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Abstract: Internet of Things (IoT) technology is increasingly pervasive in all aspects of our life
and its usage is anticipated to significantly increase in future Smart Cities to support their myriad
of revolutionary applications. This paper introduces a new architecture that can support several
IoT-enabled smart home use cases, with a specified level of security and privacy preservation.
The security threats that may target such an architecture are highlighted along with the cryptographic
algorithms that can prevent them. An experimental study is performed to provide more insights about
the suitability of several lightweight cryptographic algorithms for use in securing the constrained
IoT devices used in the proposed architecture. The obtained results showed that many modern
lightweight symmetric cryptography algorithms, as CLEFIA and TRIVIUM, are optimized for
hardware implementations and can consume up to 10 times more energy than the legacy techniques
when they are implemented in software. Moreover, the experiments results highlight that CLEFIA
significantly outperforms TRIVIUM under all of the investigated test cases, and the latter performs
100 times worse than the legacy cryptographic algorithms tested.

Keywords: IoT; lightweight cryptography; smart home; security; privacy preservation;
data anonymisation

1. Introduction

The Smart Cities concept relies on information gathered from a myriad of tiny IoT sensors.
These can be used to monitor the location or behavior of individuals as well as their health and fitness
conditions, while other sensors will monitor critical infrastructure such as highways and bridges,
valuable assets in Industry 4.0 and crop growth in agriculture. These sensors represent an invaluable
source of information that can be efficiently processed and analyzed in an intelligent manner to
improve the services offered to the cities’ inhabitants, thereby encouraging more people to adopt smart
solutions and use smart devices. Since many of these services are delivered over wireless interfaces
and typically carry sensitive private information, there is a need for a comprehensive approach to
security and privacy-preservation. These requirements must also be balanced with the need for a
particular Quality of Service (QoS) in terms of bandwidth and latency which in turn drives the need
for more efficient use of costly or scarce resources such as radio network capacity and edge devices’
computational capabilities [1].

Achieving this, however, is very challenging for several reasons;
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• The limited computational capabilities and the inherent design constraints of the sensors make
them an easy target for hackers [2];

• The large volume of collected data may include erroneous or intentionally injected malicious data
that can lead to serious effects on the system operation and integrity;

• Compliance with the General Data Protection Regulation (GDPR) introduces constraints that
restrict the usage and sharing of the data collected by companies offering smart home services.
Mechanisms are therrefore required for those users who are unwilling to share potentially
identity-disclosing data with the service providers;

• Inter-operability between devices from different manufacturers makes it difficult to build a unified
smart home system.

To this end, we propose an IoT-based smart home architecture to support various applications,
discuss several security threats and potential countermeasures, and finally undertake an experimental
study to identify the most suitable cryptography algorithms for use in this context. The main
contributions of this paper are summarized as follows:

• Proposing a simple yet comprehensive IoT-based smart home architecture that could serve as a
reference model for future works aimed at designing improved smart home systems.

• Analyzing the potential security threats that may target such an architecture and outlining the
existing countermeasures.

• Designing a new security parameter selection algorithm that enables any newly added IoT device
to be configured with the most suitable lightweight cryptographic algorithms.

• Conducting an experimental study to evaluate the suitability of several hardware-oriented
lightweight cryptography algorithms to secure the IoT devices used in this architecture.

The remainder of the paper is organized as follows. Section 2 summarizes the literature followed
by a description of the proposed IoT enabled smart home architecture in Section 3. In Section 4,
we present examples of smart home applications that can be built upon this architecture, then we
highlight their associated security threats in Section 5. In Section 6, we outline several legacy
and lightweight cryptographic algorithms that can be used to mitigate the above threats. A new
algorithm that enables selecting the most suitable cryptographic algorithms for configuration in
IoT devices is proposed in Section 7, followed by an experimental evaluation of the achieved
encryption/decryption time for a selection of lightweight and legacy cryptography algorithms in
Section 8. Finally, we conclude in Section 9.

