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Abstract: Since the COVID-19 epidemic outbreak at the end of 2019, many studies regarding the
impact of meteorological factors on the attack have been carried out, and inconsistent conclusions
have been reached, indicating the issue’s complexity. To more accurately identify the effects and
patterns of meteorological factors on the epidemic, we used a combination of logistic regression (LgR)
and partial least squares regression (PLSR) modeling to investigate the possible effects of common
meteorological factors, including air temperature, relative humidity, wind speed, and surface pressure,
on the transmission of the COVID-19 epidemic. Our analysis shows that: (1) Different countries and
regions show spatial heterogeneity in the number of diagnosed patients of the epidemic, but this
can be roughly classified into three types: “continuous growth”, “staged shock”, and “finished”;
(2) Air temperature is the most significant meteorological factor influencing the transmission of the
COVID-19 epidemic. Except for a few areas, regional air temperature changes and the transmission of
the epidemic show a significant positive correlation, i.e., an increase in air temperature is conducive
to the spread of the epidemic; (3) In different countries and regions studied, wind speed, relative
humidity, and surface pressure show inconsistent correlation (and significance) with the number of
diagnosed cases but show some regularity.

Keywords: COVID-19 epidemic; meteorological drivers; modeling; LgR model; PLSR model

1. Introduction

The emergence of the COVID-19 virus since the end of 2019 has caused a global
pandemic of novel coronavirus outbreaks [1]. Novel coronavirus causes fever in humans,
induces pneumonia, and then leads to respiratory failure in patients [2]. Studies have
shown that novel coronavirus is transmitted mainly by droplets containing the virus or
by contact with infected surfaces [3]. Meteorological factors such as air temperature and
relative humidity may influence the spread of the novel coronavirus outbreak by affecting
the survival of the virus during transmission [4]. It has been suggested that climatic factors
are effective predictors of coronavirus disease [5].

Many studies have been conducted on the correlation between meteorological elements
and the COVID-19 outbreak [6–26]. Several studies have shown [6–8] that temperature is
negatively correlated with the number of new cases and deaths per day, with a correspond-
ing decrease in the number of new cases and deaths per day for every 1 ◦C increase in air
temperature. Some previous laboratory studies [9–13] also found that the survival time of
the virus became correspondingly shorter with increasing temperature. However, other
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studies [14–16] showed a positive correlation between the number of COVID-19 infections
and temperature, while others found no significant correlation between novel crown pneu-
monia and temperature [17–19]. Alternatively, it was found that there may be a relatively
suitable temperature range for the novel crown pneumonia [20–22]. Similarly, relative hu-
midity may be one of the essential meteorological factors affecting the transmission of
COVID-19. Related studies [23] showed that absolute humidity was positively correlated
with the exponential increase in the development of the COVID-19 epidemic and that
the survival and transmission of the COVID-19 virus were more favorable in humid en-
vironments. In contrast, other studies [24,25] concluded that humidity was negatively
correlated with novel crown pneumonia. In general, wind speed has an important influ-
ence on the transport dispersion of atmospheric pollutants, which may affect the spread
of COVID-19 virus particles by diluting their concentration and changing their trajec-
tory. However, several studies have shown that the correlation between wind speed and
COVID-19 transmission is not statistically significant; some individual studies found a
non-linear relationship between wind speed and COVID-19 transmission [26]. Therefore,
studies on the influence of meteorological factors on the spread of COVID-19 outbreaks are
inconsistent and subject to significant uncertainty. On the one hand, many studies have
used different methods and areas of interest; on the other hand, most importantly, the
factors that may influence the transmission of the COVID-19 epidemic are complex. Most
existing studies have failed to truly separate the part of the epidemic development process
driven by meteorological factors.

