit than SPR.

Table 2. Comparison of analytical performance for carbaryl detection by ELISA, SPR and QCMs of
variable frequencies, adapted with permission from [150].

Analytical
Parameters (µg L−1)

ELISA
SPR

QCM: Fundamental Resonance Frequency (MHz)

Standard Optimized 9 10 50 100

LOD 0.13 0.01 1.41 13.30 4.00 0.23 0.14
I50 0.72 0.06 3.12 30.34 16.70 1.95 0.66
WR 0.23–2.36 0.02–0.18 1.91–5.75 18.30–50.30 7.00–35.00 0.50–7.20 0.26–1.72

In a later report [151], they extended their previous strategy for the detection of carbaryl residues
in honey samples and compared the HFF-QCM sensor results with liquid chromatography tandem
mass spectrometry (LC-MS). Figure 4 shows the comparison of HFF-QCM and LC-MS data for the
detection of carbaryl in fortified honey samples. The analysis of spiked honey samples by HFF-QCM
showed comparable detection limits and quantification to LC-MS for carbaryl detection. Moreover, the
developed sensor requires minimal sample pre-treatment protocols and thus, suitable for rapid analysis
of carbaryl. These findings indicate that HFF-QCM sensors could be potential alternatives to classical
instruments such as LC-MS. In another effort [152], the authors combined 100 MHz HFF-QCM with
specified monoclonal antibodies for highly sensitive detection of tuberculosis biomarker i.e., 38 kDa
protein from Mycobacterium tuberculosis. The analytical data of HFF-QCM sensors regarding sensitivity,
limit of detection and working ranges are better than previously reported ELISA results. Furthermore,
the detection range of developed immunosensor is comparable to tuberculosis antigens found in
patient samples suffering from this disease.
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coefficient for HFF-QCM was 0.999 and for LC-MS was 0.992. The linear regression slope for HFF-QCM
was 1.14 and for LC-MS was 1.04, adapted with permission from [151].

Länge et al. [153] comprehensively reviewed the biosensing applications of SAW resonators
including STW and SH-SAW devices. The authors explained that suitable surface modification of
SAW transducers is highly important for successful biosensor applications. They described different
protocols for coating the recognition layers at SAW interface such as using direct immobilization of
analyte-specific layers, immobilization of antibodies via protein A/protein G, functionalized dextran
or hydrogel layers and others. The reported sensor applications cover the detection of antibodies,
bacteria, DNA and various small molecules including polycyclic aromatic hydrocarbons, atrazine and
others. Most of the SAW biosensors reported in literature had fundamental resonance frequency less
than 1 GHz. There are relatively few articles reporting GHz-frequency SAW devices for biosensing
applications. For instance, Krishnamoorthy et al. [154] functionalized monoclonal interleukin-6 (IL-6)
antibodies on to 0.7 GHz and 1.5 GHz SAW devices for the detection of IL-6. Since IL-6 is an important
protein that helps in regulating immune responses and its elevated levels are associated with various
diseases including cardiovascular disease, diabetes, arthritis and certain types of cancer therefore, its
detection in blood has high importance. The authors studied three different approaches to integrate
IL-6 proteins at SAW surface i.e., (a) by direct surface adsorption, (b) surface modification through
bovine serum albumin (BSA), and (c) surface modification via monoclonal antibodies. It was noticed
that direct surface adsorption is not an effective approach for adequate protein recognition and thus,
resulted in low sensitivity for IL-6 detection. The second method was IL-6 immobilization through BSA
which showed much higher frequency shifts for IL-6 detection than simple surface adsorption. While
the third strategy i.e., IL-6 immobilization through monoclonal antibodies exhibited highest sensor
shifts for IL-6 detection. Figure 5 showed the sensor responses of two 1.5 GHz SAW devices coated by
IL-6 immobilization through BSA (Figure 5A) and IL-6 immobilization through monoclonal antibodies
(Figure 5B). It can be seen that IL-6 immobilization through antibodies exhibited higher sensitivity
compared to immobilization through BSA. Moreover, from these results it can also be noticed that by
increasing the active sensor area i.e., 20 × 20 µm2, the detection range can be improved comparing
to 5 × 5 µm2. Finally, the authors tested the developed SAW biosensor for the detection of IL-6 in
human serum and found that it showed satisfactory results in agreement with ELISA for detecting low
concentrations of IL-6.
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Figure 5. (A) SAW sensor response as measured IL-6 mass (fg/mL) vs. applied IL-6 mass (µg/mL), the
sensor surface was modified following IL-6 immobilization through BSA. (B) SAW sensor response
as measured IL-6 mass (fg/mL) vs. applied IL-6 mass (µg/mL), the sensor surface follows specific
IL-6 binding through immobilization of IL-6 monoclonal antibodies. In both figures two windows of
5 × 5 µm2 and 20 × 20 µm2 were tested, sensor measurements indicated that by increasing the active
surface area of the device, the sensor response increases as shown by 20 × 20 µm2 window in both
cases, adapted with permission from [154].