2. Related Work

In recent years, IoT technology revolutionized the world by substituting humans with intelligent
devices to perform many everyday tasks [3,4]. These smart devices become responsible for handling
the data as conventional cities undergo the transformation to smart cities [5], homes to smart homes [6],
industry to industry 4.0 [7] and so on. Despite the numerous benefits that IoT technology brings,
there is a need to ensure the security of the IoT infrastructure and the privacy of the collected data
due to the inherent characteristics of the IoT framework and the rapidly expanding spectrum of cyber
attacks [8,9].

Several architectures were proposed to add security and privacy features to various working
scenarios of IoT networks. Hamed et al. proposed a secure Artificial Intelligence (AI)-based architecture
for securing the edge layer of an IoT framework [10]. In this paper, the life cycle of any attack is detected
and categorized using the Cyber Kill Chain model. The types of threats and their handling by AI
engines for the edge layer were also discussed. Recently, a new safe model for IoT was proposed for
supply chain risk management [11]. The designed architecture provides security by applying machine
learning techniques, cryptographic hardware monitoring and distributed system coordination.

Another multi-layered scheme for secure data transportation between IoT devices connected
through a cellular network was developed in [12]. This scheme provides a secure end-to-end
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communication system for IoT that is comprised of secure interlocking functional elements in the carrier
network. A hybrid scheme based on blockchain technology was introduced for ensuring end-to-end
security [13]. The proposed scheme uses the Authentication and Authorization for Constrained
Environments (ACE) framework [14] for blockchain authorization and the Object Security Architecture
for the Internet of Things (OSCAR) object with group key security. In [15], the authors used the
concept of decentralized fog computing architecture to map privacy patterns for IoT. They used a
smart vehicle use case scenario as a proof of concept to elaborate how privacy-by-design can be used
in a practical instance to preserve users’ privacy. The works discussed above mostly provide a proof
of concept for the proposed IoT architecture but very few of them provided working evidence of
such an architecture. Given the limited resources of typical IoT systems, it is important to analyze the
performance of security algorithms in real-world IoT scenarios.

There are several papers that discussed the performance of security algorithms for IoT devices
when proposing a new IoT model. Recently, a survey paper published a detailed description of
lightweight algorithms, but no real-time experiments were conducted for performance analysis [16].
Buchanan et al. published a paper on lightweight cryptography methods and performed an in depth
analysis of some of them [17]. They used Fair Evaluation of Lightweight Cryptographic Systems
(FELICS) bench-marking to test the efficiency of algorithms for software implementations on 8-bit,
16-bit, and 32-bit micro-controllers. They performed a fair comparison and obtained some interesting
findings, but their experiments were conducted for fixed block sizes and no real-world use cases were
evaluated using hardware implementations or IoT sensors.

A high-performance and low-energy implementation of cryptographic primitives was carried out
for programmable system-on-chip IoT devices in [18]. The authors used Field Programmable Gate
Arrays (FPGAs) to implement AES, Rivest-Shamir-Adleman (RSA), Data Encryption Standard (DES)
and Secure Hash Algorithm (SHA) algorithms for testing and analyzing them for different performance
metrics. The authors highlighted important findings, such as that the achieved performance boost
and energy savings in FPGA implementations compared to software implementations range from
1.5× to 2983×, and from 1.8× to 4033×, respectively across a variety of cryptographic algorithms,
but unfortunately the algorithms they used are not lightweight. FPGA boards possess powerful
computing capabilities that cannot be compared with the limited computing resources of IoT sensor
nodes. Peireira et al. considered a Wireless Sensor Network (WSN) scenario and performed detailed
experimentation on several devices and different operating systems [19]. The work also used a small
set of randomly selected cryptographic algorithms, such as AES, Curupira and Trivium, including
some algorithms that were not standardized, such as Marvin [20].

To complement the above efforts, this paper introduces a new architecture that can support
several IoT assisted living applications with a specified level of security and privacy preservation.
This architecture is supported by a new algorithm to ensure that any newly added IoT sensor is
configured with the most suitable cryptographic suite based on the device capabilities and the
target security application. An experimental study is also conducted to provide time latency
comparison between legacy and lightweight cryptographic algorithms when implemented on a
prototype IoT network.