Different mathematical models are often used to explore the developmental process of
infectious diseases [27–30]. Several studies have used the SIR model and its extensions to
explore novel crown pneumonia outbreaks’ basic patterns and forecasts in different coun-
tries and regions. However, these models require more parameters to be set. They are still
sensitive to the choice of each parameter, making it difficult to understand the dynamics in
the absence of detailed observational data. Logistic regression (LgR) models with relatively
little complexity and sensitivity have been used to explore the transmission of epidemics
in different countries and regions, including recent novel crown epidemics [31–34]. To
accurately investigate the influence of meteorological factors on the COVID-19 epidemic,
this paper considers the characteristics of the LgR model. It proposes a combinatorial mod-
eling approach that is less dependent on parameter settings and separates the influence of
meteorological factors on the transmission of the epidemic as accurately as possible while
considering the exclusion of the development pattern of the epidemic itself. By using this
method, the possible influence of each of the meteorological factors such as air temperature,
relative humidity, wind speed, and surface pressure on the transmission of the COVID-19
epidemic was systematically analyzed.

The sections of this paper are organized as follows: Section 2 introduces the research
data and modeling methods. Section 3 presents the modeling analysis of the epidemic
transmission model itself and the modeling analysis of the influence of meteorological
factors on the epidemic transmission. Section 4 provides some discussions on the rationality
of some specific results. Section 5 is the conclusions and outlook of this paper.

2. Materials and Methods
2.1. Research Data
2.1.1. COVID-19 Epidemic Data

The data collected in this paper on COVID-19 in selected countries and regions of the
world are from Johns Hopkins University. More detailed regional (provinces and cities in
China, states in the United States) epidemic data are available for two countries (China,
United States) from China National/Provincial health councils and from the website:
https://www.kaggle.com/fireballbyedimyrnmom/us-counties-covid-19-dataset (accessed
on 1 December 2021). The epidemic variables collected include the cumulative number
of infections and the number of new diseases for each country (region) on a day-by-day

https://www.kaggle.com/fireballbyedimyrnmom/us-counties-covid-19-dataset
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basis. The date of the first local outbreak is used as the starting date of the study, with data
collected up to 30 September 2021.

2.1.2. Meteorological Data

The meteorological factors data used in this paper are the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data [35]. ERA5 reanal-
ysis data were generated using four-dimensional data assimilation technology with a
resolution of 0.25◦ × 0.25◦ in latitude and longitude. ERA5 reanalysis data can be down-
loaded at: https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset (accessed on
1 December 2021). Comparative analysis shows that the ERA5 reanalysis data has a good
reproducibility for global and regional climate change [36]. The meteorological elements in
the ERA5 reanalysis data used in this paper include: 2 m air temperature, 2 m dew point
temperature, 10 m longitudinal and latitudinal wind, and surface pressure. All of which
are reorganized into daily average values. ERA5 does not provide relative humidity data.
Therefore, the relevant elements are calculated based on the Equations (1) and (2).

According to the Goff-Grattch correction formula [37]:

E = E0 × 10
aT

b+T (1)

Calculate relative humidity:

RH = (E/Es)× 100 (2)

where E0 is 6.10695, a is 7.59271, b is 240.72709, and E and Es are the actual and saturated
water vapor pressure, respectively.

2.2. Modeling Method

This paper investigates the effect of meteorological factors on the COVID-19 epidemic
using a combined model of the LgR model and the partial least squares regression (PLSR)
model. According to the shape of the LgR model, it represents a single typical epidemic
cycle [31,38]. The difference between the actual epidemic and the logistic simulation of the
epidemic (i.e., the residuals of the regression equation) is considered as the contribution
due to factors other than the transmission laws of the epidemic itself. The PLSR model is
then adopted to separate the meteorological drivers in the residuals and to determine the
effect of each meteorological factor studied on COVID-19.

2.2.1. COVID-19 Self-Transmission Model

The growth pattern of the number of infectious diseases in nature is similar to an
“S-shaped” curve [37], with roughly exponential growth in the initial stage, followed by
saturation and slowing down as the number increases, and finally reaching maturity when
growth basically stops.