Kim et al. [155] reported 2.4 GHz SAW biosensor having biotin–streptavidin and DNA hybridized
biomolecular binding interface. The authors reported low detection limit i.e., ~1 ng/mL and rapid
response for the detection of target analyte with the possibility of wireless sensor integration.
Cai et al. [156] developed a highly sensitive SAW biosensor utilizing the third-order harmonic
mode of 2 GHz device to achieve resonance frequency of 6.4 GHz with Q-factor of more than 4000.
They reported appreciable sensitivity for target DNA detection i.e., 6.7 × 10−16 g/cm2/Hz with the ability
of single cell detection which is remarkable. Furthermore, a linear sensor curve was recorded in the
concentration range from 1 µg/mL to 1 ng/mL. The developed biosensor exhibited high selectivity as
shown in Figure 6 where it can be seen that the response of target DNA (Sample 1) having concentration
1 µg/mL with 15 bases has highest relative frequency shift. Sample 2 has the same concentration with
15 bases but only has one mismatch base thus, showed lower frequency shift than 1. In the same way,
Sample 3 had the same concentration with 15 bases but 2 mismatch bases which result in even lower
response. Samples 4 and 5 having concentrations of 1 µg/mL each represent the responses of 4 and
3 bases, respectively. Samples 6, 7, and 8 show the sensor responses of target DNA with 15 bases
having concentrations 100, 10 and 1 ng/mL, respectively. Finally, Sample 9 shows the response of BSA
i.e., an interfering analyte and the Sample 10 represents PBS buffer response. The proposed sensor
setup has the potential for label-free detection of target analytes with high sensitivity which can be
used for medical diagnostics and other applications.

Weber et al. [12] explained the operation of FBAR in liquid phase specifically for biosensor
applications. They experimentally showed that sensor performance of shear-FBAR is much better
than longitudinal-FBAR device due to lower Q-value and high noise of later type of device. The mass
resolution or the smallest detectable mass by shear-FBAR device was better than QCM setup under the
same conditions.
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mismatch bases, 4 is the response of non-target DNA (1 µg/mL) having only 4 bases, 5 is the response
of non-target DNA (1 µg/mL) having only 3 bases, 6 is the response of target DNA (100 ng/mL) having
15 bases, 7 is the response of target DNA (10 ng/mL) having 15 bases, 8 is the response of target DNA
(1 ng/mL) having 15 bases, 9 is the response for BSA, 10 is the response for PBS buffer, adapted with
permission from [156].