In this section, we will provide a detailed description of our proposed generic IoT enabled smart
home architecture, highlighting the need for each of its main phases and explaining the interaction
among them, as well as discussing how the data flows between the different components.

The proposed architecture is shown in Figure 1 indicating that the data are collected from
various heterogeneous IoT sources, then anonymised, processed and analyzed using AI (Artificial
Intelligence)-based techniques. Based on the outcome of this analysis several actions are taken
to optimize some parameters of interest in order to achieve the desired security and performance
objectives of the smart home application in use. To ensure a secure and privacy-preserving smart
home environment with optimized usage of the available resources, e.g., electricity, water and gas,
the following phases are required.
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Figure 1. Architecture of a secure and privacy-preserving IoT-based sensing and actuation system in a
smart home.

3. IoT Enabled Smart Home Architecture

3.1. Phase 0—Security Parameters Configuration

This phase is required for a new IoT device before connecting it to the smart home system. The IoT
device is on-boarded with a suite of cryptographic algorithms to cater for the confidentiality, integrity
and authentication requirements of the applications and systems using this specific device.

This phase plays a key role in the protection of the smart home from several security threats as
explained later in Section 5.

3.2. Phase 1—Data Sensing and Reporting

We can distinguish three main classes of IoT devices that could be used in a smart home
environment: wearables, IoT enabled appliances and in-home conditions monitoring sensors.
Each device senses one or more parameters and sends the data readings either periodically or when
certain conditions are met, depending on its configuration. If multiple IoT Gateways are within range,
the IoT devices need to choose the most trustworthy or reputable gateway to forward their data.
Here, a trust management scheme is mandatory [21].
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3.3. Phase 2—Data Aggregation and Relaying

Once the data are received at the IoT Gateway level, it will either relay them to their destination
through the relay network or store them first and then aggregate them with other readings before
relaying the aggregated values [22]. The decision to aggregate or relay immediately depends on the
target application as well as the data reading value. Alternative dedicated IoT Gateways could be
deployed as well to operate as an edge server for heavyweight tasks that cannot be handled by the
IoT devices.

Several security mechanisms could be configured at the IoT Gateway level, such as an application
proxy firewall and network based IDS (Intrusion Detection System), to offload the IoT devices from
this moderate to heavy processor-intensive task and ensure early detection of security threats. It is
worth noting that some new generation high-end broadband routers could also operate as an IoT
Gateway for several IoT devices, such as the mesh-IoT hybrid router (https://www.tp-link.com/uk/
press/news/18045/) unveiled by TP-link in August 2018 and which unifies the control of smart home
IoT devices.

3.4. Phase 3—Cloud-Based Data Analytics

A cloud-based service is usually used to store, process and analyze the aggregated data sent by
the IoT Gateways. The received data will first be anonymised to preserve the privacy of the concerned
individuals, depending on the target application, and ensure that any further processing will not
provide any identity-disclosing information [23]. There are different techniques that can be used
for this purpose such as Data Generalization and Differential Privacy which are the two techniques
currently used by google to protect its customers’ data (https://policies.google.com/technologies/
anonymization?hl=en).

The former technique consists of removing a portion of data or replacing some elements with a
commonly used value in order to hide the identity of the concerned individuals. The latter technique
adds mathematical noise to the collected data in a way that makes it difficult to ascertain whether a
given individual is part of a dataset. It is worth noting that this technique may reduce the utility of the
data. That is why we strongly suggest using data generalization based anonymisation in smart home
applications. The main challenge when designing data generalization techniques is how to achieve
data anonymisation while at the same time minimizing the information loss due to the modification of
the original data. K-anonymisation techniques [24] are among the most widespread techniques used
for this purpose, thus we propose their use in this architecture.

The anonymised data will then be passed to the AI-based data analytics tool [25], usually using
a machine-learning algorithm, to extract useful knowledge from the processed and analyzed data
so that an accurate perception of the monitored environment (smart home and its occupants in this
case) is formed. This perception will result in a set of optimal actions/adjustments to be proposed for
the actuation system in place. Subsequently, the processed data will be stored and become historic
data that will be used for enhancing the learning and training of the machine-learning model so that
updates will be applied to the data analytics tool to achieve higher accuracy.