The expression of the LgR model function is:

P(t) =
KP0ert

K + (P0ert − 1)
(3)

where P0 is the initial population value, which represents the initial number of infections in
the infectious disease model; K is the environmental capacity, which means the maximum
cumulative number of infections in the model; r is a measure of how fast the curve changes,
which represents the disease transmission rate in the infectious disease model; t is time,
and P(t) is the population size over time, which means the cumulative number of infections
over time in the infectious disease model. The value of r measures how fast the curve
changes in the traditional LgR model. If the value of r is large, the epidemic is developing
rapidly; conversely, the slower the epidemic is growing.

https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
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The goodness of fit is used to express the behavior of the LgR model (how the fitted
value fits the observations). The maximum value of R2 is 1. The closer the value of R2 is to
1, the better the fit to the observations; conversely, the smaller the value of R2 is, the worse
the fit to the observations.

Let y be the value to be fitted, its mean value is y, and the fitted value is ŷ.
Sum of squares total (SST):

SST =
n

∑
i=1

(yi − y)2 (4)

Sum of squared regression (SSR):

SSR =
n

∑
i=1

(ŷi − y)
2

(5)

Sum of squared errors (SSE):

SSE =
n

∑
i=1

(yi − ŷi)
2

(6)

The goodness of fit is:

R2 = 1− SSE
SST

(7)

2.2.2. Modeling the Influence of Meteorological Factors on COVID-19

To avoid the application limitations of ordinary multiple linear regression (MLR),
S. Wold and C. Albano et al. first proposed the partial least squares regression (PLSR)
method in 1983 [39]. When there are multiple correlations between variables, using ordi-
nary least squares for MLR analysis can jeopardize parameter estimates, amplify model
errors, and undermine model robustness. PLSR analysis extracts the variables with the
strongest explanatory power for the dependent variable by decomposing and filtering the
data information, thus effectively overcoming the undesirable effects of multiple correla-
tions of variables in system modeling. The PLSR model performs well in the separation of
the influence of the external forcings on surface air temperature and precipitation [40–42].
Unlike the traditional MLR analysis method, it first obtains the standardized matrices of the
independent and dependent variables through standardization, then performs principal
component analysis on the independent variables, extracts the principal component corre-
sponding to the largest eigenvalue that is most closely related to the dependent variable
and the corresponding load vector, and uses this principal component to regress with
the dependent variable to find the respective residual matrices; then performs similar
processing on the residual matrices, and so on analogously.

The explained variance of the predicted dependent variable calculated from the resid-
uals is used to measure the stability of the equation estimated by the partial regression.
The number of selected principal components is determined in this way [43]. The model
expression is:

E0 = ∑s
i=1 ti p′i (8)

F0 = ∑s
i=1 tir′i + Fs (9)

where E0 denotes the normalization matrix of the independent variable,
E0 =

(
E01, · · · , E0p

)
n×p, F0 denotes the normalization matrix of the dependent variable,

F0 =
(

F01, · · · , F0p
)

n×q, s denotes the number of components extracted from the original
variables, ti denotes the principal component vector of the extracted independent variable
matrix one at a time, pi denotes the load vector of the dependent variable, ri denotes the
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projection vector of the dependent variable on the principal component axis, Fs denotes the
residual matrix, and the symbol (′) denotes the transpose.

Since t1 · · · ts can all be expressed as a linear combination of E01 · · · E0p,
Equations (8) and (9) can be reduced to the form of the regression equation of the standard-
ized dependent variable y∗k = F0k on the standardized independent variable x∗j = E0j. The
expression is:

y∗k = ∑p
j=1 αkjx∗j + Fsk (10)

where k = 1, · · · , q, j = 1, · · · , p, αkj denotes the standardized coefficient of the jth inde-
pendent variable with respect to the kth dependent variable, Fsk denotes the kth column of
the residual matrix, and (∗) denotes the standardization treatment.

The variable importance of projection (VIP), is the explanatory power of the indepen-
dent variable xj on the set of dependent variables Y. It is defined as:

VIPj =

√
p

∑s
i=1 R(Y, ti)

∑s
i=1 R(Y, ti)w2

ij (11)

where p denotes the number of independent variables, R(Y, ti) denotes the explanatory
power of ti on the set of dependent variables Y as the square of their correlation coefficients,
wij denotes the jth component of the axis wi, and w denotes the eigenvector of the largest
eigenvalue of the matrix E′i−1Fi−1F′i−1Ei−1.