A recent review related to biosensing applications of FBARs has been published by Zhang et al. [157]
in which the authors described theoretical aspects of FBAR’s working and operations in different
environments and furthermore, proposed some optimization in the design. Additionally, the authors
exclusively discussed biosensing domain of FABRs for various bio-analytes using immobilized
antibodies, aptamers, modified DNA probes, enzymes and others as receptor materials. Like SAW
devices, the authors explained that the surface density of immobilized antibodies and their orientation
greatly influence the target antigen binding and ultimately affecting sensor performance. Gabl et al. [158]
integrated DNA oligomers (25 bases) via thiol-modification at gold electrode interface of 2 GHz FBAR
device. The authors used this setup for detecting protein as well as DNA hybridization. They reported
a high mass sensitivity i.e., 2400 Hz cm2/ng which was calculated about 2500 times higher than a
20 MHz QCM. Lin et al. [159] monitored DNA synthesis using a 3.16 GHz FBAR device coated with
self-assembled thiol-modified DNA primer. The authors reported that the developed setup is capable
of monitoring the addition of single nucleotide which can be used for advanced DNA sequencing
applications. In a later study [160], the authors reported the detection of cancer biomarker i.e., prostate
specific antigen (PSA) using immunoglobulin G (IgG) antibodies as receptors. The orientation of IgG
antibodies at the gold electrode was improved by immobilizing antibodies via protein G with suitable
cross-linker. The resulted sensor exhibited high sensitivity i.e., 25 ng/cm2 using a 3.6 GHz device and
exceptional low detection limit in the range of ng/mL. Moreover, the sensor showed suitable selectivity
when exposed against BSA as even 100 times higher concentration of BSA than PSA, did not show
appreciable frequency shifts. After rebinding, the antibody-antigen complex at sensor interface can be
removed easily by suitable washing with glycine and buffer. The resulted sensor surface can be reused
for further measurements as the regenerated surface showed comparable frequency shifts to that of
fresh sensor coating. In another report, Zhao et al. [161] reported the detection of human prostate
specific antigen (hPSA) using a 1.5 GHz FBAR device with even better sensitivity i.e., 1.5 ng/cm2

and higher Q-factor i.e., around 800. The authors utilized mouse monoclonal anti-prostate specific
antigen (anti-hPSA) as receptors with an optimal amount of 1 mg/m2. They suggested that an increased
antibody amount than optimal resulted in increased steric hindrance causing reduced binding efficiency
while the lower antibody concentration led to a limited number of binding sites. In Figure 7, the
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authors showed the adsorption of h-PSA antibodies on FBAR electrode (1st column) resulting frequency
shift of 230 kHz, then following BSA blocking leads to further 70 kHz shift (2nd column) and finally,
h-PSA antigen binding resulted in 46 kHz frequency shift (3rd column). In control experiments, BSA
adsorption of FBAR electrode resulted in 71 kHz (4th column) which is consistent with the frequency
shift of blocking step i.e., 70 kHz as shown in the 2nd column. Further h-PSA antigen binding on
top of BSA resulted only 2 kHz (5th column) suggesting the non-specific interactions of antigen
with BSA. These findings indicate the potential of FBAR as the label-free sensor that can be used
for highly sensitive and selective detection of antibody adsorption and it’s binding with antigens.
Chen et al. [162] reported the detection of alpha-fetoprotein (AFP) i.e., a cancer biomarker using 2.1 GHz
FBAR. The authors used monoclonal anti-AFP antibodies and reported a detection limit of 1 ng/mL of
AFP antigens which is comparable to ELISA. The developed sensor showed suitable selectivity when
exposed to other endogenous substances i.e., alcohol, ascorbic acid, uric acid and glucose.
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issues. The enhanced sensitivity is primarily driven by the high fundamental resonance frequency of 
the device. However, high frequency also leads to high damping which requires improved oscillation 
stability. The main advantage of using high frequency devices for gas phase sensing is their relatively 
low damping than liquids and thus, having better Q-factor. Fanget et al. [164] reviewed different 
types of electromechanical transducers for gravimetric detection of gases/vapors. They explained the 
operating principle, gas adsorption and detection mechanism, and important design details for 
improved gas sensing. 
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Figure 7. The frequency shift after h-PSA antibody adsorption (5 mg/L) for 15 min was 230 kHz (1st
column), then BSA blocking (50 mg/L) for 25 min leads to 70 kHz shift (2nd column) and further antigen
h-PSA binding (5 mg/L) for 15 min resulted another 46 kHz shift (3rd column). In control experiments,
BSA adsorption at electrode surface (50 mg/L) for 30 min leads to 71 kHz shift (4th column) and then
h-PSA antigen adsorption (5 mg/L) for 15 min over BSA resulted only 2 kHz shift (5th column), along
y-axis ∆f represents resonant frequency shifts, adapted with permission from [161].

3.2. Gas Phase Sensing

Chemical sensing of gaseous analytes by acoustic transducers [163] has been widely recognized
due to high sensitivity, lower detection limits and small size for miniaturization and portability issues.
The enhanced sensitivity is primarily driven by the high fundamental resonance frequency of the
device. However, high frequency also leads to high damping which requires improved oscillation
stability. The main advantage of using high frequency devices for gas phase sensing is their relatively
low damping than liquids and thus, having better Q-factor. Fanget et al. [164] reviewed different
types of electromechanical transducers for gravimetric detection of gases/vapors. They explained
the operating principle, gas adsorption and detection mechanism, and important design details for
improved gas sensing.