3.5. Phase 4—Optimal Decisions Delivery

In this phase, the optimal actions nominated in the previous phase will be communicated to
the actuation system through the IoT Gateway. Alternatively, they could be also displayed to the
users through a mobile or web app so that they can update the settings accordingly or just for
information purposes.

3.6. Phase 5—Actuation

Finally, upon receiving the above mentioned nominations, the actuation system will instruct the
concerned devices to make the requested adjustments through sending an updated configuration

https://www.tp-link.com/uk/press/news/18045/
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file, for example. The actuation process ranges from changing the upper and lower limits of a given
parameter so that a reading beyond these limits should trigger an alert, to updating the frequency at
which different parameters are measured or the conditions under which certain tasks are performed.

4. Potential Use Cases

In a smart home context, several heterogeneous resource-constrained IoT sensors and actuators
as well as IoT enabled appliances are usually used to provide data inputs to a Smart Home app to
enable the monitoring and adjustment of certain parameters. The Smart Home app runs software
that uses these data inputs along with AI-based techniques, such as machine learning and deep
learning algorithms [25], to build a perception about the home physical environment and its occupants.
This perception will drive the decisions made by the Smart Home app, as explained in Section 3.4,
about the actions to be initiated in order to achieve the desired objectives such as optimizing the
energy-consumption, monitoring the physical activities or behavior of the home residents (e.g., children
and elderly), etc.

Several applications could emerge from this scenario such as:

• Automation of energy consumption optimization of different smart appliances (heaters, lights,
Smart TV, entertainment devices, etc.). Assume that in the living room the sofa and chairs are
equipped with embedded sensors to detect the presence of a human; this data will be correlated
with the Smart TV control unit so that it is switched off (or put on standby mode) whenever
human presence is not detected in the living room for a given period (e.g., x minutes).

• Occupancy detection inside a room, house or a building for either energy usage optimization or
for detection of any unwanted entry to properties.

• Activity or abnormal events recognition to detect specific events of interest such as flood, fire
etc., or for monitoring the activities of elderly or people with chronic illness at home. In the case
of any unusual activity or out-of-range readings (i.e., a value that exceeds a certain threshold)
an alert is triggered and the concerned individuals/services are notified.

• Continuous health monitoring for residents using either on-body or off-body sensors and
reporting the measured data through an IoT Gateway to remote healthcare service.

The above applications could be an easy target for security attacks, in particular if multi-hop
transmission is used, with consequences varying from disturbing the optimal operation of the system
in place to more severe ones. That is why the authentication of the sender device is required as well
as the verification of the authenticity of the data reported to prevent false alerts. Mechanisms to
prevent the modification of such data in transit are also required. Despite the multiple advantages that
IoT brings to individuals living in smart homes, their privacy might be compromised if weaknesses
related to IoT devices configuration (e.g., devices deployed with their default passwords or the latest
security updates are not installed) are discovered and exploited by hackers. According to a recent
article published by MIT Technology Review (https://www.technologyreview.com/f/614062/russian-
hackers-fancy-bear-strontium-infiltrate-iot-networks-microsoft-report), a group of hackers associated
with Russian spy agencies were using IoT devices to break into corporate networks. This shows how
important is the security of these devices and the extent of the damage that can be caused in case of a
successful attack.

5. Potential Security Threats

In this section, we will discuss several security threats that can target our proposed IoT enabled
smart home architecture.

The success and wide adoption of secure IoT architectures and the different applications that
they can support is reliant upon gaining the trust of their potential users [26]. Such trust is very
important due to the harm caused to the security of an individual’s physical, financial and social life if
their personal information is stolen or misused. Therefore, ensuring that adequate security measures

https://www.technologyreview.com/f/614062/russian-hackers-fancy-bear-strontium-infiltrate-iot-networks-microsoft-report
https://www.technologyreview.com/f/614062/russian-hackers-fancy-bear-strontium-infiltrate-iot-networks-microsoft-report
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are implemented to tackle potential security threats is paramount. Below, we briefly discuss several
security threats.