The VIP value can be used to filter the variables that contribute more to the model.
A VIP value greater than 1 indicates that the independent variable has a more critical ex-
planatory role for the dependent variable; a VIP value of 0.5–1 suggests that the importance
of the explanatory role is not entirely clear and requires additional samples or judgment
based on other conditions; a VIP value less than 0.5 indicates that the explanation of the
independent variable for the dependent variable is meaningless [44,45].

3. Results
3.1. Characteristics of COVID-19 Transmission in Selected Countries and Regions

Since the outbreak of COVID-19, there has been a significant impact on the economy
and public health system. The attack is still in the process of developing in many countries
and regions. Three main types characterize the development of the COVID-19 epidemic
in selected countries and regions worldwide. The first type is the “continuous growth”
type, Figure 1a shows the development trend of the global cumulative confirmed cases,
and by 30 September 2021, the cumulative confirmed cases globally of the COVID-19
epidemic exceed 200 million, showing a continuous rapid growth trend. Figure 1b shows
the development trend of the COVID-19 epidemic in Brazil, which exhibits similar devel-
opment characteristics to the global. The second type is the “staged shock”, as shown in
Figure 1c. The development of the epidemic in Nepal shows a multi-stage character, with
slow growth or even stagnation after a certain period, followed by rapid growth again.
The third type is the “finished”, as shown in Figure 1d, which indicates the development
trend of confirmed cases in Wuhan since the outbreak of COVID-19. In the early stage
of development, the COVID-19 epidemic spread rapidly. The epidemic was effectively
controlled in a short period due to the strong control measures taken by the government,
so the region experienced a rapid “finished” process.

To better analyze the characteristics of the spread of the epidemic, accurately simulate
the transmission pattern of the COVID-19 epidemic within a certain period, and explore
the influence of meteorological factors on the spread of the COVID-19 epidemic, this paper
selects relevant countries and regions (involving Asia, Europe, Africa, and North America)
with a large spatial span, a certain degree of representativeness, and whose epidemic
spread has a certain periodicity (the second and third types mentioned above) for the study.
Table 1 presents the “epidemic cycle” time window for developing the epidemic in the
countries and regions selected for this paper. We chose the first day of recording as the
start date of the study, while the termination date was chosen based on the criterion that
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the cumulative number of diagnoses reached a relatively flat stage of development. We
also selected different termination dates for sensitivity testing during the relatively flat
phase (Supplementary Information Table S2). Among these countries (regions or cities),
Wuhan has the finished type, while the other countries and regions have the staged shock
type (Figure 2). Nepal, Uzbekistan, and Wuhan are located in Asia, the United Kingdom in
Europe, Morocco in Africa, and the U.S. states in North America.
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Table 1. Time windows for the different countries and regions studied.

Countries and Regions Time Windows

United Kingdom 31 January 2020–2 May 2021
Nepal 25 January 2020–28 February 2021

Morocco 2 March 2020–14 May 2021
Uzbekistan 15 March 2020–24 February 2021

Wuhan 14 January 2020–13 March 2020
Alabama 13 March 2020–11 May 2021
California 25 January 2020–18 April 2021

Idaho 13 March 2020–4 June 2021
North Dakota 11 March 2020–25 March 2021
South Dakota 10 March 2020–13 April 2021

Wisconsin 5 February 2020–29 April 2021
Wyoming 11 March 2020–4 May 2021
Kentucky 6 March 2020–29 April 2021
Montana 13 March 2020–26 April 2021
Arizona 26 January 2020–1 October 2020

Massachusetts 1 February 2020–29 July 2020
New Hampshire 2 March 2020–14 July 2021

Oklahoma 6 March 2020–29 May 2021
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Figure 2. Cumulative confirmed cases in the countries and regions studied. Figure (a–r) represents
the cumulative confirmed cases of COVID-19 in our study area and time respectively.