Waldvogel and coworkers [93] designed a prototype mobile handheld sensor setup having
195 MHz HFF-QCM for detecting airborne analytes. In order to improve the signal processing of
HFF-QCM and its suitability for real-time applications, the authors investigated the performance of the
device under different conditions including pressure and turbulence, static and dynamic temperature
influence and acceleration-sensitivity. The authors aimed to improve the signal to noise ratio in
continuous airflow and to minimize the impact of environmental conditions so that HFF-QCM setup
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could be used as a portable hand-held device. In another report [165], they developed 200 MHz QCM
device coated with modified dendrimeric structures for online detection of triacetone triperoxide
(TATP) i.e., an explosive. With such a high resonance frequency, a detection limit of 1 ppm for TATP was
achieved with suitable response/recovery times i.e., <5 s. In order to enhance selectivity by reducing
the non-specific interactions, the authors [166] modified HFF-QCM electrode surface with alkylated
phosphonic acids and corresponding partially fluorinated phosphonic acid groups. The interesting
aspect of these modifications is their hydrophobic and lipophobic properties as it resulted in a 55%
reduced frequency shifts for water and 74% for cyclohexane, respectively. They reported that QCM
surface modification reduces the nanoporosity and polarity of alumina (electrode material) and
furthermore, allows suitable integration of supramolecular affinity layers on modified QCM surface
for TATP detection. Principal component analysis (PCA) of the developed sensor array for TATP
detection has demonstrated that after surface modification the sensor signals for TATP are much better
separated from common interferents such as water, acetone, hydrogen peroxide and tBuOOtBu i.e., an
analogous compound to TATP. Figure 8A,B demonstrate first principal component (PC1) and second
principal component (PC2) data of un-modified and surface modified HFF-QCM sensor array for TATP
detection, respectively.
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Figure 8. (A) PCA result of HFF-QCM sensor array for the detection of TATP without pretreatment,
(B) PCA result of HFF-QCM sensor array for the detection of TATP after surface pretreatment, indicating
that surface treatment resulted an improved TATP detection with better separation from interferents,
adapted with permission from [166].

SAW devices have been extensively utilized for gas phase sensing more than any other acoustic
transducers. This is simply due to the inherent suitability of Rayleigh waves in gaseous environments,
high resonance frequency that leads to low detection limits, fast response time and ability to integrate
with miniaturized electronic systems. These features make SAW sensors highly competitive for
developing viable gas sensors for commercial applications. Since the early work of Wohltjen [167,168],
SAW devices as gas sensors have been widely investigated. Afzal et al. [169] reviewed a variety of
different molecular recognition materials that can be combined with SAW transducers for developing
fast and highly sensitive gas/vapor sensors. These include metal oxide nanostructures, carbon nanotubes
(CNTs), graphene oxide hybrids and composites, molecularly imprinted polymers, supramolecular
structures, polymeric affinity layers, self-assembled monolayers and others. The principal selection
criteria for SAW sensor coating is its selectivity, response/recovery time, low cross-sensitivity
against humidity and temperature shifts and ability to work under ambient conditions. Dickert
and coworkers [170] showed that 1 GHz SAW device coated with permethylated β-cyclodextrin
structure attached with hexafluorobenzene could detect m-xylene down to 1 ppm. Furthermore, they
demonstrated that increasing the resonance frequency of SAW from 80 MHz to 1000 MHz, the sensor
response increases in a parabolic way whereas the noise increases linearly. Figure 9A shows the
sensor responses by 80, 301, 433 and 1000 MHz devices having the same coatings. A similar trend
is also reported by Abraham et al. [171] as they integrated hybrid coatings of ZnO-CuO and CNTs
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for the detection of different volatile organic compounds (VOCs). The designed ZnO-CuO-CNTs
nanocomposite exhibited enhanced sensitivity than pristine CNTs. The authors compared the sensor
responses of different SAW devices having frequencies 80, 315, 433, 915 and 1000 MHz as shown in
Figure 9B. It can be seen here that an increase in resonance frequency leads to increase in the sensor
response which is in agreement with previous studies [170].
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Figure 9. (A) Sensor responses of 80, 301, 433 and 1000 MHz SAW sensors against 1000 ppm of toluene
vapors, along x-axis the fo represents fundamental resonance frequency, all the devices were coated with
permethylated β-cyclodextrin linked with hexafluorobenzene having thickness 60 nm, adapted with
permission from [170]. (B) Sensor responses of 80, 315, 433, 915 and 1000 MHz SAW sensors against
100 ppm of different vapors, all the devices were coated with ZnO-CuO-CNT nanocomposite, adapted
with permission from [171]. In both figures, sensor response increases as the resonance frequency of
SAW resonator increases.