5.1. Corrupted or Forged Data

This serious attack can disturb the proper operation of the deployed monitoring system,
as decisions made based on incorrect data will not achieve the desired IoT system objectives such as
energy consumption reduction, etc. The root causes of this attack are the following:

• Deliberate malicious mis-configuration of IoT devices, leading to erroneous data generation.
For example, increasing all reported power consumption.

• Compromised IoT devices generating forged data readings. For example, reporting power
consumption to be a randomly generated value.

• Data modification in transit, in multi-hop communication, by a compromised IoT Gateway.

5.2. Replay Attacks

This attack can happen if the IoT devices generating data do not implement an anti-replay scheme,
such as adding a protected timestamp to the data packets, and may lead to outdated data being used
and incorrect decisions being made based on it.

5.3. IP Spoofing and Identity Usurpation

Without a sophisticated data-origin authentication mechanism, such as IPsec, identity usurpation
and IP spoofing attacks can easily target IoT devices using other devices connected to the same
network. A rogue IoT device connected to the smart home network can launch an IP scanning attack
to discover the available IP addresses and then use them to mount more sophisticated attacks such as
data manipulation or Denial of Service (DoS) or DDoS (Distributed DoS) attacks, as explained below.

5.4. DoS/DDoS Family Attacks

Any security threat that can result in a service or a resource being unavailable can be qualified as
a DoS attack. In this architecture, any IoT device, if not adequately protected, could be infected by a
Trojan horse, which is a malicious code remotely controlled by an attacker, either installed by having
physical access to the device or through remote updates. Accessing such a device could be the first
step towards launching a successful DoS or DDoS (Distributed DoS) attack. These IoT devices can be
exposed to several types of Botnets with varying consequences for the efficiency of the monitoring
system and also the availability of the provided services. A recent Blockhain based IoT infrastructure
proposed in [27] could offer a resistant solution to DDoS.

5.5. Data Leakage

In the architecture shown in Figure 1, if a hacker successfully gains access to the database of
the cloud-based backend server, where historic data are stored, private and potentially sensitive
information about the smart home occupants could be disclosed if robust anonymisation schemes and
access control mechanisms are not implemented.

6. Potential Countermeasures: Lightweight vs. Legacy

In this section, we will outline several legacy and lightweight cryptographic algorithms that can
be used to encrypt/decrypt the data collected or aggregated by individual IoT devices so that one or
more of the attacks outlined above can be mitigated.

Designing efficient countermeasures to one or more of the above threats is a challenging task due
to the stringent constraints of the devices on which the solution will be implemented and operate to
provide the desired level of protection. Several legacy and lightweight cryptographic algorithms exist
for this purpose but their suitability for use in different IoT devices vary significantly. For this study we
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selected the algorithms outlined below and we evaluated and compared their performance using an
experimental testbed to find out which algorithms could be used to setup and configure cryptographic
suites on new IoT devices before they are integrated into the smart home system (see Section 3.1).

For legacy cryptographic algorithms we consider the following:

• Block Ciphers: Blowfish [28], AES128-CBC and AES256-CBC [29].
• Stream Ciphers: Chacha20 [30], AES128-CTR, AES256-CTR and DES3 [31].

For lightweight cryptographic algorithms we selected CLEFIA and Trivium as they are part
of the ISO/IEC 29192-3:2012 Lightweight Cryptography Standard, as well as being suitable for the
experimental use case of this study.

CLEFIA [32]: A 128-bit block cipher (supporting 128-bit, 192-bit, and 256-bit keys) designed with
the aim of achieving a good trade-off between three fundamental metrics for practical ciphers: (i) the
achieved security level, (ii) the operation speed, and (iii) the implementation cost. Several design
aspects were taken into consideration to ensure its efficient implementation in both hardware and
software. CLEFIA’s immunity against several known attacks that use different techniques to recover
the encryption key was proven and thus it can be used to protect data sent by IoT devices from data
modification attack discussed in Section 5.1.

TRIVIUM [33]: This is a hardware-oriented binary additive stream cipher that is considered both
secure and efficient. It was designed to explore the possibility of simplifying a stream cipher without
reducing its security. It is considered a compact algorithm suitable for environments with restricted
gate count. It is therefore designed to be energy-efficient so that it can be implemented on tiny devices
with limited power resources, and fast enough to accommodate the needs of applications requiring
high-speed encryption.