3.2. Modeling of the COVID-19 Self-Development

Figure 3 represents the fit of the LgR model to the cumulative confirmed cases of the
COVID-19 epidemic for different countries and regions studied during their “epidemic
cycles” (Table 1). The dotted lines represent the observed cumulative confirmed cases of the
epidemic. The blue curves represent the cumulative confirmed cases fitted according to the
LgR model. The orange curves represent the residuals between the observed cumulative
confirmed cases and the cumulative confirmed cases simulated by the LgR model. The
parameter values and goodness of fit of the LgR model for the different countries and
regions studied are given in Table 2. As shown in Table 2, the goodness of fit of the LgR
models for all 18 countries and regions reached above 0.9, indicating that the model has a
relatively good simulation of the transmission process of the studied COVID-19 epidemic
and can better capture the transmission characteristics and trends of the epidemic.
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Table 2. LgR model parameters and goodness of fit for different countries and regions.

Regions K P0 r R2

United Kingdom 4,435,831 2 0.046 0.976
Nepal 274,143 1 0.047 0.996

Morocco 514,705 1 0.052 0.979
Uzbekistan 79,749 1 0.067 0.936

Wuhan 49,994 45 0.253 0.999
Alabama 531,404 6 0.044 0.906
California 3,718,367 1 0.046 0.938

Idaho 192,870 1 0.047 0.950
North Dakota 102,230 1 0.049 0.992
South Dakota 120,154 5 0.041 0.988

Wisconsin 659,812 1 0.047 0.977
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Table 2. Cont.

Regions K P0 r R2

Wyoming 58,367 1 0.042 0.994
Arizona 219,214 1 0.074 0.906

Kentucky 446,773 1 0.046 0.961
Montana 108,227 4 0.040 0.993

Massachusetts 116,684 1 0.130 0.958
New Hampshire 99,840 1 0.036 0.981

Oklahoma 452,777 1 0.047 0.965

3.3. Separation of the Influence of Meteorological Drivers on the Transmission of the COVID-19

The PLSR modeling analysis was then performed to separate the effects of meteoro-
logical factors on the transmission of the COVID-19 epidemic. We use the residuals of
the LgR modeling relative to the actual spread of the epidemic in Figure 3 above as the
dependent variables and the corresponding air temperature, relative humidity, wind speed,
and surface pressure over the same period as independent variables. The standardized
coefficients of the PLSR model and their significance intervals at 5% confidence are given
in Figure 4. The magnitude of the coefficients indicates the relative importance of this
meteorological factor on the variation of the residuals.
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As shown in Figure 4, the PLSR model can well capture the meteorological information
in most study areas and explain the influence of meteorological factors on the spread of the
COVID-19 epidemic to a certain extent, with 11 countries and regions explaining variance
above 0.45. Figure 4 also shows the standardized coefficients and their significance at a 5%
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level for each meteorological factor obtained from PLSR modeling with air temperature,
relative humidity, wind speed, and surface pressure as the driving factors for each country
and region. The effect of air temperature on the COVID-19 epidemic is significant in
all the countries and regions studied. The coefficients of PLSR of air temperature in
Wuhan, Arizona, and Massachusetts were negative, indicating a negative correlation
between temperature and the COVID-19 epidemic in these three regions, i.e., an increase in
temperature is detrimental to the transmission of the COVID-19 epidemic. The coefficients
of PLSR of air temperature in the remaining countries and regions studied were positive,
indicating that the increase in air temperature is favorable to the transmission of the
COVID-19 epidemic. We investigated the influence of air temperature on the development
of the epidemic at different lag days, including 5-day, 7-day, and 14-day lag conditions.
The results show that the effect of air temperature on the epidemic under different lag
time conditions is consistent with the results of our chosen reference date, showing great
stability. We also chose different periods of time to explore the stability of the effect, and
the results show that the air temperature factor has a consistent effect on the epidemic
(Supplementary Information Tables S1 and S2).