Liu et al. [172] combined inorganic and organic materials i.e., CeO2 nanoparticles with polyvinyl
pyrrolidone nanofibers, respectively by electrospinning method and integrated as SAW sensor coatings.
The authors used a 1.56 GHz SAW device and tested for relative humidity sensing in the range of 11 to
95%. They demonstrated a frequency shift of 2.5 MHz using 1.56 GHz device which was about 8 times
higher than 0.879 GHz SAW having the same sensor coatings thus, showing higher resonance frequency
leads to enhanced sensor shifts. Moreover, the designed sensor showed fast response/recovery kinetics,
suitable repeatability of sensor signals and good stability of coating material even after one month. In a
parallel report [173], the authors tested Ni(SO4)0.3(OH)1.4 i.e., (NSOH) nanobelts and NiO nanoparticles
coated with 1.54 GHz SAW devices for relative humidity measurements, respectively. They compared
relative humidity sensing data of developed sensors with other strategies reported in the literature, as
shown in Table 3.

Table 3. Comparison of developed SAW sensors for relative humidity sensing with other strategies
reported in literature, adapted with permission from [173].

fo Substrate Surface
Morphology

RH Range
(%)

Max Response of
Frequency Shift

Recovery &
Response Time

Max Difference
of ∆f (kHz) Ref.

1.54 GHz 128◦ YX LiNbO3
NiO

nanoparticles 11–85 −5.81 MHz 4 s, 23 s 478 This work

1.54 GHz 128◦ YX LiNbO3 NSOH nanobelts 11–85 −2.95 MHz 10 s, 21 s 130 This work

395 MHz ZnO/poly-imide
(PI) Graphene oxide 11–85 −1.5 MHz 5 s, 22 s - [174]

199 MHz ST quartz SiO2 films 30–93 −520 kHz <10 s, <10 s - [175]

126 MHz AlN/Si Ga doped ZnO
films 10–90 −400 kHz - 20 [176]

433 MHz ST quartz Silicon-containing
polyelectrolyte 10–95 −30 kHz ~10 s, ~10 s - [177]
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This table again confirms the frequency-sensitivity relationship as increased resonance frequency
leads to enhanced sensor response. Additionally, the nature of coating material also plays important
role in improving sensitivity as the response of NiO nanoparticle (5.81 MHz) coated SAW against
relative humidity is higher than the response of NSOH nanobelts (2.95 MHz) coated device.