7. Security Parameters Selection Algorithm

In order to maintain the desired security and privacy preservation level of the architecture
shown in Figure 1, every newly added IoT device needs to be configured with the most suitable
lightweight cryptographic algorithms required to enable security services to run efficiently. To this
end, we designed a security parameter selection algorithm. This algorithm processes the system
capabilities and requirements (the inputs) and provides one or more suggested actions (the outputs).

• Inputs: the device capabilities (e.g., CPU, RAM etc.) and the security objectives that usually
depend on the target application (e.g., authentication, confidentiality, Anti-DoS protection, etc.).

• Knowledge base: A list of constraints or minimum operational requirements of each available
lightweight cryptographic algorithm (i.e., minimum memory, minimum CPU speed, energy
consumption etc.).

• Output: the most suitable cryptographic suite (i.e., the list of cryptographic algorithms that need
to be configured in the newly introduced IoT device in the smart home monitoring system). If more
than one algorithm are suggested then their usage will be in the order on which they appear.

The main steps of the proposed algorithm are described as follows.

• Step 1—Loading the device capabilities: A configuration file containing the new device’s
capability information is loaded. This file contains the following information: CPU speed,
RAM capacity, storage capacity and battery capacity.

• Step 2—Extracting information from the knowledge base: From the knowledge base, we create
a list of algorithms with their corresponding requirements to run efficiently on IoT devices
(i.e., the algorithm can run fast and does not lead to quick depletion of the device energy resources).

• Step 3—Selecting the most suitable algorithm: In this step, Algorithm 1 is executed and as a
result the most suitable cryptographic suite is returned. The variables used in this algorithm are
explained below. Algo: one of the available cryptographic algorithms.
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AlgoReq: the list of requirements of the algorithm as extracted from the Knowledge base.
AlgoSec: the list of security objectives that this algorithm can achieve, e.g., confidentiality (through
encryption) only, or confidentiality and authentication, or authentication only, etc.
ListAlgo: the list of available algorithms.
ListCand: the list of algorithms for which the IoT device meets their requirements.
ChosenAlgo: the most suitable algorithm(s) among those in ListCand.
SecurityServ: the list of all possible security services needed for different Smart Home applications,
e.g., authentication, confidentiality, integrity, DoS protection, etc.

Please note that an IoT device meets all the requirements of an algorithm in the list ListAlgo if
and only if the following is true: “device CPU speed ≥ min CPU speed AND device memory ≥
min memory capacity AND device battery capacity ≥min battery capacity”. Moreover, reordering
the ChosenAlgo list means that the algorithm that satisfies most of the security objectives will be
recommended first, and so on. This, of course, applies in cases where we have more than one algorithm
in the list.

Algorithm 1: Algorithm operations
Result: The most suitable cryptographic suite
Initialisation:;
ListCand = ∅ ;
ChosenAlgo = ∅ ;
SecurityObj = a subset of SecurityServ, derived from the requirements of the target application ;
for EACH Algo ∈ ListAlgo do

for EACH Req ∈ AlgoReq do
if (Req is met by the IoT device) then

Move to the next iteration to test the next Req, if any ;
else

Exit the current loop and test the next Algo in ListAlgo ;
end

end
if All the Reqs are met then

Add the current Algo to ListCand ;
end

end
for EACH Algo ∈ ListCand do

if [(SecurityObj ⊂ AlgoSec) or ((SecurityObj ∩ AlgoSec) 6= ∅) then
Add the current Algo to ChosenAlgo ;

end
end
Reorder the ChosenAlgo list based on the number of provided SecurityObj ;

8. Experiments

As discussed earlier in Section 3, any new IoT device should be configured with a suitable
cryptographic suite of algorithms, before connecting it to the smart home architecture, in order
to ensure that the applications and services using this device can experience optimal security and
performance. The purpose of the experiments developed in this study is, therefore, to identify which
cryptographic algorithms, among the ones discussed in the previous section, could potentially be
configured for use by the IoT devices of our proposed architecture. This is the first step in our efforts to
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create a prototype of a real smart home environment where numerous interesting applications could
be tested.