Relative humidity significantly affected the COVID-19 epidemic in the regions studied,
except for the UK, Massachusetts, South Dakota, Kentucky, and Oklahoma states. For
Nepal, Morocco, Uzbekistan, Montana, and New Hampshire, the coefficient of PLSR relative
humidity was positive, indicating that relative humidity showed a positive relationship
with the COVID-19 epidemic. For the other regions, the coefficient of PLSR relative hu-
midity was negative, indicating that relative humidity was negatively correlated with the
COVID-19 transmission. Wind speed was significantly correlated with the COVID-19 spread
in Nepal, California, North Dakota, South Dakota, Wyoming, Kentucky, Arizona, and Ok-
lahoma. For other areas, wind speed did not significantly correlate with the COVID-19
spread. For surface pressure, the UK, Arizona, Morocco, Alabama, and New Hampshire
were not significantly correlated with the COVID-19 epidemic, and all other countries and
regions studied showed significant correlations between surface pressure and the COVID-19
epidemic. Nepal, Uzbekistan, Wuhan, California, and Massachusetts showed significant
negative correlations with COVID-19, while the other regions showed significant positive
correlations. Similarly, we explore the effects of the relative humidity, wind speed, and
surface pressure on the development of the epidemic under different lag times, including
5-day, 7-day, and 14-day lag conditions. The results show that relative humidity, wind
speed, and surface pressure show some differences in the significance and correlation of
meteorological factors in some countries and regions at different lag days compared to the
study dates, but most of them have consistent effects at different lag days. Among them, the
surface pressure factor shows the strongest consistency and differences only in Morocco and
California. Similarly, the performance of these three meteorological factors at different times
does not show the same exact conclusions as the temperature, but there is still consistency
in some countries and regions (Supplementary information Tables S1 and S2).

4. Discussion
4.1. Possible Explanations for the Influence of Different Meteorological Factors on COVID-19

Air temperature is significantly correlated with the COVID-19 epidemic in the coun-
tries and regions studied (Figure 4), which is consistent with the findings of most previous
studies [46–49]. Except for Wuhan, Arizona, and Massachusetts, where the air temperature
factor negatively correlated with the spread of COVID-19, all of the other countries and regions
showed a positive correlation between the air temperature and the COVID-19 diagnosed
cases. The inconsistent correlation with the epidemic in the studied areas might be related
to the occurrence and duration of the epidemic, the epidemic sample size may also affect
the stability of the model [50]. There may be special reasons for the negative correlation
between air temperature and epidemic in the three regions mentioned above: firstly, as the
virus appears in winter, there is a process of adaptation to meteorological factors in the short
term, and its infectiousness may be suppressed as the air temperature rises; Secondly, in a
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short time, it cannot be excluded that strict human control measures have had some impact
on statistical relationships. For the other areas studied, the sample size was more extensive
as the study became more prolonged. Therefore the results were more stable and represen-
tative, most likely reflecting the true impact of air temperature on the COVID-19 outbreak.
One possible explanation for the positive correlation between air temperature and COVID-19
is that people are more likely to go out and be exposed to environments with the virus when
air temperatures rise, thereby increasing the risk of infection [16].

The effect of humidity on virus transmission may be that the dry and humid conditions
of the air affect the tiny droplets exhaled by the human body, affecting the attachment and
replication of the virus and its transmission through evaporation and deposition. Relative
humidity also can affect COVID-19 virus survival by affecting aerosols and thus COVID-19
virus survival [51]. The results of this paper found that the effect of relative humidity on
COVID-19 outbreaks was significant in thirteen countries and regions, and most regions
showed a negative correlation, similar to the results of some previous studies [24,25]. The
lower the humidity and the drier the air, the smaller the aerosol condensation nuclei, and
the smaller infectious aerosols will remain in the air longer. They may enhance the spread
of the outbreak [52].