Due to the higher frequency and compact size, FBARs have turned out to be highly suitable for gas
sensing applications as FBAR gas sensors offered much lower detection limits than other gravimetric
sensors. Zhang and Kim [178] discussed the operation of FBAR mass sensor in liquid as well as in
gaseous phases. They developed FBAR on silicon nitride diaphragm having ZnO piezoelectric film
which was sandwiched between two aluminum electrodes. The measured mass sensitivity of FBAR
was 726 cm2/g i.e., close to the theoretical value of 773 cm2/g and about 50 times higher than 6 MHz
QCM. FBARs devices of 1 GHz showed higher Q-value i.e., 200–300 in air and can detect a mass
change of 10−9 g/cm2. Whereas FBARs in liquids having frequency 2 GHz, showed Q-value 40 at 2nd
harmonic resonance and can detect a mass change of 10−8 g/cm2. The authors compared the minimum
detectable mass shifts by FBAR devices operated in liquid and gaseous environments against varying
Q-values in air. They observed that a higher Q-value leads to improved sensitivity of FBAR device.
Lin et al. [179] immobilized antibodies via protein A on the gold electrode of FBAR for highly sensitive
detection of explosives. The designed sensor could be used without sample pre-concentration and
showed high sensitivity for trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX)
using FBAR devices operated at 1.96 GHz and 1.65 GHz, respectively. High resonance frequency, use
of specific receptors and miniaturized design leads to the development of smart sensors for detecting
explosives that can be used for military and security applications. Benetti and coworkers [180]
developed FBAR sensors for hydrogen (H2), carbon monoxide (CO) and ethanol vapors using two
different chemical layers. For H2, they used Pd (layer thickness 15 nm) and for CO and ethanol, they
selected co-tetra-phenyl-porphyrin (layer thickness 36 nm) following thermal evaporation process for
their fabrication with 1.59 GHz FBAR device. The developed sensors showed the lowest detection
concentrations of 2 ppm (H2), 40 ppm (CO) and 500 ppm (ethanol). Chen et al. [181] reported a
dimethyl methyl phosphonate (DMMP) sensor integrating a self-assembled composite bilayer of
Cu2+/11-mercaptoundecanoic acid with 2.35 GHz FBAR. The lowest measured concentration of DMPP
was 100 ppb. Penza et al. [182] developed a nanocomposite of single walled carbon nanotubes
(SWCNTs) embedded in cadmium arachidate by Langmuir–Blodgett method for gravimetric sensing
of organic vapors. They optimized the composition of nanocomposite, i.e., the percentage of SWCNTs
in cadmium arachidate for enhanced sensitivity toward ethyl acetate and toluene in their previous
studies [183]. Table 4 shows the comparative sensor values of sensitivity and noise level for QCM,
SAW and FBARs devices having 10 MHz, 433 MHz and 1045 MHz resonance frequencies, respectively.
All the devices were coated with the same nanocomposite coating material having 75% SWCNTs.
The data of QCM and SAW was compared from their previous work [183].

Table 4. Comparison of operating frequencies, noise level and sensitivities of QCM, SAW and thin
film bulk acoustic resonator (TFBAR) devices for chemical sensing of ethyl acetate and toluene vapors.
All the devices were coated with 75 (wt.%) SWCNT-based nanocomposite Langmuir–Blodgett layers,
adapted with permission from [182].

Acoustic Device
Operating

Frequency (MHz) Noise Level (Hz)
Sensitivity (∆F/c) ∆Fw (Hz/ppm)/kHz

Ethyl Acetate Toluene

QCM 10 1–5 0.05 0.097
SAW 433 10–25 0.30 1.020

TFBAR 1045 50,000 0.98 1.044

∆F referred to frequency shift due to gas exposure; c is the concentration of gas; ∆Fw is the frequency shift due to
coating onto device.
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As expected, Table 4 shows that simply by increasing the resonance frequency of the acoustic
device, the sensitivity increases for both ethyl acetate and toluene however, noise also increases.
The authors proposed that with the increasing resonance frequency, there is a compromise between
sensitivity and the noise. However, for a certain signal to noise ratio, the sensitivity increases with the
increasing resonance frequency of acoustic devices. The observed detection limits were significantly
low indicating the potential of designed sensor setup for room temperature sensing of volatile organic
compounds (VOCs) at the workplace and others.

Hu et al. [184] developed polymer-coated FBAR sensor array for gas chromatographic analysis of
different organic vapors. They integrated FBAR sensor array with a commercial gas separating column
outlet and from other side connected to network analyzer equipped with a computer for data processing.
The developed GC-FBAR sensor array combined with PCA demonstrated suitable selectivity pattern
for quantitative analysis of different organic vapors. For instance, a dual mixture of acetone and
n-pentane which is not easily separated by GC column, was effectively distinguished and quantified by
PCA treatment of FBAR sensor array. In Table 5, the authors compared the performance of developed
FBAR sensor array with different GC-sensor systems reported in the literature in terms of detection
limit, dynamic range, linearity, application field and data processing algorithm. They suggested that
high sensitivity of FBAR sensor array and its miniaturized design make it a potential candidate for
microscale portable GC systems.

Table 5. Comparison of different GC-sensor systems with developed FBAR sensor in terms of limit of
detection, dynamic range, linearity, application field and data process method, adapted with permission
from [184].