In these experiments, we used open source software, off-the-shelf hardware and default
configurations for all systems, unless otherwise detailed below.

8.1. Testbed Overview

The testbed, shown in Figure 2, consists of a single sensor kit (Raspberry Pi 3), with another
host operating as a traffic sink (a MacBook Pro) and a wireless access-point (TP-Link) to provide
wireless network connectivity between the two peers. The experiments were set up in a smart
home environment which is the home of one of the authors. The scenario evaluated consists of
encrypting/decrypting files on the sensor S and then sending them to the traffic sink TS via the Access
Point AP. The size of files sent by the sensor S were set to 1, 2, 4, 8, 16, 32, 64 and 100 MB, and this
experiment was repeated 50 times for each of the nine cryptographic algorithms evaluated. We used
an NTP (Network Time Protocol) local time server to synchronise the sensor and sink clocks in order
to achieve precise time stamping. The metrics measured are the encryption and decryption times at
the sensor side and the results shown in Figures 3 and 4 are the average values of 50 experiments.

Figure 2. Schematic of the testbed showing physical connectivity.

8.2. Results Analysis

The achieved encryption and decryption times by each of the selected legacy and lightweight
cryptographic algorithms are depicted on the graphs shown in Figures 3 and 4. Apart from the
Chacha20 and DES3 algorithms, most of the chosen legacy cryptography algorithms have very similar
performance results in terms of the encryption and decryption times. The encryption and decryption
time of DES3 is 2 times slower than the other algorithms in most of the cases. For example, for 100 MB
files scenario, the average encryption time for DES3 is 15.3 s while for AES128-CTR it is 6.62 s. On the
other hand Chacha20 performs better than any of the chosen cryptography algorithms up to 32MB file
size. In the case of 32 MB file scenario, the average encryption time for Chach20 is 0.42 s while the
AES128-CTR is 0.92 s.
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Figures 3 and 4 also show the achieved encryption and decryption times for several the lightweight
cryptography algorithms. These figures reveal that CLEFIA significantly outperforms TRIVIUM
under all of the test cases explored here. It is also noted that, counter-intuitively, the encryption and
decryption times for the lightweight cryptography algorithms are considerably higher than their legacy
counter-parts. This is due to how these new techniques are intended to be deployed. For example,
TRIVIUM is designed for use in a hardware solution and is optimised to reduce the number of gates that
are required to achieve such an implementation. In our tests, however, the algorithms are implemented
in software and are clearly performing poorly relative to the legacy techniques. Since TRIVIUM takes
more than 100 times longer to encrypt a file, in this software implementation, it follows that it will
consume approximately 100 times more energy and that will have an associated reduction in battery
lifetime and increase in latency.

Figure 3. A comparison of the achieved encryption time (in ms) by several legacy and lightweight
cryptography algorithms.

Figure 4. A comparison of the achieved decryption time (in ms) by several legacy and lightweight
cryptography algorithms.



Sensors 2020, 20, 6131 12 of 14

The results also show that CLEFIA performs approximately 10 times slower than the legacy
implementations. This tends to suggest that software implementations of this algorithm in a high
level language such as Python are not suitable for IoT applications. It may be probable that low level,
machine code implementations and hardware implementations will perform better.

9. Conclusions

An IoT enabled smart home architecture was proposed in this paper to support several secure
and privacy preserving applications in smart cities. Due to the large variety and heterogeneity of
IoT devices and the security objectives of the applications using them, every new IoT device is
configured with a suite of lightweight cryptographic algorithms before integrating it to the system.
An experimental study was conducted to evaluate several legacy encryption/decryption techniques
and compare them with more recently proposed lightweight techniques. The results clearly show that
the hardware-oriented lightweight techniques perform significantly worse than the legacy techniques
when they are implemented in software. The software implementation of CLEFIA, for example,
in Python leads to a significant reduction in its performance as the results highlight that it performs
10 times slower than the legacy algorithms. Developers of IoT security systems therefore need to be
mindful of the type of platform that a candidate encryption/decryption technique was developed for.
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