It was found that wind speed may affect airborne suspended particles of the virus and
thus influence the development of the COVID-19 outbreak [53]. This paper found that wind
speed did not affect the epidemic to the same extent in different regions. Its significance
and correlations with the epidemic were not completely uniform. In some areas where the
effect of wind speed was significant, the wind speed was negatively correlated with the
epidemic. The possible explanation is that higher wind speeds have better air circulation
and a more substantial dilution effect on airborne virus particles, thus attenuating the
spread of the epidemic.

Surface pressure may affect the duration of virus suspension in the air by influencing
the generation and extinction of weather systems and, in turn, the spread of the virus.
Related studies have shown that the effect of surface pressure on the development of the
epidemic can vary in different study areas [53]. This paper found that the effect of surface
pressure on the COVID-19 epidemic is significant in thirteen countries and regions. Still,
the correlations were not consistent across regions, which may also be influenced by other
socioeconomic and other factors, and therefore need to be further studied.

In addition, since the emergence of the COVID-19 virus, the virus is still under constant
mutation and has undergone α mutation, β mutation, γ mutation, omicron, etc. The
possible differences in the effects of meteorological factors on different mutated viruses in
different countries and regions may be one of the reasons for the incomplete consistency of
the impact of meteorological conditions on the spread of the epidemic.

4.2. About the Fitting Effect of the PLSR Model

Based on the current study, the LgR model is able to fit well the transmission pattern
of the epidemic itself (Table 2, R2 reached above 0.9). The explanation variances have
been reduced when using the PLSR model to explore the effects of meteorological factors
(air temperature, relative humidity, wind speed, and surface pressure) on the COVID-19
epidemic. Figure 4 shows that the PLSR models with meteorological factors as independent
variables fit well (R2 > 0.45) for most countries and regions. While for a small number of
countries and regions, the models fitted with a small R2 (R2 < 0.45). Possible explanations for
this result are: (1) The residual series of the LgR model and the actual number of epidemics
include, in addition to meteorological factors, factors such as socioeconomic conditions
(economic level, medical level), interventions (individual health habits, regional health
decisions), regional natural conditions, population movements (population differences,
population characteristics and density), etc., which are not taken into account in the model;
(2) The additional patients including the timely conversion of asymptomatic infected
individuals to confirmed cases, the external input cases, etc. may also make the PLSR
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modeling results subject to a degree of uncertainty due to local differences in detection
capacity.

Even so, at spatial scales (e.g., cities, regions, and countries of similar spatial extent in
this paper), the PLSR model is still better able to summarize the correlation between meteo-
rological factors and COVID-19 transmission over a complete epidemic cycle and separate
the degree of influence of different meteorological factors on the COVID-19 epidemic.

5. Conclusions

The paper uses a combination of the LgR and PLSR models to investigate the meteoro-
logical drivers of the COVID-19 epidemic. The LgR model fits the developing laws of the
epidemic itself, and the PLSR model is then used to explore the impact of each meteorological
factor on the development of the epidemic. The following conclusions are drawn:

(1) Different countries and regions have different characteristics of transmission of the
COVID-19, showing spatial inhomogeneity, but they can be roughly classified into
three types (“continuous growth”, “staged shock”, and “finished”) according to the
characteristics of development stages.

(2) Air temperature is the most significant factor associated with the transmission of the
COVID-19 epidemic, with regional variations in air temperature and the transmission
of the epidemic in most regions showing a significant positive correlation at a 95%
confidence level.

(3) In the different countries and regions studied, there are significant correlations be-
tween the epidemic diagnosed cases and relative humidity/ wind speed and surface
pressure in some areas. In general, increases in relative humidity/ wind speed and
low surface pressure are not conducive to the transmission of the epidemic.

Due to the time and space limitations of the study, the conclusions obtained in this
paper still have some limitations: We do not consider the influence of factors other than
meteorological factors, which may also play a moderating role in developing the COVID-19
epidemic. For example, further studies will also need to consider incorporating potential
risk factors such as socioeconomic conditions and human control in each country and
region into the model to explore the more precise influence of meteorological factors on the
COVID-19 epidemic.
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