GC-Sensor
Sensing Performance

Application
Field

Data Process
Method Ref.Limit of

Detection
Dynamic

Range Linearity

Micro-cantilever Sub-ppb / Good Building-related
illness PCA [185]

Semiconductor metal
oxide detector Sub-ppb 0.1–5 ppb Non-linearity Environmental

pollution / [186]

Micro-capacitive
detector 0.1 ppm 0.1–1 ppm Good Indoor

pollutants / [187]

Acoustic wave (AW)
device / / Good

Food products
and antiseptic

agent
PCA [188]

Nano-electromechanical
resonators Sub-ppb 0.6–1500 ppb Good / / [189]

Film bulk acoustic
wave resonator 1 ppm 50–500 ppm Good Exhaled breath

detection PCA This work

Guo et al. [190] presented a theoretical approach to study VOC sensor based on polymeric layer
coated diaphragm integrated with FBAR. The polymer layer undergoes swelling on the absorption of
analyte vapors that causes deformation of the diaphragm resulting in bending stress on piezoelectric
film. Thus, a change in phase velocity and frequency of FBAR is observed. Simulation study revealed
a sensitivity of 2.5 Hz/ppm and a detection limit of 0.4 ppm for chloroform vapors. Zhao et al. [191]
reported a 1.5 GHz protein functionalized FBAR sensor for detecting a common insect repellent
i.e., N,N-diethyl-meta-toluamide indicating the use of FBARs as odorant sensors. Song et al. [109]
integrated polyethyleneimine modified SWCNTs with gold electrode surface via self-assembling for
chemical sensing of formaldehyde vapors. The resonance frequency of FBAR device was about 4.5 GHz
which resulted in an exceptionally low detection limit of 24 ppb and sensitivity of 1.472 kHz/ppb
for formaldehyde. Furthermore, the developed sensor showed suitable selectivity when exposed to
common interferents such as ethanol, acetone, benzene, toluene, chloroform and dichloromethane.
The concentrations of these interferents were kept twice as high as compared to the corresponding
formaldehyde concentrations. The result is shown in Figure 10 where it can be seen that developed
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sensor possesses high selectivity for formaldehyde sensing. The response and recovery times was less
than 1 min including complete reversibility of sensor signal.
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Figure 10. Sensor response of FBAR device coated with polyethyleneimine-modified single walled
carbon nanotubes for formaldehyde vapors at 50 ppb, 200 ppb and 400 ppb, measured at 23 ◦C and
40% relative humidity. Sensor shifts to different interferents such as ethanol, acetone, benzene, toluene,
chloroform and dichloromethane were also recorded at concentrations twice high as of formaldehyde,
adapted with permission from [109].

4. Advantages and Limitations

QCM is the one of the most extensively studied acoustic transducers for chemical/biochemical
sensor applications because of its small size, easy availability, low temperature coefficient, low
fabrication cost, and equally good sensitivity and suitability for gas as well as liquid phase operations.
However, the usual operating frequency range is 5–20 MHz, which is much less than those of SAW
and FBAR. The use of inverted mesa designs has led to the development of QCMs having resonance
frequencies as high as 200 MHz with improved Q-values and energy trapping. Uttenthaler et al. [149]
reported the first HFF-QCM biosensor for the detection of bacteriophage and since then some other
research groups demonstrated their successful sensing applications in complex mixtures including
both liquids and gaseous environments. Apart from these examples as discussed above, the number of
research articles related to HFF-QCM sensors is relatively less. This somewhat indicates that further
optimization in manufacturing is required to improve the oscillation stability issues in HFF-QCM and
to solve the design and fabrication related concerns. And importantly, all this has to be managed in
competitive price while compared to conventional acoustic transducers.

SAW devices are well known for gas phase sensing applications, their high fundamental resonance
frequency, easy fabrication, compact design and ability for wireless integration are the main attractive
features. SAW based sensor devices are one of the special classes of acoustic transducers that have
gained the commercial success in gas phase analysis. The main limitation of typical SAW sensors
is excessive damping problems in liquids which can be resolved by carefully selecting piezoelectric
material for device fabrication and adjusting the cutting angle of the crystal. For example, SH-SAW
or STW devices are frequently reported surface acoustic devices for sensor applications in liquids.
Concerning operating frequency, the usual SAW resonators reported for chemical sensing have
resonance frequency around 100–500 MHz which is much higher than HFF-QCMs. Although SAW
devices with frequency as high as 10–14 GHz are reported [192] in the literature as pressure sensors,
their chemical/biochemical sensing examples with such a high frequency are rare. SAW sensors with
frequency around 1.5 GHz is reported for gas/vapor as well as liquid phase biosensor applications.
An interesting strategy reported in literature is the use of higher harmonic modes to achieve higher
frequency i.e., 6.4 GHz with enhanced Q-value of 4000. Despite the fact that a large number of articles
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related to fabrication of high frequency SAW devices i.e., in GHz range, their chemical/biochemical
sensing applications are not as frequent as one would expect. The use of high frequency SAW devices
combined with specific receptors, particularly for biosensing applications, is currently the focus of
research to make these devices as successful as gas phase sensors.

In chemical/biochemical sensing, FBARs are newer acoustic devices than QCM and SAW. Their
usual operating frequency is in the range of hundreds of MHz to 10 GHz which is substantially higher
than QCM and reported SAW sensors. In sensor domain, there are two main advantages of using
FBARs as acoustic transducer over QCM and SAW, the first is the high resonance frequency that leads
to enhanced sensitivity and lower detection limits while the second is their ability to work in liquid
mediums. Moreover, the much smaller size of FBARs i.e., around 200 µm in a typical cross-device
size is advantageous for building a miniaturized sensor array that can be used for high throughput
analysis. Their integration in microfluidic package can lead to develop lab-on-a-chip setup for clinical
diagnostics and other applications. FBAR devices fabricated in an array combined with CMOS
technology can be used for biosensor applications. In the recent examples as discussed above, FBAR
devices demonstrated their suitability for gaseous as well as liquid phase sensing with many of them
having resonance frequency above 1 GHz and the highest resonance frequency of 4.5 GHz. However,
despite these advantages, the commercial manufacturing of FBAR for sensor applications is not as
common as QCM and SAW devices which have a direct impact on its availability and price. Currently,
FBAR fabrication is carried out by different techniques including sputtering, photolithography, electron
beam lithography (EBL), and others. These are sophisticated nanofabrication tools that require special
training/handling protocols for obtaining desired electrode geometry and dimensions which ultimately
limit their mass production for using routine sensor applications.

5. Summary and Perspectives

In this review, we aimed to provide a concise overview of the high frequency acoustic transducers
such as QCM, SAW and FBAR for a diverse range of chemical/biochemical sensor applications. We
exclusively discussed their transduction mechanism, operating frequencies, piezoelectric materials
used for fabrication, temperature-frequency dependency and operation in liquid environments.
The exemplary chemical/biochemical sensor applications of exclusively high frequency QCM, SAW
and FBAR devices are explained focusing on the two major domains i.e., biosensors for recognition of
bio-relevant analytes in the liquid medium and other is the gas phase sensing. The orientation and
integration of biological receptors as sensor coatings with acoustic transducers is also emphasized for
improved recognition of target analyte in complex matrices. Finally, these acoustic transducers are
compared in view of their advantages and limitations. From the above examples and comparisons,
it is indicated that high resonance frequency has the pivotal role for achieving enhanced sensitivity
and lower detection limits. However, with the increase in resonance frequency it is also important to
maintain high Q-factor to reduce spurious signals and noise thus, to have improved oscillation stability.
The comparisons between QCM, SAW and FBAR suggest that a tradeoff exists between the operating
frequency of acoustic transducers and their availability and price. For instance, HFF-QCMs are getting
more common for both gas and liquid sensing but has frequency around only 200 MHz. SAW resonators
gained some commercial success as gas sensors but has certain limitations for the liquid phase operation,
these devices with frequency around 1 GHz are reported for sensor applications. FBARs possess the
highest fundamental frequency of > 4.5 GHz but are not manufactured as commonly as QCM and
SAW. Current technological tools need further optimization and advancement in fabrication protocols
to achieve high fundamental frequency with low manufacturing costs thus, to make these acoustic
devices highly competitive transducers in the sensing world.
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